

www.elsevier.com/locate/colsurfa

Aggregation and counter ion binding ability of sulfonatomethylcalix[4]resorcinarenes in aqueous solutions

R.R. Amirov^{a,*}, Z.T. Nugaeva^a, A.R. Mustafina^b, S.V. Fedorenko^b, V.I. Morozov^b, E.Kh. Kazakova^b, W.D. Habicher^c, A.I. Konovalov^b

^a A.M. Butlerov Chemical Institute, Kazan State University, Kazan 420008, Russia ^b A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, Kazan 420088, Russia ^c Institute für Organische Chemie, Technische Universität, Drezden 01062, Germany

Received 15 July 2003; accepted 10 March 2004

Available online 8 May 2004

Abstract

¹H NMR spectroscopy, ¹H NMR spin-lattice relaxation, conductivity and pH-metric titration data have been used to study the aggregation and counter-ion binding of tetrasulfonatomethylcalix[4]resorcinarenes with methyl (H₈XNa₄) and amyl (H₈YNa₄) substituents. The data obtained reveal the self-aggregation of H₈YNa₄ driven by hydrophobic interactions. The NMR relaxation data indicate that Gd³⁺ is bound by both H₈XNa₄ and H₈YNa₄. The Gd³⁺ ions were found to induce the aggregation of H₈YNa₄ with critical association concentration (CAC) value less than in case of its self-aggregation. Using Gd³⁺ as a probe of counter-ion binding with the aggregate interface it was found out that binding of quaternary ammonium cations (QUATSs) with H₈YNa₄ aggregates and SDS aggregates is quite different, while binding of inorganic ions by both types of aggregates is similar. The most outstanding peculiarity of QUATSs binding with H₈YNa₄ aggregates is selective recognition of QUATSs, possessing trimethylammonium group, detected by NMR relaxation method. © 2004 Elsevier B.V. All rights reserved.

Keywords: Water-soluble calix[4]resorcinarene; Lanthanide ion; Inclusion; Self-assembly

1. Introduction

One of the objectives of supramolecular chemistry is to mimic nature in its development of specific receptor molecules [1]. The specificity of recognition phenomena in turn is resulted from multiple weak forces, coming into play in supramolecular self-assembled systems [2]. Therefore, a water-soluble calixarenes and resorcinarenes capable to self-organization are of particular importance. The self-assembly of amphiphilic particles in aqueous solution changes many physical chemical properties of solution, that is why various methods have been used to study the self-aggregation phenomena, including NMR spectroscopy [3], NMR relaxation [4], electrical conductivity [5], surface tension [6,7], self-diffusion measurements [8], small-angle neutron scattering [9]. The self-assembly of an amphiphilic calixarenes results in the formation of the charged aggre-

E-mail address: ramirov@ksu.ru (R.R. Amirov).

gates [10–12] (anionic or cationic), that is why binding with counter-ions plays major role in their stability. For example, the binding of counter-ions to alkyl sulfate micelles resulting in the efficient screening of surfactant's charge and thus mediating sphere-to-rod transition of micelle architecture [13–15] is driven by electrostatic interaction, while the adsorption of 1,3-dioctyloxy-calix[4]arene-crown-6-ether at the micellar interface of cesium dodecylsulfate provides most efficient screening of surfactant's charge under cesium counter-ions entrapping [9]. Therefore, a binding of self-aggregated water-soluble calixarenes with counter-ions is of great importance, because it should differ from the counter-ion binding in well-known alkyl sulfate anionic micelle.

The water-soluble sulfonatomethylcalix[4]resorcinarene (H₈XNa₄) is known as receptor for both organic and lanthanide ions [16,17]. The sulfonatomethyl groups are able to bind lanthanide ions and the π -donor hydrophobic cavity provides the opportunity of an inclusion of organic cations [17]. Trivalent lanthanides have attractive spectroscopic

^{*} Corresponding author.