

Physica C 307 (1998) 61-66



## Electron spin-lattice relaxation of $Er^{3+}$ -ions in $Y_{0.99}Er_{0.01}Ba_2Cu_3O_x$

V.A. Ivanshin <sup>a,b,\*</sup>, M.R. Gafurov <sup>a</sup>, I.N. Kurkin <sup>a</sup>, S.P. Kurzin <sup>a</sup>, A. Shengelaya <sup>b</sup>, H. Keller <sup>b</sup>, M. Gutmann <sup>c</sup>

<sup>a</sup> MRS Laboratory, Kazan State University, 420008 Kazan, Russian Federation
<sup>b</sup> Physik-Institut der Universität Zürich-Irchel, CH-8057 Zürich, Switzerland
<sup>c</sup> Laboratory for Neutron Scattering, ETH Zürich and Paul Scherrer Institut, CH-5232 Villigen, Switzerland

Received 22 June 1998

## Abstract

The temperature dependence of the electron spin-lattice relaxation (SLR) was studied in  $Y_{0.99}$ Er<sub>0.01</sub>Ba<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>( $0 \le x \le 7$ ). The data derived from the electron spin resonance (ESR) and SLR measurements were compared to those from inelastic neutron scattering studies. SLR of Er<sup>3+</sup>-ions in the temperature range from 20 K to 65 K can be explained by the resonant phonon relaxation process with the involvement of the lowest excited crystalline-electric-field electronic states of Er<sup>3+</sup>. These results are consistent with a local phase separation effects. Possible mechanisms of the ESR line broadening at lower temperatures are discussed. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: YBCO; ESR; Electron spin-lattice relaxation time, T<sub>1</sub>; Crystalline-electric-field

## 1. Introduction

The measurements of nuclear- and electron spinlattice relaxation (SLR) time  $T_1$  can provide an useful information about electronic states and internal fields in high- $T_c$  superconductors (HTSC) [1–9]. The electron relaxation of different paramagnetic centers, either impurities (such as Gd<sup>3+</sup>, Fe<sup>3+</sup>, Yb<sup>3+</sup>) [2–8] or belonging to the host lattice (Cu<sup>2+</sup>) [9] was studied in the perowskite-type compounds YBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> (YBCO) (6 ≤  $x \le 7$ ) by means of measuring relaxation times from electron spin resonance (ESR) linewidth [2-7] or directly using the relation between the ESR absorption magnitude and the response of longitudinal spin magnetization [8,9]. The physical properties of YBCO are very sensitive to the oxygen content x, determining the occurrence  $(6.4 \le x \le 7)$  and disappearance of superconductivity for x < 6.4. For  $6 \le x \le 6.5$  the Cu ions align antiferromagnetically, and the interplay between magnetism and superconductivity could be observed. Several reasons caused our choice of the Er<sup>3+</sup> ion as a paramagnetic dopant in YBCO. Values of g-factors of this ion are strongly determined by the symmetry of crystalline-electric-field (CEF). ESR spectrum of  $\text{Er}^{3+}$  ( $S_{\text{eff}} = 1/2$ ;  $g \neq 2$ ) is very simple and is situated far from an unavoidable Cu<sup>2+</sup>-impurity's

<sup>&</sup>lt;sup>\*</sup> Corresponding author. Kazan State University, MRS Laboratory, Kremlevskaya str. 18, 420008 Kazan, Russia. Tel.: +7-8432-315169; Fax: +7-8432-387418; E-mail: vladimir.ivanshi@ksu.ru

<sup>0921-4534/98/\$19.00 © 1998</sup> Elsevier Science B.V. All rights reserved. PII: \$0921-4534(98)00405-5