brought to you by

Journal of Physical Chemistry B 2005 vol.109 N12, pages 5746-5752

Surface self-diffusion of organic molecules adsorbed in porous silicon

Valiullin R., Kortunov P., Kärger J., Timoshenko V. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The pulsed field gradient nuclear magnetic resonance method has been employed to probe self-diffusion of organic guest molecules adsorbed in porous silicon with a 3.6 nm pore size. The molecular self-diffusion coefficient and intrapore adsorption were simultaneously measured as a function of the external vapor pressure. The latter was varied in a broad range to provide pore loading from less than monolayer surface coverage to full pore saturation. The measured diffusivities are found to be well-correlated with the adsorption isotherms. At low molecular concentrations in the pores, corresponding to surface coverages of less than one monolayer, the self-diffusion coefficient strongly increases with increasing concentration. This observation is attributed to the occurrence of activated diffusion on a heterogeneous surface. Additional experiments in a broad temperature range and using binary mixtures confirm this hypothesis. © 2005 American Chemical Society.

http://dx.doi.org/10.1021/jp045721p