Journal of Physics Condensed Matter 2000 vol.12 N20, pages 4465-4473

Multifrequency EPR study of Cr3+ ions in LiScGeO4

Galeev A., Khasanova N., Rudowicz C., Shakurov G., Bykov A., Bulka G., Nizamutdinov N., Vinokurov V.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

An electron paramagnetic resonance study of a synthetic single crystal of Cr-doped LiScGeO4 was carried out at the X-and Q-bands at 300 K and at the broad band (70-370 GHz) at 4.2 K. It was established that the EPR spectra with the magnetic multiplicity KM = 2 observed in all the frequency bands are due to the Cr3+ substituted for Sc3+ at the mirror symmetry octahedral site. The angular dependences of the two symmetry-related spectra of Cr3+ in the three crystallographic planes were fitted with the spin Hamiltonian (S = 3/2) of monoclinic symmetry. The zero-field splitting of the ground state energy levels was determined as 1.309(5) cm-1 which compares well with that for Cr3+ in forsterite and alexandrite crystals with similar olivine-like structure. Additional weak lines due to Mn2+ and Fe3+ at the mirror symmetry sites were also identified in the X- and Q-band spectra.

http://dx.doi.org/10.1088/0953-8984/12/20/302