

Available online at www.sciencedirect.com

Optical Materials 22 (2003) 147-154

www.elsevier.com/locate/optmat

Beneficial effect of Lu³⁺ and Yb³⁺ ions in UV laser materials

M. Laroche^a, S. Girard^a, R. Moncorgé^{a,*}, M. Bettinelli^b, R. Abdulsabirov^c, V. Semashko^c

^a Centre Interdisciplinaire de Recherche Ions Laser, UMR 6637, CNRS-CEA-ISMRA, Université de Caen, 43 Boulevard Marevhal Juin, 14050 Caen Cedex, France

^b Dipartimento Scientifico e Tecnologico, Università di Verona and INSTM, UdR Verona, 37134 Verona, Italy ^c Kazan State University, Kremlevskaya Street, 480008 Kazan, Russia

Abstract

Several Lu³⁺- and Y³⁺-based oxide and fluoride single crystals with isomorphic structures and doped with Ce^{3+} (or Pr^{3+}) or codoped with Yb³⁺ ions have been grown and studied to show the beneficial effects of the Lu³⁺ and Yb³⁺ ions on their broad-band UV luminescence properties. Time-resolved color center absorption measurements clearly show the reduction of the usually observed UV laser pump-induced optical losses and thus confirm the previous gain and laser results obtained in these materials. Some preliminary interpretations of the involved mechanisms are advanced. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Most of the Ce³⁺ or Pr³⁺ doped materials known for their broad-band 5d–4f UV emissions and which have been investigated in the past for their potentials as tunable solid-state laser media suffer from photochromic (solarization) effects, when they are pumped in the near UV spectral domain, which usually limit their laser performance or even hinder any laser action [1,2]. However, several recent works involving materials with Lu³⁺ instead of Y³⁺ or codoped with Yb³⁺ ions showed reduced solarization effects and improved laser performance [3–7]. The present paper thus gives the state of the art in this field of research and some preliminary interpretations of the beneficial effects of these Lu^{3+} and Yb³⁺ ions. Crystal characteristics are gathered in Section 2. Transient absorption measurement conditions are described in Section 3. Section 4 gives a comparison of the results obtained in the Lu^{3+} and Y³⁺-based materials. Finally, Section 5 presents the results obtained in Ce³⁺ doped crystals codoped with Yb³⁺ ions.

2. Crystal growth and sample characteristics

In order to verify the beneficial effect of Lu^{3+} , two families of single crystals—namely $LiY(Lu)F_4$ and $Y(Lu)PO_4$ —were synthesised. These materials were selected for their perfect isomorphisms and because they have already demonstrated interesting and encouraging properties for a laser emission

^{*}Corresponding author. Tel.: +33-2-31-45-25-58; fax: +33-2-31-45-25-57.

E-mail address: moncorge@spalp255.ismra.fr (R. Moncorgé).