

VIBRATIONAL SPECTROSCOPY

Vibrational Spectroscopy 14 (1997) 35-47

Infrared band intensities of 1,2-dibromoethane in solutions: Electrostatic effect and influence of hydrogen bonding on the conformational equilibrium

A.A. Stolov a,*, N.V. Kohan A, A.B. Remizov b

Department of Chemistry, Kazan State University, Lenin street 18, Kazan 420008, Russia
Kazan State Technological University, Karl Marx street 68, Kazan 420015, Russia

Received 17 July 1996; accepted 29 October 1996

Abstract

The conformational equilibrium of 1,2-dibromoethane (DBE) in various media (vapor phase, liquid, and solutions in n-hexane, carbon tetrachloride, toluene, carbon disulfide, bromoform, acetone, nitromethane, deuterated acetonitrile and deuterated dimethylsulfoxide) has been studied by IR absorption spectra. The enthalpy differences between trans (t) and gauche (g) conformers (ΔH_0) were determined from the dependencies of $\ln(I_t/I_g)$ upon T⁻¹, where I_t and I_g are the integrated intensities of the bands, belonging to different conformers. The values $RT \cdot \ln(I_t/I_g)$ and $(R \cdot \ln(I_t/I_g) + \Delta H_o/T)$ obtained at 296 K were used as measures of the free enthalpy ($\Delta G_{\rm o}$) and entropy differences of the conformers ($\Delta S_{\rm o}$) respectively, when considering their changes with solvent. To minimize the errors due to solvent and temperature effects on the IR-band absorption coefficients, four different band pairs of trans and gauche conformers were investigated. Good correlations between ΔG_0 , ΔH_0 and the function of dielectric permittivity of the medium $(0.5 - (-1)/(2 + 1))^{1/2}$ were observed for all solvents except toluene. Significant changes of ΔS_o with the media have been found: they cover more than 1.5 cal mol⁻¹ K⁻¹ when going from the vapor phase to polar solvents. The ΔS_o values correlate with ΔH_o ones (compensation effect); the slope of the dependence $(\Delta \Delta S_o/\Delta \Delta H_o) = (1.0 \pm 0.3) \cdot 10^{-3}$ K⁻¹ is close to those determined earlier for 1,2-dichloro- and bromofluoro-ethanes, trans-1,2-dichlorocyclohexane and o-iodophenol. The overall integrated intensities in the CH₂-stretching ($\alpha_{A/B}$ (str), 3200–2700, cm⁻¹) and deformational ($\alpha_{A/B}$ (def), 1550–1300, cm⁻¹) regions were measured for neat DBE and its solutions in CCl_4 , CD_3CN and $(CD_3)_2SO$. The $\alpha_{A/B}(str)$ value noticeably increases when going from CCl_4 to proton acceptor solvents, while the $\alpha_{A/B}(def)$ does not depend on the solvent. These results are interpreted within the framework of the formation of weak hydrogen bonds between CH2-groups of DBE and proton acceptor groups of the solvents. The enthalpies of specific interaction of DBE with CD₃CN and (CD₃)₂SO were estimated using the 'intensity rule'. These values are about 1 kcal mol⁻¹. Nevertheless, poor correlation between ΔH_0 , ΔG_0 and basicity parameters of the solvents indicate the minor effect of the H-bond formation on the conformational equilibrium of DBE.

Keywords: 1,2-Dibromoethane; Hydrogen bonding; Electrostatic effect

0924-2031/97/\$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved. PII \$0924-2031(96)00065-3\$

^{*} Corresponding author.