Mathematical Notes 2015 vol.98 N3-4, pages 382-391

Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra

Bikchentaev A.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2015, Pleiades Publishing, Ltd. Let M be a von Neumann algebra of operators in a Hilbert space H, let τ be an exact normal semifinite trace on M, and let L1(M, τ) be the Banach space of τ -integrable operators. The following results are obtained. If $X = X^*$, $Y = Y^*$ are τ -measurable operators and XY \in L1(M, τ), then YX \in L1(M, τ) and τ (XY) = τ (YX) \in R. In particular, if X, Y \in B(H)sa and XY \in G1, then YX \in G1 and tr(XY) = tr(YX) \in R. If X \in L1(M, τ), then (Formula Presented.). Let A be a τ -measurable operator. If the operator A is τ -compact and V \in M is a contraction, then it follows from V* AV = A that V A = AV. We have A = A2 if and only if A = |A^*||A|. This representation is also new for bounded idempotents in H. If A = A2 \in L1(M, τ), then (Formula Presented.). If A = A2 and A (or A*) is semihyponormal, then A is normal, thus A is a projection. If A = A3 and A is hyponormal or cohyponormal, then A is normal, and thus A = A* \in M is the difference of two mutually orthogonal projections (A + A2)/2 and (A2 - A)/2. If A,A2 \in L1(M, τ) and A = A3, then $\tau(A) \in R$.

http://dx.doi.org/10.1134/S0001434615090035

Keywords

Banach space of τ -integrable operators, cohyponormal operator, Hilbert space, hyponormal operator, idempotent, semihyponormal operator, von Neumann algebra, τ -compact operator, τ -measurable operator