

Vibrational Spectroscopy 15 (1997) 211-218

VIBRATIONAL SPECTROSCOPY

Infrared spectra and spinning diffusion of methyl bromide in solutions

A.A. Stolov^{a,*}, A.I. Morozov^a, A.B. Remizov^b

^a Department of Chemistry, Kazan State University, Kremlevskaya Street 18, Kazan 420008, Russia ^b Kazan State Technological University, Karl Marx st. 68, Kazan 420015, Russia

Received 7 February 1997; accepted 21 June 1997

Abstract

Infrared absorption spectra of methyl bromide (CH₃Br) dissolved in carbon tetrachloride (CCl₄) and carbon disulfide have being studied in wide temperature ranges. IR absorption in the regions of degenerate (E-type) bands belonging to CH₃-stretching (ν_4) and deformational (ν_5 , ν_6) vibrations were fitted by the sum of Cauchy–Gauss components. Each E-type band was reproduced by the two components: the narrower (n) and the broader (b) one. The narrower components of the bands belonging to deformational CH₃-vibrations were interpreted within the framework of the orientational diffusion mechanism. The broader components of these bands were attributed to the unresolved gas-like vibration–rotational absorption of the molecules. The different temperature behaviour of the components has been found: the integrated intensities of the narrower components (I_n) decrease with temperature, while the intensities of the broader ones (I_b) increase. The enthalpy differences between the molecules absorbing via two different mechanisms (ΔH) were determined from the dependencies of $ln(I_n/I_b)$ upon T^{-1} : 0.87 ± 0.28 (ν_5) and 0.65 ± 0.10 kcal mol⁻¹ (ν_6). These values are close to those determined previously for CH₃I and CD₃I. The narrower components' band widths were used for evaluating the spinning diffusion constants for CH₃Br in solutions. © 1997 Elsevier Science B.V.

Keywords: Orientational diffusion; Free rotation; Methyl bromide; Vibrational relaxation; Infrared spectra

1. Introduction

Orientational dynamics of the molecules having the general formula CH_3X (X=F, Cl, Br, I, C=N) is an object of extensive study. All these molecules are symmetric tops having essentially different moments of inertia for spinning (rotations of the symmetry axis, ||) and tumbling (rotation of the symmetry axis, \perp) motions. The most part of the documented data has been obtained for two representativeness of the CH_3X series: methyl iodide and acetonitrile (see, for example [1–4] and references cited therein). In the present work we make an attempt to investigate the dynamics of spinning motion of methyl bromide (CH_3Br) in condensed phase. There were several studies of the tumbling motion of this molecule in the liquid phase [5,6], however, up to our knowledge, its spinning diffusion has not been studied so far.

Normal vibrations of the CH_3X -type molecules (which refer to the C_{3V} point symmetry group) are subdivided into symmetric (A₁-type) and double de-

^{*} Corresponding author.

^{0924-2031/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved. *PII* S0924-2031(97)00030-1