

Available online at www.sciencedirect.com

Information and Computation 203 (2005) 145-162

www.elsevier.com/locate/ic

On the computational power of probabilistic and quantum branching program

Farid Ablayev^{a,1}, Aida Gainutdinova^{b,2}, Marek Karpinski^{c,3}, Cristopher Moore^{d,*,4}, Christopher Pollett^e

^a Department of Theoretical Cybernetics, Kazan State University, Russia ^bDepartment of Theoretical Cybernetics, Kazan State University, Russia ^cDepartment of Computer Science, University of Bonn, Germany ^d Computer Science Department, University of New Mexico, Albuquerque and the Santa Fe Institute, USA ^eDepartment of Computer Science, San Jose State University, USA

> Received 14 February 2004; revised 22 April 2004 Available online 26 September 2005

Abstract

In this paper, we show that one-qubit polynomial time computations are as powerful as NC^1 circuits. More generally, we define syntactic models for quantum and stochastic branching programs of bounded width and prove upper and lower bounds on their power. We show that any NC^1 language can be accepted exactly by a width-2 quantum branching program of polynomial length, in contrast to the classical case where width 5 is necessary unless $NC^1 = ACC$. This separates width-2 quantum programs from width-2 doubly stochastic programs as we show the latter cannot compute the middle bit of multiplication. Finally, we show that bounded width, and thus are in NC^1 . For read-oncequantum branching programs (QBPs), we give a symmetric Boolean

⁶ Corresponding author. Fax: +1 505 982 0565.

E-mail:ablayev@ksu.ru (F.Ablayev), aida@ksu.ru (A. Gainutdinova), marek@cs.uni-bonn.de (M. Karpinski), moore@cs.unm.edu (C. Moore), pollett@cs.sjsu.edu (C. Pollet).

¹ Work done in part while visiting Institute of Advanced Study and Max-Planck Institute for Mathematics, supported in part by Russia Fund for Basic Research Grant 03-01-00769.

² Supported in part by Russia Fund for Basic Research Grant 03-01-00769.

³ Supported in part by DFG grants, and IST Grant 14036 (RAND-APX).

⁴ Supported by NSF Grants PHY-0200909, CCR-0220070, and EIA-0218563.

^{0890-5401/\$ -} see front matter C 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.ic.2005.04.003