

Tetrahedron Letters 40 (1999) 8461-8464

TETRAHEDRON LETTERS

Phosphorylation of *p-tert*-Butylthiocalix[4]arene: Reaction with Phosphorus Trichloride.

Igor S.Antipin,^a* Ivan I.Stoikov,^a Aidar T.Gubaidullin,^b Igor A.Litvinov,^b Dirk Weber,^c Wolf D.Habicher,^c Alexander I.Konovalov^b

^a Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
^b Arbuzov Institute of Organic and Physical Chemistry, Arbuzov st. 8, 420083 Kazan, Russia
^c Dresden University of Technology, Mommsenstr. 13, D-01062 Dresden, Germany

Received 5 July 1999; accepted 14 September 1999

Abstract: The synthesis of the first phosphorylated derivatives of *p-tert*-butylthiocalix[4]arene was achieved by reaction with phosphorus trichloride. The product containing two cyclic P(III) atoms is not hydrolytically stable. The *flattened 1,2-alternate* conformation of a P(IV) derivative was established by ¹H, ¹³C, ³¹P NMR experiments and X-ray analysis. © 1999 Elsevier Science Ltd. All rights reserved.

In recent years supramolecular chemistry has been drawn to the calix[n]arenes due to their ability to act as pre-organizing complexing agents, carriers and potential biomimics as well as being able to undergo multiple functionalization.^{1,2} The insertion of phosphorus containing moieties into calix[n]arenes allows extension of the possibilities for engineering of supramolecular systems.^{3,4} We are currently studying the phosphorylation of thiocalix[4]arene 1, which was recently synthesized in a satisfactory yield by the condensation of *tert*-butylphenol and sulfur under basic conditions at elevated temperatures.⁵ Of course, the presence of the four sulfur atoms could bring new features into the chemical behavior of calixarenes.

In the present paper the first synthesis and structural analysis of phosphorylated thiocalix[4]arenes in the solution and crystalline state are reported. Phosphorus trichloride was chosen as the phosphorylation reagent because the P-Cl compounds are very useful starting materials for further transformations.

The phosphorylation of 1 by PCl₃ with the commonly used procedure (toluene, NEt₃ (excess), room temperature) yields a single product which shows an intense (100%) peak in the MALDI spectrum at m/z 848.⁶ In the ³¹P NMR spectrum of the reaction mixture one resonance at δ 170.2 is observed. This value is in the range for three-coordinate phosphorus. The comparison with the ³¹P chemical shifts of model compounds **3a** (δ 168.4) and **3b** (δ 170.4)⁷ suggest the formation of cyclic chlorophosphite **2** (Scheme 1). However, during attempts at isolation, **2** decomposed to give free *p-tert*-butylthiocalix[4]arene, as well as other unidentified products. So the product obtained is less hydrolytically stable than corresponding cyclic chlorophosphite of *p*-*tert*-butylcalix[4]arene.⁸ The influence of a sulfur atom in the dioxathiophosphocin ring system may be responsible for such behavior (due to P-S interactions).

Using a slightly modified literature procedure ⁹ we reacted 1 with the excess of PCl_3 in *p*-bromotoluene without base at elevated temperatures.¹⁰ After dilution of the reaction mixture with hexane, a colorless, crystalline precipitate was formed after 12 h (Scheme 1). These crystals were found to be a complex of