Applied Magnetic Resonance 1996 vol.11 N3-4, pages 493-498

Electron spin-lattice relaxation of Yb3+ and Gd3+ ions in glasses

Vergnoux D., Zinsou P., Zaripov M., Ablart G., Pescia J., Misra S., Rakhmatullin R., Orlinskii S. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

The electron spin-lattice relaxation rate (T1 -1) was measured in two glass samples: (i) a phosphate glass doped with 1 wt% Yb2O3 and (ii) a Li2Si4O9 glass sample doped with 0.2 wt% Gd2O3. In the Yb3+-doped glass sample, T1, was measured by an electron-spin-echo technique from 4.2 to 6 K, by the modulation method from 10 to 26 K and by the EPR linewidth from 30 to 100 K. It was found that (T1 -1) \propto Tn with n = 9 in the range 4.2-6 K. n decreased gradually as the temperature was increased and tended towards 2 above 40 K. Over the entire temperature range 4.2-100 K, (T1 -1) was fitted to AT + BT9J8 (ΘD/T) (where A and B are two temperatureindependent constants, J8 is the well-known Van Vleck integral and ΘD is the Debye temperature). The value of ΘD (= 46.3±0.9 K) so determined is in good agreement with that of Stevens and Stapleton from their T1, measurements in the range 1.5 to 7 K. In the Gd3+-doped glass, it was observed that (T1 -1) \propto T over the range 50-150 K. The data for Ye3+-doped glass sample were accounted for by assuming that the phonon modulation of the ligand field is the dominant mechanism, associated with a low Debye temperature in accordance with the published data obtained by using other techniques to study lattice dynamics. On the other hand, the data on the Gd3+-doped glass sample were explained to be predominantly due to a mechanism involving Two-Level-Systems (TLS). © Springer-Verlag 1996 Printed in Austria.