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Abstract

Azole resistance is an emerging problem in Aspergillus which impacts the management of aspergillosis. Here in we report
the emergence and clonal spread of resistance to triazoles in environmental Aspergillus fumigatus isolates in India. A total of
44 (7%) A. fumigatus isolates from 24 environmental samples were found to be triazole resistant. The isolation rate of
resistant A. fumigatus was highest (33%) from soil of tea gardens followed by soil from flower pots of the hospital garden
(20%), soil beneath cotton trees (20%), rice paddy fields (12.3%), air samples of hospital wards (7.6%) and from soil admixed
with bird droppings (3.8%). These strains showed cross-resistance to voriconazole, posaconazole, itraconazole and to six
triazole fungicides used extensively in agriculture. Our analyses identified that all triazole-resistant strains from India shared
the same TR34/L98H mutation in the cyp51 gene. In contrast to the genetic uniformity of azole-resistant strains the azole-
susceptible isolates from patients and environments in India were genetically very diverse. All nine loci were highly
polymorphic in populations of azole-susceptible isolates from both clinical and environmental samples. Furthermore, all
Indian environmental and clinical azole resistant isolates shared the same multilocus microsatellite genotype not found in
any other analyzed samples, either from within India or from the Netherlands, France, Germany or China. Our population
genetic analyses suggest that the Indian azole-resistant A. fumigatus genotype was likely an extremely adaptive
recombinant progeny derived from a cross between an azole-resistant strain migrated from outside of India and a native
azole-susceptible strain from within India, followed by mutation and then rapid dispersal through many parts of India. Our
results are consistent with the hypothesis that exposure of A. fumigatus to azole fungicides in the environment causes cross-
resistance to medical triazoles. The study emphasises the need of continued surveillance of resistance in environmental and
clinical A. fumigatus strains.
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Introduction

Aspergillus fumigatus is the commonest etiologic agent of various

clinical forms of bronchopulmonary aspergillosis including aller-

gic, acute invasive and chronic pulmonary aspergillosis (CPA). The

disease has a global distribution and it is widespread in India [1].

Invasive aspergillosis is the most severe manifestation with an

overall annual incidence varying from 2 to 10% in the

immunosuppressed patient population whereas CPA affects

primarily immunocompetent individuals with an estimated prev-

alence of 3 million worldwide [2,3]. Azoles, such as itraconazole,

voriconazole, and posaconazole are among the recommended

first-line drugs in the treatment and prophylaxis of aspergillosis

[4,5]. Azole resistance is an emerging problem in A. fumigatus in

Europe and has been shown to be associated with increased

probability of treatment failure [6–8]. Azole resistance is

commonly due to mutations in the cyp51A gene, which encodes

14-a-demethylase in the ergosterol biosynthesis pathway. In azole-

resistant clinical A. fumigatus isolates a wide variety of mutations in

the cyp51A gene have been found, such as substitutions at codons

G54, G138, P216, F219, M220 and G448 [9–12]. However, in the

Netherlands a different resistance mechanism consisting of the

L98H substitution, together with a 34-bp tandem repeat (TR34) in

the promoter region of this gene (TR34/L98H) was found to be
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present in over 90% of azole resistant isolates [13]. The TR34/

L98H resistance mechanism has been endemic in the Netherlands

and subsequently reported from other European countries such as

Denmark, France, Germany, Spain and the United Kingdom

[12,14–19].

Isolates of A. fumigatus with TR34/L98H mutations exhibit a

pan-azole resistant phenotype and were recovered primarily from

azole-naive patients and from environmental sources in the

Netherlands and Denmark [15,17,20,21]. These observations

suggest that patients acquire azole-resistant Aspergillus from

environmental sources rather than arising through azole therapy.

The consequence of this type of resistance development is that

patients at risk can be exposed to and infected by azole-resistant

strains in the environment. Furthermore, TR34/L98H isolates

were cross-resistant to certain azole fungicides employed exten-

sively in agriculture for crop protection against phytopathogenic

molds, to prevent post-harvest spoilage [21]. An environmental

route of resistance development poses a major challenge because

multiplication and spread of resistant strains in the environment

can be anticipated. Recently, we reported from India the

occurrence of TR34/L98H mutations in the cyp51A gene in A.

fumigatus isolates from patients with chronic respiratory disease

who had not previously been exposed to azoles [22]. This

emergence of resistance in Indian clinical isolates prompted us to

undertake a wide environmental survey of azole resistant A.

fumigatus isolates in India. Herein, we report multi-triazole resistant

environmental A. fumigatus isolates from India harboring TR34/

L98H mutations in the cyp51A gene, from soil samples of paddy

fields, tea gardens, cotton trees, flower pots and indoor air of

hospital. Furthermore, we investigated the cross resistance of these

environmental and clinical TR34/L98H A. fumigatus isolates to

registered and commonly used azole fungicides in India and

determined the genetic relatedness of Indian environmental and

clinical A. fumigatus isolates harboring the TR34/L98H mutations

and compared them with isolates from Europe and China.

Results

Isolation of Environmental Strains of A. fumigatus
Of the 486 environmental samples tested, 201 (41.4%) showed

the presence of A. fumigatus in all types of substrates tested except

nursery plants soil and decayed wood inside tree trunk hollows.

The data of state-wise distribution and prevalence of azole

resistant A. fumigatus in soil and air samples is presented in

Table 1 and Figure 1. Of the 201 A. fumigatus positive samples, 630

individual A. fumigatus colonies were obtained from Sabourauds

dextrose agar (SDA) plates. The count of A. fumigatus on primary

SDA plate ranged from one colony to confluent growth. Besides A.

niger, A. flavus, A. terreus, other molds such as mucorales, and

Penicillium species were also observed in soil samples. Out of 630 A.

fumigatus colonies tested, 44 (7%) isolates originating from 24

samples grew on SDA plates containing 4 mg/L itraconazole.

Among these 44 itraconazole-resistant (ITC+) isolates, 15 were

obtained from different potted plants of the V. P. Chest Institute

(VPCI) garden, Delhi, 12 from rice paddy fields in Bihar, 9 from

tea gardens in Darjeeling, 3 each from soil beneath cotton trees

(Bombax ceiba) from Kolkata and from aerial sampling of patient

rooms of the VPCI hospital, and 2 from soil containing bird

droppings in Tamil Nadu (Table 1). Overall, 5% (24/486) of the

samples tested harbored itraconazole resistant A. fumigatus. Among

the positive samples, 11.9% (24/201) showed at least one colony of

resistant A. fumigatus. The isolation rate of itraconazole resistant A.

fumigatus was highest 33% (9/27) from the soil of tea gardens

followed by soil from flower pots of the hospital garden 20% (15/

75), soil beneath cotton trees 20% (3/15), rice paddy fields 12.3%

(12/97), air samples of hospital wards 7.6% (3/39) and from soil

admixed with bird droppings 3.8% (2/52). There was no isolation

of resistant A. fumigatus isolates from soil samples of public parks

and gardens inside the hospital premises and red chilly fields in

Tamil Nadu.

Evidence for Cross-Resistance to Triazole Antifungal
Drugs

All the 44 ITC+ A. fumigatus isolates from the environment

showed reduced susceptibility to azoles. The geometric mean

(GM) MIC of itraconazole (GM, 16 mg/L) was the highest,

followed by voriconazole (GM, 8.7 mg/L), and posaconazole

(GM, 1.03 mg/L). All the antifungal drugs tested showed reduced

efficacy against all the ITC+ A. fumigatus isolates (Table 2),

consistent with cross-resistance of these isolates to the tested azoles.

Among the triazoles, the MIC difference between wild type and

TR34/L98H isolates were the highest for itraconazole (r = 0.96)

followed by voriconazole (r = 0.91) and posaconazole (r = 0.72). Of

the10 fungicides, 7 showed dissimilarity between the MICs with

greatest differences found for bromuconazole, difenoconazole,

tebuconazole (r = 0.96 each) followed by hexaconazole (r = 0.95),

epoxiconazole (r = 0.92), metconazole (r = 0.89) and lowest for

cyproconazole (r = 0.22) (Table 2).

Evidence for Clonal Spread of a Single Triazole-Resistant
A. fumigatus Genotype

Our genotype analyses identified that all of the 44 ITC+ A.

fumigatus isolates from India exhibited the same TR34/L98H

genotype at the cyp51A gene. Furthermore, these strains had the

same allele across all nine examined microsatellite loci (Fig. 2). In

contrast to the genetic uniformity of azole-resistant strains from

India, the azole-susceptible isolates from both patients and

environments in India were genetically very diverse. Indeed, all

nine loci were highly polymorphic in populations of azole-

susceptible isolates from both clinical and environmental samples.

Origin(s) of the Azole-resistant A. fumigatus Genotype in
India

The widespread occurrence of a single azole-resistant genotype

across India contrasts with those found in several other regions

outside of India. In our analyses, a diversity of genotypes has been

found for clinical TR34/L98H azole-resistant A. fumigatus strains in

China, France, Germany and in both clinical and environmental

sources in the Netherlands (Figs. 2 and 3). To examine the origin(s)

of the azole - resistant genotype in India, we first attempted to

isolate azole - susceptible strains from the 24 soil samples that

contained the 44 azole-resistant strains. Among these 24 soil

samples, we successfully obtained and analyzed eight azole-

susceptible isolates from seven of the 24 samples through dilution

plating, single colony purification, and screening using itracona-

zole-containing and non-containing media. Our genotype analyses

using the 9 microsatellite markers revealed that none of the eight

strains had a genotype identical to the azole-resistant genotype in

India. These eight azole-susceptible strains belonged to four

different genotypes. Interestingly, three of the genotypes shared no

allele with the azole-resistant genotype at any of the nine

microsatellite loci while the remaining genotype shared an allele

with the azole-resistant genotype at only one of the nine loci.

To further explore the potential origin(s) of the azole-resistant

genotype in India, we further analyzed the genotypes of all the

azole-susceptible strains from within India. Among the nine

microsatellite loci, we were able to find allele-sharing at only six

Azole Resistant A. fumigatus from India
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loci between the Indian azole-resistant genotype and the 35 azole-

susceptible clinical and soil/air isolates in India. The highest

number of loci with shared alleles between any of the 35 azole

susceptible strains and the resistant genotype was at only two of the

nine loci. Therefore, even with free recombination among the

genotypes represented by the 35 azole susceptible strains in India,

the azole-resistant genotype could not be generated due to the lack

of corresponding alleles at three of the nine loci (loci 2A, 3A, and

4C, Fig. 2) found only in the azole-resistant strains.

Interestingly, though not identical, several strains from outside

of India were found to have genotypes more similar to the Indian

azole-resistant strains than the Indian azole-susceptible strains

(Fig. 2). For example, ten of the 51 strains from outside of India

shared alleles in at least four of the nine loci with the Indian azole

–resistant genotype, with four of the 10 strains sharing alleles at

five loci. These 10 strains were all similarly resistant to azoles as

the Indian azole-resistant genotype and all 10 strains carried the

same TR34/L98H mutation. The combined allelic comparisons

identified that the azole-resistant strains from outside of India

Figure 1. An outline map of India showing state-wise isolation of multiple-triazole resistant Aspergillus fumigatus isolates from
variety of environmental samples.
doi:10.1371/journal.pone.0052871.g001

Azole Resistant A. fumigatus from India

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e52871



T
a

b
le

1
.

St
at

e
-w

is
e

d
is

tr
ib

u
ti

o
n

o
f

e
n

vi
ro

n
m

e
n

ta
l

A
sp

er
g

ill
u

s
fu

m
ig

a
tu

s
is

o
la

te
s

w
it

h
T

R
3

4
/L

9
8

H
m

u
ta

ti
o

n
s

fr
o

m
In

d
ia

.

N
o

.
o

f
A

.
fu

m
ig

at
u

s
is

o
la

te
s

w
it

h
T

R
3

4
/L

9
8

H
m

u
ta

ti
o

n
s/

N
o

.
o

f
is

o
la

te
s

te
st

e
d

n
=

4
4

/6
3

0
(2

0
1

/4
8

6
)*

G
a

rd
e

n
so

il
P

a
d

d
y

/R
ic

e
/R

e
d

ch
il

ly
fi

e
ld

s
so

il
T

e
a

g
a

rd
e

n
so

il
T

re
e

tr
u

n
k

h
o

ll
o

w
w

o
o

d

A
e

ri
a

l
is

o
la

ti
o

n
s

fr
o

m
h

o
sp

it
a

l
w

a
rd

s
N

u
rs

e
ry

fl
o

w
e

r
p

o
ts

so
il

S
o

il
b

e
n

e
a

th
co

tt
o

n
tr

e
e

s
G

a
rd

e
n

so
il

o
f

h
o

sp
it

a
ls

F
lo

w
e

r
p

o
ts

so
il

o
f

h
o

sp
it

a
l

g
a

rd
e

n
S

o
il

w
it

h
b

ir
d

d
ro

p
p

in
g

s

U
T
{

o
f

D
e

lh
i

(n
=

2
6

6
)

V
P

C
I{

,
D

U
{

–
–

–
–

3
/7

(1
4

/3
9

)
–

–
0

/2
0

(1
0

/1
0

)
1

5
/1

2
0

(3
0

/7
5

)
–

A
sh

o
k

V
ih

ar
P

ar
k

0
/0

(0
/1

0
)

–
–

–
–

–
–

–
–

–

Lo
d

h
i

g
ar

d
e

n
0

/8
0

(2
0

/4
5

)
–

–
–

–
–

–
–

–
–

C
e

n
tr

al
P

ar
k,

D
U

0
/2

7
(1

0
/5

0
)

–
–

–
–

–
–

–
–

–

P
o

lic
e

Li
n

e
s,

D
U

–
–

–
0

/0
(0

/1
2

)
–

–
–

–
–

–

G
u

la
b

i
B

ag
h

–
–

–
–

–
0

/0
(0

/2
5

)
-

–
–

–

T
a

m
il

N
a

d
u

(n
=

6
5

)
T

h
o

ra
p

ad
i

V
ill

ag
e

–
0

/4
(2

/1
3

)
-

–
–

–
–

–
–

–

K
an

ch
ip

u
ra

m
–

–
–

–
–

–
–

–
–

2
/2

5
(1

9
/5

2
)

W
e

st
B

e
n

g
a

l
(n

=
5

9
)

H
o

o
g

li
D

is
t.

,
K

o
lk

at
a

–
–

–
–

–
–

3
/5

(1
/1

5
)

–
–

–

Si
lig

u
ri

–
0

/4
0

(1
3

/1
7

)
-

–
–

–
–

–
–

–

D
ar

je
e

lin
g

–
-

9
/5

1
(1

6
/2

7
)

–
–

–
–

–
–

–

B
ih

a
r

(n
=

3
3

)
M

u
n

g
e

r
–

1
2

/7
8

(2
6

/3
3

)
–

–
–

–
–

–
–

–

U
tt

ra
k

h
a

n
d

(n
=

2
1

)
K

e
d

ar
,

B
as

o
ra

–
0

/1
0

8
(2

1
/2

1
)

–
–

–
–

–
–

–
–

H
a

ry
a

n
a

(n
=

2
1

)
Ja

jjh
ar

–
0

/6
0

(1
5

/2
1

)
–

–
–

–
–

–
–

–

M
e

g
h

a
la

y
a

(n
=

1
1

)
Sh

ill
o

n
g

–
0

/0
(0

/5
)

–
–

–
–

–
0

/0
(0

/6
)

–
–

S
ik

k
im

(n
=

6
)

G
an

g
to

k
0

/5
(4

/6
)

–
–

–
–

–
–

–
–

–

H
im

a
ch

a
l

P
ra

d
e

sh
(n

=
4

)
D

al
h

o
u

si
e

0
/0

(0
/4

)
–

–
–

–
–

–
–

–
–

*P
ar

e
n

th
e

si
s

d
e

n
o

te
s

th
e

n
u

m
e

ra
to

r
as

n
u

m
b

e
r

o
f

sa
m

p
le

s
p

o
si

ti
ve

fo
r

A
.

fu
m

ig
a

tu
s,

d
e

n
o

m
in

at
o

r
d

e
n

o
te

s
th

e
n

u
m

b
e

r
o

f
sa

m
p

le
s

te
st

e
d

;
{ U

T
,

U
n

io
n

T
e

rr
it

o
ry

;
V

P
C

I,
V

.
P

.
C

h
e

st
In

st
it

u
te

;
D

U
,

D
e

lh
i

U
n

iv
e

rs
it

y.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

5
2

8
7

1
.t

0
0

1

Azole Resistant A. fumigatus from India

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52871



contained alleles at seven of the nine microsatellite loci found in

the Indian azole-resistant genotype, one more than all the Indian

azole-susceptible strains combined. At locus 2A, only the sample

from outside India contained the allele #14 (in 8 of the 51 strains)

found in the Indian azole-resistant genotype while the azole-

susceptible sample from India did not contain this allele (Fig. 2).

However, a reverse situation occurred at locus 2C where allele #9

in the Indian azole-resistant genotype was found in the Indian

azole-susceptible population (in one of the 35 strains) but not from

outside of India. Finally, different from the other eight loci, locus

4C had a unique allele (#28) found only in the Indian azole-

resistant strains and this allele was absent from any other strains in

the whole analyzed sample, either from within or outside of India

(Fig. 2).

Discussion

The site specific mode of action and intensive use of

demethylase inhibitors (DMIs) fungicides for post harvest spoilage

crop protection against phytopathogenic molds, has led to the

development of resistance in many fungi of agricultural impor-

tance. It is anticipated that the excessive use of azoles in

agriculture would not only influence the plant pathogenic fungi

but also would inevitably influence susceptible species of the

saprophytic flora [23]. Many potentially human pathogenic fungi

such as Coccidioides, Histoplasma, Aspergillus, and Cryptococcus have

their natural habitats in the environment and in many instances

the infecting fungal organisms are acquired from the surrounding

environment. Recently the use of azole-based agricultural

chemicals has also been implicated as a major factor in the

increase in frequency of multiple-triazole-resistant (MTR) isolates

of A. fumigatus infecting humans by selection of MTR alleles

[24,25]. This is supported by a recent report originating from the

Netherlands that showed over 90% of Dutch azole resistant A.

fumigatus isolates recovered from epidemiologically unrelated

patients clustered onto a single lineage [13]. In the present study

7% of the Indian environmental A. fumigatus isolates were multi-

triazole resistant with a single resistant mechanism carrying the

TR34/L98H mutation in the cyp51A gene (Table 1). The resistant

isolates were recovered from soil samples of potted plants, paddy

fields and tea gardens where certain triazole fungicides (tebuco-

nazole, hexaconazole, and epoxiconazole) were extensively used.

Although, Europe leads the world in usage of agricultural

fungicides (40%) followed by Japan and Latin America, in India

usage of fungicides is increasing and current fungicide use in India

is 19% of the total pesticide use [26]. In the USA the use of azoles

in agriculture is insignificant as compared to Europe (http://ec.

europa.eu/food/fs/sc/ssc/out278_en.pdf). Consequently, there

has been no report of finding the TR34/L98H mutation in clinical

or environmental isolates in the USA. But this resistance type has

been found in the environment in Europe and now also in India. It

is noteworthy that so far no environmental survey of TR34/L98H

A. fumigatus isolates outside Europe has been reported. The

fungicides belonging to different chemical groups have been

registered in India only in the past two decades and these are being

used against diverse diseases in fruits, vegetables, plantation crops

and some field crops [26]. Triazole fungicides such as hexacona-

zole, propiconazole, triadimefon, and tricyclazole account for a

substantial fungicide market in India [26]. Overall, the highest

fungicide usage in India is on pome fruits (12.7%), followed by

potatoes (12.2%), rice (12%), tea (9.4%), coffee, chillies, grape-

vines, other fruits and vegetables [26]. Also, triazole fungicides are

characterized by their long persistence in soil. Singh and Dureja

demonstrated that hexaconazole persist longer in Indian soil due

to its hydrophobic nature [27]. In India, the maximum amounts of

fungicide usage are found in southern India, followed by western,

Table 2. In- vitro antifungal susceptibility profile of medical triazoles and triazole fungicides against environmental and clinical
Aspergillus fumigatus isolated in India.

MIC* (mg/L)

Triazole
drugs and
fungicides Environment Clinical Effect size r

TR34/L98H (n = 44)
251676672Wild type
(n = 22) TR34/L98H (n = 9) Wild type (n = 13)

GM* MIC50* Range GM MIC50 Range GM MIC50 Range GM MIC50 Range

Itraconazole 16 16 16–.16 0.43 0.5 0.25–1 16 16 16.16 0.11 0.125 0.03–1 0.96

Voriconazole 8.7 8 4–16 0.65 0.5 0.25–1 5.9 8 2–16 0.10 0.125 0.03–0.25 0.91

Posaconazole 1.03 1 0.5–2 0.46 0.5 0.06–1 3.2 2 1–.8 0.25 0.25 0.125–1 0.72

Bromuconazole 31.4 32 16–.32 2.5 2 1–4 32 32 32–.32 2.2 2 1–4 0.96

Cyproconazole 32 32 32–.32 30.9 32 16–.32 32 32 32–.32 29.4 32 16–32 0.22

Difenoconazole 31.4 32 16–.32 2.0 2 1–8 32 32 32–.32 1.8 2 0.5–4 0.96

Epoxiconazole 32 32 32–.32 5.2 4 2–16 32 32 32–.32 4.1 4 2–8 0.92

Hexaconazole 31 32 8–.32 4.87 4 2–8 32 32 .32 3.39 4 2–8 0.95

Metconazole 3.8 4 1–8 0.3 0.5 0.125–1 4 4 2–16 0.4 0.5 0.25–2 0.89

Penconazole 32 32 32–.32 30.9 32 32–.32 32 32 32–.32 32 32 32–.32 0

Tebuconazole 31.4 32 16–.32 2.6 2 1–8 32 32 .32 3.0 4 1–8 0.96

Triadimefon 32 32 .32 32 32 .32 32 32 .32 32 32 32–.32 0

Tricyclazole 32 32 32–.32 32 32 32–.32 32 32 .32 32 32 32–.32 0

*Minimum inhibitory concentration; GM, geometric mean.
doi:10.1371/journal.pone.0052871.t002
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eastern and northern Indian states. In this study the multi triazole

resistant A. fumigatus carrying the TR34/L98H genotype was

isolated from Union Territory (UT) of Delhi (northern region),

West Bengal and Bihar (eastern region of India about 1100 Km

from the North) and Tamil Nadu (southern region of India, about

2100 Km from the North) states. The western region of India has

yet to be surveyed but considering the high usage of fungicides in

this region, isolation of azole resistant A. fumigatus may be

anticipated.

Previous environmental surveys of azole resistant A. fumigatus

have only been reported from Europe (the Netherlands and

Denmark) and those surveys identified that 12% (6/49) of Dutch

soil samples and 8% (4/50) of Danish soil samples were positive for

the TR34/L98H genotype [15,17]. Only one other mutation in the

cyp51A gene combined with a different tandem repeat (TR46/

Y121F/T289A) that was putatively linked to an environmental

origin has been reported from clinical samples [28] and this

genotype constituted 36% of resistant isolates in a Dutch referral

centre [29]. The present study represents one of the largest

environmental surveys of multi-triazole resistant A. fumigatus done

so far and detected that 7% of the A. fumigatus isolates and 5% of

soil/aerial samples distributed across large areas of India carried

Figure 2. Genotypic relationship between the wild-type and TR34/L98H Aspergillus fumigatus (clinical and environmental isolates
from India, The Netherlands and France) and TR34/L98H A. fumigatus (clinical isolates from China and Germany). The dendrogram is
based on a categorical analysis of 9 microsatellite markers in combination with UPGMA clustering. The scale bar indicates the percentage identity.
Clinical: blue, Environmental: yellow, Resistant: red, Susceptible: green.
doi:10.1371/journal.pone.0052871.g002

Figure 3. Minimum spanning tree showing wide genotypic diversity in the TR34/L98H and wild type A. fumigatus isolates studied.
The figure shows the 74 different genotypes (circles), the number of strains belonging to the same genotype (sizes of the circles), and origin of
isolates (circles in yellow indicate Indian isolates; green Dutch isolates; red Chinese isolates; blue French isolates, purple German isolate and white
reference strain, AF293). Solid thick and thin branches indicates 1 or 2 microsatellite markers differences, respectively; dashed branches indicates 3
microsatellite markers difference between two genotypes; 4 or more microsatellite markers differences between genotypes are indicated with dotted
branches.
doi:10.1371/journal.pone.0052871.g003
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one single resistant mechanism. Culture of soil samples taken from

potted plants (where commercial compost was used) and kept

inside the hospital premises were positive for the same genotype.

In contrast, natural soil sampled from the gardens of Delhi and

hospitals did not grow the resistant A. fumigatus isolates although

they were positive for A. fumigatus. Our findings corroborate with

the findings of a Dutch environmental report where none of the A.

fumigatus isolates obtained from natural soil was found to be azole

resistant [15]. Therefore, environmental surveys for detection of

genotype TR34/L98H resistant A. fumigatus isolates may focus on

sampling of soil from fields and commercial compost where

fungicides are invariably used. It is noteworthy that the air samples

of patient’s wards of VPCI hospital harboured the same genotype

of multi-triazole resistant A. fumigatus, isolated on two different

occasions which raises concern on the exposure of hospitalized

patients to this resistant genotype. In this context it is pertinent to

mention that previously multi-triazole resistant TR34/L98H A.

fumigatus isolates have been reported from patients attending the

outpatient departments of VPCI who were never exposed to azoles

[22]. In addition multi-triazole resistant A. fumigatus has also been

isolated from admitted patients of VPCI. The presence of A.

fumigatus resistant to medical triazoles poses a threat to immuno-

compromised patients as alternative therapy is limited.

Snelders et al. reported that TR34/L98H isolates from clinical

and environmental origins were cross resistant to five triazole

DMIs fungicides, propiconazole, bromuconazole, tebuconazole,

epoxiconazole and difenoconazole and thus supporting the

hypothesis that exposure of A. fumigatus to azole fungicides in the

environment causes cross resistance to medical triazoles. [21].

Furthermore, these investigators also reported that these five

triazole DMIs showed very similar molecule structures to the

medical triazoles and adopted a similar conformation while

docking the target enzyme and exhibit activity against wild type

A. fumigatus but not against multi-triazole resistant TR34/L98H A.

fumigatus [21]. Similarly, in the present study four of the five

(bromuconazole, tebuconazole, epoxiconazole and difenocona-

zole) triazole DMIs known to have similar molecule structures as

medical triazoles showed significantly higher MICs for multi

triazole resistant TR34/L98H A. fumigatus from environmental and

clinical samples than those of wild type strains (Table 2). In

addition, metconazole and hexaconazole also showed high MICs

for multi-triazole resistant A. fumigatus isolates with the TR34/

L98H mutation. Attention is called to the report of Serfling et al.,

who used the maize anthracnose fungus Colletotrichum graminicola

model system to study the acquisition of azole resistance and

investigated whether isolates that were resistant to an agricultural

azole show cross-resistance to azoles and antifungal agents of other

chemical classes used in medicine [30]. Their in-vitro data

revealed that C. graminicola was able to efficiently adapt to medium

containing azoles, and strains adapted to tebuconazole were less

sensitive to all agricultural and medical azoles tested than the non-

adapted control strain. Likewise, azole cross-resistance was

observed for yeast isolates from the oropharynx of human

immunodeficiency virus-infected patients to agricultural azole

drugs and for those from environmental sources to medical azole

drugs [31].

It is remarkable that all of the environmental and clinical TR34/

L98H A. fumigatus isolates in India had the same microsatellite

genotype. Although the environmental isolates originated from

geographically diverse regions of northern, eastern and southern

parts of India were separated from each other by about 2000 Km,

they harboured an identical short tandem repeat (STR) pattern.

The possibility of contamination during handling of samples was

ruled out by processing of the samples by different laboratory

personnel in two different laboratories in India and the Nether-

lands. Furthermore, we had reported earlier that two clinical

TR34/L98H A. fumigatus isolates originating from two azole naive

patients, who were residents of Bihar and Delhi, shared the same

STR pattern [22]. Moreover, azole-resistant strains from the

environment of Bihar and Delhi also showed the same STR

pattern. Notably, genetic analysis of a collection of MTR isolates

showed that all isolates with the TR34/L98H allele were all

confined within a single clade and were less variable than

susceptible isolates [25], consistent with a single and recent origin

of the resistant genotype.

Our results are consistent with the hypothesis that the azole-

resistant A. fumigatus strains analyzed here from across India were

due to the clonal spread of a single genotype. The lack of a single

azole-susceptible strain from either clinical origin or the environ-

ment in India with the same genotype as the widespread azole-

resistant genotype it may be conceivable that the resistant

genotype was unlikely the result of a single mutation at the

cyp51A gene in a common azole-susceptible genotype in India. In

addition, our genotype analysis suggest that the azole-resistant

genotype in India was likely an extremely adaptive recombinant

progeny derived from a cross between an azole-resistant strain

migrated from outside of India and a native azole-susceptible

strain from within India, followed by mutation. The abundant

phylogenetic incompatibility found in each of the sub-samples as

well as in the whole sample (where 100% of the loci pairs were

phylogenetically incompatible, thus consistent with recombination)

supports sexual mating in natural populations of this species in

India. Our inferred mechanisms have been similarly suggested for

the emergence of many virulent strains of viral, bacterial and

protozoan pathogens [32,33]. Once the extremely fit A. fumigatus

genotype emerged in India, it could spread quickly by producing a

large number of airborne asexual spores in the environment.

These airborne spores can easily disperse to other geographic

areas by air current or anthropogenic means. The widespread

application of triazole fungicides in the environment in India in

the last two decades could have contributed to its spread by

reducing the azole-susceptible genotypes and selecting for this

azole-resistant genotype. Whether this resistant genotype has

spread to neighbouring countries remain to be determined.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described field

studies.

Collection of Environmental Samples
A total of 486 environmental samples including soil from

flowerbeds of nurseries, surrounding parks of hospitals, cotton

trees, tea gardens, paddy fields, soil containing bird excreta,

decayed wood of tree trunks and aerial samples of the indoor

environment of hospital wards from the Union Territory (UT) of

Delhi, Haryana, Himachal Pradesh, Uttrakhand, Bihar, West

Bengal, Sikkim, Meghalaya and Tamil Nadu States were

investigated during July 2011–April 2012. The distribution of

the investigated 486 samples was as follows: UT of Delhi (n = 266),

Haryana (n = 21), Himachal Pradesh (n = 4), Uttrakhand (n = 21),

Bihar (n = 33), West Bengal (n = 59), Sikkim (n = 6), Meghalaya

(n = 11) and Tamil Nadu (n = 65).

Soil and Aerial Sampling
About two gram of soil was suspended in 8 ml of 0.85% NaCl,

vortexed and allowed to settle for 30 seconds. Subsequently, the
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suspension was diluted 1:10 and 100 ml was plated in duplicates on

Sabouraud dextrose agar plates supplemented with 50 mg/L

chloramphenicol and incubated at 37uC for 48 h. One gram of

decayed wood was suspended in 10 ml of 0.85% NaCl and

allowed to settle after vortexing it for 1 min. Then, 100 ml of

suspension was plated in duplicates on SDA and incubated at

37uC for 48 h.

For the indoor aerial sampling of the hospital, duplicate SDA

plates were exposed for 1 h in the corners and centre of the

general outpatient and wards of the V. P. Chest Institute (VPCI),

Delhi, on two different occasions. Plates were incubated for 48 h

at 37uC.

Identification
In order to detect overall prevalence of A. fumigatus the samples

were initially inoculated on SDA plates and maximum of 3

colonies per plate were purified and identified by macro- and

microscopic characteristics and growth at 50uC which differenti-

ated A. fumigatus from A. lentulus. Samples found out to be negative

for A. fumigatus were again processed without dilution and

inoculated directly on SDA plates. All of the A. fumigatus isolates

were then subcultured on SDA plates supplemented with 4 mg/L

itraconazole and incubated at 37uC for 48 h. Identification of all

the A. fumigatus isolates that grew on 4 mg/L itraconazole

containing SDA plates (ITC+ isolates) were confirmed by

sequencing of the internal transcribed spacer region. In order to

rule out any cryptic species within Aspergillus section Fumigati,

molecular identification was performed by amplification of parts of

the b-tubulin gene and calmodulin gene [34,35].

Antifungal Susceptibility Testing
The in vitro activity of all the standard azole antifungals was

investigated using CLSI M38-A2 broth microdilution [36]. A total

of 53 itraconazole resistant A. fumigatus isolates (44 ITC+
environmental and 9 ITC+ clinical) were subjected to AFST.

Nine itraconazole resistant clinical isolates were cultured from

patients suspected of bronchopulmonary aspergillosis. Among the

9 ITC+ A. fumigatus clinical isolates two have been reported earlier

[22]. In addition, 35 itraconazole susceptible A. fumigatus isolates

comprising 22 randomly selected wild type environmental and 13

azole susceptible clinical A. fumigatus isolates cultured from patients

of suspected bronchopulmonary aspergillosis were included as

controls. The drugs tested included itraconazole (ITC, Lee

Pharma, Hyderabad, India, and Janssen Research Foundation,

Beerse, Belgium), voriconazole (VRC, Pfizer Central Research,

Sandwich, Kent, United Kingdom) and posaconazole (POS,

Schering-Plough, Kenilworth, NJ, USA, now Astellas). For the

broth microdilution test, RPMI 1640 medium with glutamine

without bicarbonate (Sigma-Aldrich, St Louis, MO, USA)

buffered to pH 7 with 0.165 M 3-N-morpholinepropanesulfonic

acid (Sigma) was used. Isolates were grown on potato dextrose

agar for 5 days at 28uC and the inoculum was adjusted to a final

density of 0.5–2.5 x 104 cfu/ml by measuring 0.09–0.13 OD at

540 nm using spectrophotometer. The final concentrations of the

drugs were 0.03 to 16 mg/L for itraconazole and voriconazole

and 0.015 to 8 mg/L for posaconazole. Drug-free and mould-free

controls were included and microtitre plates were incubated at

35uC for 48 h. CLSI recommended quality control strains, Candida

krusei, ATCC6258 and Candida parapsilosis, ATCC22019 and

reference strains Aspergillus fumigatus, ATCC204305 and Aspergillus

flavus, ATCC204304 were included. The MIC end points were

read visually which, for azoles were defined as the lowest

concentration at which there was 100% inhibition of growth

compared with the drug-free control wells. A. fumigatus isolates with

high itraconazole MICs were tested twice on different days. Azole

resistance was defined for itraconazole, .2 mg/L, voriconazole,

.2 mg/L, and posaconazole, .0.5 mg/L as proposed by Verweij

et al. [37].

Activity of Azole Fungicides
The commonly used ten azole fungicides registered under the

Insecticides Act, 1968 by the Indian Central Insecticide Board and

Registration Committee were tested for activity against resistant

and wild type environmental and clinical A. fumigatus Indian

isolates by microdilution method as described above. The azole

fungicides tested were bromuconazole, cyproconazole, difenoco-

nazole, epoxiconazole, penconazole, tebuconazole, triadimefon,

metconazole (kindly gifted by Dr. P. Verweij, Nijmegen, the

Netherlands) hexaconazole (Rallis India, Mumbai, India) and

tricyclazole (Cheminova India, Mumbai, India). The fungicides

were dissolved in dimethyl sulfoxide and concentration range used

was 0.06–32 mg/L.

Statistical Analysis
Point serial correlation was computed between MICs of wild

type and TR34/L98H A. fumigatus isolates of clinical and

environmental origin to determine the correlation coefficient

which is a measure of the effect size (r), where values of r = 0

indicate no correlation between MICs, r = 1 indicate positive

correlation and r = 21 indicate negative correlation. In cases

where correlation MICs have similar values for all isolates,

correlation effect size was considered r = 0 [21].

Mixed Format Real-time PCR Assay to Detect Mutations
All of the ITC+ A. fumigatus isolates were subjected to a mixed-

format real-time PCR assay as described previously for detection

of TR34/L98H, TR46/Y121F/T289A, M220, G54 mutations

leading to triazole resistance in A. fumigatus [38].

Microsatellite Genotypic Analysis
Genotyping was performed with a panel of nine short tandem

repeats as described previously [39]. The genetic relatedness

between Indian environmental and clinical isolates was deter-

mined by using microsatellite typing. A total of 60 ITC+ A.

fumigatus isolates which included 51 environmental (44 isolated in

the Indian laboratory and 7 isolated from Indian soil samples

processed in the Netherlands laboratory) and 9 clinical isolates

were subjected to microsatellite typing. For phylogenetic analysis,

24 Dutch (15 clinical and 9 environmental), 8 clinical Chinese

[40], 3 clinical French [18] and one clinical German [19] isolates

of A. fumigatus containing the TR34/L98H genotype were tested

along with the Indian isolates. In addition, 35 (22 environmental

and 13 clinical) Indian, 12 environmental Dutch and 2 clinical

French A. fumigatus isolates without mutations and a reference

strain A. fumigatus AF293 were included in the analysis.

Genetic Analysis of Microsatellite Genotypes
The composite genotype for each of the 146 strains of A.

fumigatus was identified based on alleles at all nine microsatellite

loci. The genotype information was then used to identify genetic

relationships among strains. Gene diversity and genotype diversity

within individual samples and the relationships between samples

were estimated using the population genetic analyses program

GenAlEx 6.1 [41]. The relationships among alleles at different loci

were examined for evidence of recombination in natural

populations of this fungus, using the computer program Multilocus

2.0 (http://www.agapow.net/software/multilocus/) [42]. Results
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of these analyses were used to infer the potential source(s) of the

triazole-resistant clinical and environmental A. fumigatus strains in

India.
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28. Kuipers S, Brüggemann RJ, de Sévaux RG, Heesakkers JP, Melchers WJ, et al.
(2011) Failure of posaconazole therapy in a renal transplant patient with invasive

aspergillosis due to Aspergillus fumigatus with attenuated susceptibility to
posaconazole. Antimicrob Agents Chemother 55: 3564–3566.

29. NETHMAP (2012) Consumption of antimicrobial agents and antimicrobial
resistance among medically important bacteria in the Netherlands 59–60.

Available: http://www.rivm.nl/dsresource?objectid = rivmp:181194&type =

org&disposition = inline. Accessed 2012 Sep 4.
30. Serfling A, Wohlrab J, Deising HB (2007) Treatment of a clinically relevant

plant-pathogenic fungus with an agricultural azole causes cross-resistance to
medical azoles and potentiates caspofungin efficacy. Antimicrob Agents

Chemother 51: 3672–3676.

31. Müller FM, Staudigel A, Salvenmoser S, Tredup A, Miltenberger R, et al. (2007)
Cross-resistance to medical and agricultural azole drugs in yeasts from the

oropharynx of human immunodeficiency virus patients and from environmental
Bavarian vine grapes. Antimicrob Agents Chemother 51: 3014–3016.
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