CONTRIBUTIONS TO THE HISTORY OF VARIATIONS OF WEAK DENSITY IN THE n-R.E. DEGREES

MARAT M. ARSLANOV
Department of Mathematics, University of Kazan

A set $A \subseteq \omega$ is called n-r.e. if $n=1$ and A is recursively enumerable (r.e) or $n>1$ and there is an r.e. set A_{1} and an n-r.e. set $A_{2} \subseteq A_{1}$ such that $A=A_{1}-A_{2}$. A Turing degree is called a n-r.e. degree if it contains a n-r.e. set; it is called properly n-r.e. if it is n-r.e. but not $n-1$-r.e. Clearly a set A is n-r.e. if and only if there is a recursive function f such that for all $x \lim _{s} f(s, x)=A(x), f(0, x)=0$ and

$$
\begin{equation*}
\operatorname{card}\{s: f(s+1, x) \neq f(s, x)\} \leq n . \tag{1}
\end{equation*}
$$

In the obvious way, a set $A \subseteq \omega$ is called ω-r.e. iff it satisfies the same definition where (1) is replaced by

$$
\operatorname{card}\{s: f(s+1, x) \neq f(s, x)\} \leq h(x)
$$

for some recursive h. The reader should note that if a set A satisfies (1^{\prime}) for some recursive h then it satisfies (1^{\prime}) for any recursive unbounded function g (see [1]).
The existence of properly α-r.e. degrees was first proved for $1<\alpha<\omega$ by Cooper [2] and for $\alpha=\omega$ by Epstein [5] and Lachlan (1968, unpublished), who showed that there is an ω-r.e. minimal degree, and that every nonrecursive n-r.e. degree for $1<n<\omega$ bounds a nonrecursive r.e. degree, respectively.

During the past decade, an intensive study of the structure of n-r.e. (and more particularly d-r.e. $=2$-r.e.) degrees was initiated. Interest in the n-r.e. degrees stems from their affinity with the r.e. degrees, although a number of recent papers have sought several essential differences between these structures. Probably the most fundamental result in this direction is the Cooper-Harrington-Lachlan-Lempp-Soare Nondensity Theorem, which states that the partial orderings of n-r.e. degrees for any $n>1$ are not dense.

