Numerical study of dynamical properties of entangled polymer melts in terms of renormalized rouse models

Krutyeva M., Fatkullin N., Kimmich R. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The dynamic properties of n-renormalized Rouse models (n = 1, 2) were numerically investigated. Within two decay orders of magnitude, the damping of normal Rouse modes of a polymer chain was shown to be approximated by the stretched exponential function Cp(t) $\propto \exp\{-(t/\tau p^*)\beta p\}$, where βp is the stretching parameter dependent on the number p of the Rouse mode and τp^* is the characteristic decay time. The dependence of the stretching parameter on the mode number has a minimum. It was found that the nonexponential form of autocorrelation functions of the normal modes affects the dynamic characteristics of a polymer chain: the mean-square segment displacement [r2(t)]nRR and the autocorrelation function of the tangential vector [b(t)b(0)]NRR. In comparison with the Markov approximation, the [r2(t)] [TRR and <math>[b(t)b(0)]TRR values in the twice-normalized Rouse model change over time at a lesser rate: $\propto t 0.31$ and $\propto t-0.31$ at times t $\ll \tau p$ TRR, respectively. The effect of the finite dimensions of the polymer chain on the relaxation times of the normal modes was studied. Copyright © 2005 by Pleiades Publishing, Inc.