

Available online at www.sciencedirect.com

Optical Materials 24 (2003) 143-150

www.elsevier.com/locate/optmat

Long-lifetime fluorescence and crystal field calculation in Cr^{4+} -doped Li_2MSiO_4 , M = Mg, Zn

Cécile Jousseaume^a, Daniel Vivien^{a,*}, Andrée Kahn-Harari^a, B.Z. Malkin^b

^a Laboratoire de Chimie Appliquée de l'Etat Solide, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France ^b Physics Department, Kazan State University, 420008 Kazan, Russia

Received 8 December 2002; accepted 24 February 2003

Abstract

The diffuse reflectance spectra of Cr:Li₂MSiO₄, M = Mg, Zn, indicate that in these compounds, chromium ions occur in the 4+, 5+, and 6+ oxidation states simultaneously. Under selective excitation in a Cr⁴⁺ absorption band, a very long fluorescence decay time is observed for both compounds: ~110 µs at room temperature and ~300 µs at 30 K. These are by far the longest fluorescence lifetimes reported for Cr⁴⁺ activated materials. In Cr⁴⁺:Li₂MSiO₄, the ¹E excited state level lies below the lowest component of the ³T₂ level and the fluorescence decay time is dominated by the long-lifetime ¹E level for which the transition to the ground state is spin-forbidden. The reverse situation occurs for the other Cr⁴⁺ doped compounds and their fluorescence lifetimes, governed by the short-lifetime ³T₂ state, are only a few microseconds. A crystal field calculation, performed for Cr⁴⁺:Li₂MSiO₄, confirms the above interpretation and supports the localization of Cr⁴⁺ at the silicon site in this compound. © 2003 Elsevier B.V. All rights reserved.

PACS: 07.06.R; 71.20.B

1. Introduction

Tetravalent chromium activated crystals with tetrahedral symmetry, such as forsterite Cr^{4+} : Mg₂SiO₄ [1,2] and Cr^{4+} :YAG [3], are widely used as tunable solid state lasers in the near-infrared (1.2–1.5 µm), as saturable absorbers for passive Q-switching of neodymium lasers [4] and for ultrashort laser pulses generation [5]. Throughout this

E-mail address: vivien@ext.jussieu.fr (D. Vivien).

paper, we will use the formal oxidation states for the chromium ions, although it is well known that

their effective charges are much lower, due to the

strong covalence of Cr-O bonds for chromium

octahedral sites are available, and chromium may

enter the lattices in the form of octahedral Cr^{3+} , tetrahedral Cr^{4+} and sometimes as octahedral

 Cr^{4+} . It follows that only a few percent of the chromium in these materials correspond to the

tetrahedral Cr^{4+} active species [6,7].

In YAG and forsterite, both tetrahedral and

high oxidation states.

^{*}Corresponding author. Tel.: +33-1-4427-6706; fax: +33-1-4634-7489.

In order to minimize this chromium tendency to occur with several oxidation states and to occupy