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FRACTIONAL DIFFERENTIAL APPROACHES 
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Abstract. The aim of this note is to introduce and justify the reasons why the 
traditional differential approach of complex systems, and more specifically 
non-additive systems, must be recognized as an epistemological failure (e.g. 
in economy, finance or limited in social agent models). The categorical 
character of the context proper to any type of irreversible exchange is 
analyzed. This approach underlines and explains the weaknesses of the set 
theory generally utilized. Beyond the mathematical concepts their 
application in project management provides an illustrative example 
allowing an easy understanding of the statements of problems attached to 
non-additive and irreversible complex system. We will see why it is 
necessary to shift the analysis from the set theory toward the theory of 
categories and why this choice very naturally introduces the use of non-
integer order Differential Equations. 

Keywords: Categories Theory, Fractal and Hyperbolic Geometry, 
Fractional Differential Integral, Irreversibility, Management.  

1. Introduction 

In his book "Time and Economy" Zeljko Rohatinski [1] severely 
criticizes the "Euclidean" models of economics an finances in a frame of 
an approach very convergent with the criticisms of Benoit Mandelbrot 
[2,3,4] Jean Philippe Bouchaud [5,6] and many others [7-11] concerning 
application of physical concepts in economy. The question of the status of 
the time considered in economics appears as a central question for the 
authors of this note [12] as well as for Z. Rohatinski who, -starting from 
large overview on finance and equilibrium economics [13-26]-, clarifies 
the bases of his premonitory works according to his following analysis: 
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The literature specifically devoted to the time dimension of economic 
activity is relatively scarce, but there are several researchers that explore 
some segments of the problem presented here. In 1950, English economist 
George L. S. Shackle was one of the first economists to argue that 
economics that use equilibrium methods ignore the dimension of time and 
who questioned the validity of the mechanical time dynamics models. He 
focused on the dynamic movement in time: translation of the moment-in-
being along the calendar axis (outside) and from one moment in to another 
(inside). A recently published analysis of Shackle’s work (Madsen, 2015) 
additionally pointed to the specific nature of time in economics compared 
to other sciences. 

In 1973, Branko Horvat, one of the most prominent Croatian 
economists, explored the problems of contraction of costs of fixed capital 
and dilation of “economic time” in evenly growing economic systems and 
showed that every economic system has its own, inherent “economic time”, 
which is in line with the conclusion reached in this book. By contrasting 
the atemporal Marshallian model with an explicit time model with 
uncertainty about costs at the firm level, the American Nobel Laureate 
Peter A. Diamond in 1994 focused on modalities of establishing micro- 
and macroeconomic equilibria in periods of different durations (…) 
Although these approaches differ significantly, they all point to the 
essential problems related to the attempts to “fit” economic activity in the 
standard units of calendar time during the process of establishing partial 
or general equilibrium in the economic system. This problem is even more 
complex in the context of all causal, structural, and (dis)equilibrium 
relations between economic categories [1]. In practical terms interesting 
these issues, the management of the economics must consider at least two 
levels of analysis; (i) the static and local level, namely the issues relating to 
smart organizations that are flexible enough to adapt adequately to the 
constraints of the environment [27]; (ii) the dynamic and global level, in 
other words the questions relating to the "turns" able to alter the overall 
structure of the organizations themselves and their links by diffusion of the 
local constraints on the global behavior by involving the set-power, namely 
the equivalences of some classes of subsets. In addition to the work 
manages to link the distribution of multi temporalities to the creation of 
currency (credit) seen through investment strategy [12] and to Lorentzian 
Rohatinski approach [1], one could now add the works based on Project 
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Management extended to Zeta Management. The theoretical framework for 
this approach is Grothendieck topoi and sites theory [28], topos which is 
roughly a category that serves as a place in which one can do mathematics 
[29]. More precisely, a topos is category with certain extra properties that 
make it a kind of category of sets. There are many different topoi; we can 
do a lot of the same mathematics in all of them, but there are also many 
differences between them. For example, the axiom of choice cannot hold in 
a topos, and likewise the excluded middle principle. The reason is that the 
truth in a topos is not a yes-or-no affair: instead, we keep track of "how" 
true statements are, or more precisely where (in what topos) they are true. 
Some but not all topoi contain natural numbers as object. This approach is 
here analyzed from self-similar categorical point of view [30]. More 
precisely, it is by considering the notion of time within the framework of 
the conservation of categorical limits and co-limits that we shall extend the 
differential approach of the economy (equilibrium) to the non-integer 
orders and irreversible frameworks [12,31, 32]. We will show how in 
topoi, the time is both relativized and discretized by long-distance 
correlations especially for applications in which economic ends are 
considered. The econo-physics approach can be bound in category theory 
with the use of "division algebras" according to a deductive layout 
implementing the concepts and the morphism given in the diagram below. 
The purpose of this paper is to provide the mathematical underpinnings 
that justify among others analysis the Rohatinski's approach by linking it to 
incompleteness of fractional differentials processes. The main example of 
this note based on the (project) management and otherwise founded on 
self-similar structure of labor division, may easily be related to the creation 
of generalized currency already considered and shown as a generalized 
investments means [12]. This note will provide the tool of representation 
and illustration of these assertions. It will be noticed that to "economize" is 
theoretically to make choices, to rank them and to order them and index 
arbitrations on the basis of the set of integers seen as small categories. 
These aspects will be considered in the theoretical part of this note.  
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Figure 1. Schematic representation of the mathematical links that justify the 
developments given in the note, namely the use of category theory and of 
fractional differentiation operators in economics on the basis of non-
additivity of integrals (Choquet integrals). This non-additivity underlines the 
specificity of the economy with respect to physics including quantum 
physics and field theory. The properties of self-similarity appear as naturally 
universal in category theory, the anthropic character of the theory allowing 
the emergence of reference laws of behavior in spite of the infinity of free 
factors related to humanity of the issues. 

2. Categories, Points Logic and Topoi 

In his work on The truth of the beautiful in music [33,34] Guerino 
Mazzola, among other authors, figures out that the concept of Euclidean 
point as an object without any subpart, disappears at the end of the 19th 
century especially with the progress of the algebraic analysis, soon 
transformed into algebraic geometry. It is in this rapidly evolving context 
that Saunders Mac Lane and Samuel Eilenberg develop the theory of 
categories [35-39] by first working on the natural transformations, namely 
morphism of morphisms. 

A category C is first a collection of objects X, Y, ... as for any couple 
XY, a collection of new objects C(X, Y) exists such as f, g, ... which are 
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called morphisms of X into Y. These morphisms are denoted arrows; for 
instance, f : X → Y. The sole axioms necessary to define the notion of 
categories are then the following ones: (i) the objects of the category are 
exclusively determined by their morphisms on the one hand as domain of 
definition, X = dom(f) namely the source or empennage of the arrow and 
as codomain, Y = codom(f) or goal, target or arrowhead; (ii) the laws of 
composition apply when a target of f becomes the empennage of g then 
h : h = f○g exists and the law of composition is associative; finally (iii) 
there is a morphism called identity such that the arrow is a looping over 
itself with IdX : X → X. Due to this structure f : X → Y and g : Y → X 
assign a role to commutation with a distinction between the left IdX○g = g 
and the right f○IdX = f, one of the major characteristics of the category 
theory with regard to set theory.  

Among the categories we find for example the sets (Ens), the groups 
(Grp), the topological spaces (Top) for which the morphisms are the 
continuous functions; one finds also the oriented graphs for which the 
morphisms are the category of the schemas in geometry algebraic. The 
abstraction of the notion of categories is due to the fact that the only means 
of accessing objects are only the morphisms of which they are the domains 
and codomains. The theory of categories thus asserts that there is no object 
in itself, but in doing so it paradoxically confers a concrete character on all 
categorical abstractions. For example, a geometry is reconstructed by 
generalizing, as Grothendieck has shown, the notion of point [28]. 

The point can then be identified from a set function x: 1→X defined 
over 1 = {Ø} is such a way that x(Ø) = x actually the function that sends 
the element Ø of 1 into x. This morphism translates the concept set point 
into the categorical concept of domain of morphism 1. Grothendieck 
generalizes this approach by asserting that any morphism p: A → X given 
in the category C, is an A-valuated point of X. We call A the address of 
the point, namely A@X [34]. The introduction of the arrow-point of 
Grothendieck creates a “mathematical subject” disassociated of the object 
[33]. The arrow has a target: the object X but also an empennage which is 
none other than the partial and subjective point of view given by the 
address A. The lemma of Yoneda, another great mathematician of the 
theory of the category, [34] asserts that the knowledge of the object X can 
be reduced to the set of the addresses @X In other words, knowledge of an 
object X is reducible to the knowledge of the set of all its points @X 
addresses (therefore the set of its morphisms p namely all the perspectives 
able to be considered with X as object). The space @X is what 
mathematicians call the contravariant functor of X. If X is a topological 
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space with a category of open object, then this contravariant functor is 
called the presheaf of X into any other category. A sheaf is a presheaf that 
can be defined locally. In geometry, the concept of a sheaf is a 
generalization of the notion of set of sections of vector bundles, hence its 
major interest for dealing with dynamic problems. In this context X 
becomes an algebraic manifold or a differential manifold in which the 
global concept of geodesic makes sense. In the wake of Yoneda we also 
locally recover all the logic that derives from the global functorial structure 
which leads quite naturally to the properties of self-similarity and 
fractality, the universality of which can thus be deeply understood from 
mathematics [30] and from physics of irreversible processes (arrows 
[12,31,32]). Geometry associated to the Grothendieck’s points [28] 
matches logical structures (values of truths). The notion of topos of often 
emerges naturally as the conjunction of several categorical properties:  
(i) the existence of a sub-object classifier; (ii) a validity of the principles of 
functional division with relevance of the concepts of limit and colimit, and 
finally (iii) the existence of an exponential function YX guaranteeing the 
equivalence of the monoids (C, + ) namely X → X + Y ← Y and (C, × ) 
namely X ← X × Y → Y; equivalence classes exist, in the frame set-power 
(all subsets of a set) the inclusion being the classifier. 

3. Categorical Adjonction Order, Scaling and self Similarity 

Given that, in the theory of categories, every object is always 
equipped with an arrow (called morphism) as well as an identity morphism, 
an ordered sets constitute an archetypal case of categories in which 
between any two objects there exists at most only one arrow. We will show 
that the notion of lattice becomes then a fundamental notion. Given P and 
Q a couple of ordered categories, associated with two morphisms ϱ and λ: 

P 
ఒ
→ Q and Q 

஡
→ P. 

P and Q are adjoint if and only if: ∀ p ∈ P, ∀ ݍ ∈ Q p ≤ ρ(q) ⇔ λ(p) 
≤ q. These properties figure out the following relations: ϱ and λ are 
"isotoneous" applications (namely preserve the order) and they verify:  
p ≤ ρ(λ(p)) and λ(ρ(q)) ≤ q. We can introduce the principal concept of 
ideal (Kernel like in a ring) and of filter, namely: 

 Principal Ideal (p] = {ݔ	 ∈ ܲ: ݔ ≤  ,as “small” elements {݌
 Principal Filter [p) = {ݔ	 ∈ ݌:ܲ ≤  .as “large” elements {ݔ

Therefore: P 
஛
→ Q has an adjoint at right if  is residuated, that is,  

if the reverse (pull back) images of principal ideals by λ are also  
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principal ideals. Its adjoint at right Q 
஡
→ P is then given by:  

ρ(q) = max {݌	 ∈ ܲ: λ(݌) 	≤  Through duality, Q .{ݍ
஡
→ P has an adjoint at 

left if and only if ϱ is residual, namely if the inverse images of the 

principal filters by ϱ are also principal filters. Its adjoint at left P 
஛
→ Q is 

then given by: λ(p) = min {ݍ ∈ ݌:ܳ ≤ ρ(ݍ)	}. Any residuated application 
between partially ordered sets preserves all existing joins (union); and any 
residual application between partially ordered sets preserves all existing 
meetings (intersections). Conversely, any application preserving the joints 
(respectively the meetings) between complete lattices is residuated 

(respectively residual). If : P 
஛
→ Q application between complete lattice 

preserves the joins, then Q 
ρ
→ P : q ↦ ∨ {݌	 ∈ ܲ: λ(݌) 	 ≤  is adjoint at {ݍ

right with regard to λ. If Q 
஡
→ P application between complete lattice 

preserves the meets, then P 
஛
→ Q: p ↦ ∧ {ݍ	 ∈ ݌:ܳ ≥ ρ(ݍ)} is adjoint at left 

with regard to ϱ [40,41]. 
There is a close link between adjunction and the notions of closure 

and kernel. A close operation on a partially ordered space P is application 
γ : P→P such as x ≤ (ݔ)γ ⇔ ݕ ≤ γ(y). Thus the closing operations are in 
one-to-one correspondence, by surjective restriction, with the adjoint on 
the left of inclusions between ordered sets. A kernel operation is defined 
by duality; it is an adjoint at right of an inclusion. A subset C of P is called 
closing domain if whatever ∀ x ∈ P, a smallest element exists ݔത ∈ C with  
x ≤ ݔത. Then γ஼  : P→P : x ↦ ݔത Is a closure operation. The association  
C ↦ γ஼  defines an isomorphism between the partially ordered set of 
closure by inclusions. Closing domains in a complete lattice are the subsets 
closed by the meetings. Any addition (λ,ϱ) defines a closure ϱ ∘ λ, written 
λϱ, but also an operation of kernel λ ∘ ϱ, written ϱλ, based on: p ≤ ρ(λ(p)) 
et λ(ρ(q)) ≤ q, and of resulting equations: λϱλ	= λ et ϱλϱ = ϱ. The images 
of λ and of ϱ are written Pλ and Qϱ. Therefore the following diagram 
emerges of the relations: 

 
Figure 2. Schematic representation of Kernel and Closure morphisms. 
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By analogy with a lattice in N, the addition consists locally in 
forming the two-term line of a lattice and then reconstructing from this line 
all the relations which give the limits of the construction. A Galois 
connection [41], mapping posets, is distinguished from previous 
organization by inversion of the order of Q. This inversion figures out:  
p ≤ ρ(q) ⇔ ݍ ≤ λ(p), namely: ϱ et λ inverse the order and p ≤ ρ(λ(p)) and 
q ≤ λ(ρ(q)). The fixed points on both sides of a Galois connection are 
called Galois closure. For an adjunction given by (λ,ϱ) the fix points of 
λ ∘ ϱ are called Galoisian open (set), because λ ∘ ϱ is then a kernel 
operation. Consider a simple example. Either a subset Y of a complete 
lattice such as L :	λ௒ : L →L : x ↦ ∧ {ݕ	 ∈ ܻ: ݔ ≤  ;is a closure operation {ݕ
Then for any “isotoneous” operation γ of L: ρ(γ) = {ݔ	 ∈ (ݔ)γ	:ܮ ≤  {ݔ
which is a domain of closure. The pair (λ, ϱ) is then a Galois connection 
between the power set of L, written ℘L (set of all subsets of L) is the 
complete lattice punctually ordered from “isotoneous” internal applications 
of L. Closed Galois subsets are exactly the closing domains; closed Galois 
applications are closing operations. For an addition, or a Galois 
connection, (λ, ϱ) between two partially ordered set P and Q, the following 
conditions are equivalent: (i) λ ∘ ϱ = ݅݀ொ , (ii) λ ∘ ϱ injective, (iii)	λ ∘ ϱ 
surjective, (iiv) ϱ injective, (iv)	λ surjective, and mainly for the physicist: 

 µ : P →N exists such as µ ∘ ρ is a scaling factor, 
 µ෥ : Q → N exists such as µ෥ = µ ∘ λ ∘ ρ is also a scaling factor 
A scaling factor is by definition a function on a partially ordered set P 

such that if p < ݌ᇱ then µ(p) ≠ µ(݌ᇱ). In this case the following diagram is 
valid: 

 
 

Figure 3. Schematic representation of the couple of scaling factors 
emerging of the connections between two ordered categories. 

Actually we can use the following scales: 
 µ : P →	P×Q : p ↦ (݌, λ(݌)) 
 µ෥ : Q → P×Q : q ↦	(ρ(q), q). 
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This configuration corresponds precisely to the situation of self-
similarity which thus naturally emerges from the conjunction of a relation 
of order and of adjunction. At this stage, it is useful to recall a major result 
established by Birkhoff: the polarities that are the Galois connections 
between set powers are unambiguously constructed from the relationships 
between the underlying sets. Given R a relation between sets A and B, it 
gives rise to a Galois connection(ܴ→,ܴ←) between ℘A and ℘B; namely: 

 X ⊆ A sent onto ܴ→(X) = ܺோ 	ݕ} =  ∈ :ܤ 	ݔ	∀	ݕ	ܴ	ݔ ∈ ܺ}  
 Y ⊆ B sent onto ܴ←(Y) = ோܻ 	ݔ} =  ∈ :ܣ 	ݕ	∀	ݕ	ܴ	ݔ ∈ ܻ}.  
The images of a couple of applications are dual isomorphic closure 

systems. Reciprocally, any connection of Galois between powers of sets, 
and therefore every dual isomorphism  between two systems of closure 
are based on a single relation R defined over the underlying sets such that  
x R y means that y belongs to the image of the closure of {x} by the 
isomorphism Φ. Thus an adjunction has a one to one, close link with the 
closure and kernel operators that form the basis of the mathematical 
topology with the concept of closed and open “support”. Reciprocally we 
can therefore associate an adjunction with topology. These relationships 
serve as a starting point for the theory of local and frames. The concept of 
ideal, whose origin comes from arithmetic and goes back to Gauss with the 
decomposition of integers into products of prime numbers, leads to the 
notion of localization whom allows to introduce differential calculus, 
according to the path followed for example in algebraic geometry. The 
dual concept of filter, its reinforcement in terms of ultrafilter and monad of 
co-density, generalizes the concept of probability measures and thus the 
new integral calculus, the need of which is nowadays required for new 
formalization of the economy [12]. We will focus here on the particular 
case that corresponds to a specific situation of scaling and of fixed point,  
T = λ ∘ ϱ and TX = X, because these notions underlie a generalization of the 
notion of equilibrium or steady states. The analogy between arrow 
(diagrammatic representation of our environment) and action (will [42]) is 
mathematically analyzed here below.  

4. Adjunctions, extensions and Fraction Calculus 

The consideration of ordered categories appears to have to respond in 
a self-consistent manner to a triple “physical” constraint: (i) a closure that 
we called elsewhere dynamic closure in our physical models [32], (ii) an 
internal hierarchy which offers all the properties of a self-similarity, built 
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from a kernel, nucleus whose monadic characteristics (iii) induce a global 
teleology of the system (existence of geodesics). However, to become 
differential, what may be important for economic models, this adjunction 
also requires a division of any functors; division which must be compatible 
with the preservation of categorical limits. We then suggest considering the 
concept of incompleteness as a central notion emerging from the duality of 
ordered structures for proving, among others in physics, that any fractional 
dynamics can be canonically extended by implementing the categorical 
concepts of limits and co-limits. It should be recalled at this step that, for 
the definition of its objects, category theory distinguishes the arrows on the 
right from those on the left as well as the domains (source, empennage) of 
the co-domains (target). This distinguo creates the generic dissymmetry 
suitable for implementing at least an one of elementary irreversibilities 
required in econo-physics. Let us also recall that, there is a close link 
between the adjunction and Kan extensions, extensions which figure out 
how this dissymmetry involves the incompleteness of some categories. 

4.1. Kan extension and adjonction 

Given the functor F : ࣛ → ℬ between two small categories in other 
words here a set category. Using composition with F:	ܨ∗ : Fonct (ℬ, Ens) 
→ Fonct (ࣛ, Ens). Both functors are co-complete and ܨ∗ preserve all the 
co-limits. According to the Yoneda's lemma ܨ∗ satisfied the dual condition 
of the analytical solution set, it follows that ܨ∗ has an adjoint at left 
(Source) which is by definition it’s a Kan extension. This remarkable fact 
can be generalized by replacing the category Ens by any co-complete 
category. Kan's extension to the left of G (target) along F, if it exists, is a 
pair (K,α) where: 

 K : ℬ → ࣝ is a functor, 
 α : G ⟹K∘F is a natural transform. 

Given the following universal properties: if (H,β) is another pair, 
with: 

 H : ℬ → ࣝ is a functor, 
 β : G ⟹H∘F is a natural transform, there is a unique natural 

transformation γ : K ⟹ H with (γ ∗F)∘ α = β, namely. 
 



17 

 
Figure 4. Schematic representation of Kan extension pointing out 
 the role of Natural Transforms and of the associated morphisms. 

 
When ࣛ and ℬ are small categories, we can consider ܨ∗ : Fonct (ℬ, 

Ens) → Fonct (ࣛ, Ens) Taking into account the composition by F, the Kan 
extension to the left of G along F exactly means that there is a reflection 
(K,	α) of G along	ܨ∗. By applying the fundamental theorem of the 
adjunction for ࣛ small and ࣝ co-complete, Kan's extension at left of G 
along F exists. This extension is usually noted ݊ܽܮிG. For F : ࣛ → ℬ 
functor between small categories, the following conditions are equivalents: 

 F has an adjunct at right F*=ܴܽ݊ிG., which is reflection of G; 
 ݊ܽܮி1ࣛ  exists, and for any functor G : ࣛ → ࣝ, the isomorphism 

G∘ ி1ࣛ݊ܽܮ  ≅  ;is valid ܩி݊ܽܮ
 ݊ܽܮி1ࣛ  exists and the isomorphism ܨ ∘ ி1ࣛ݊ܽܮ ≅  is ܨி݊ܽܮ

valid. 

We will come back later to Kan extensions but at this step we would 
like to add some comments. It is possible to build an image borrowed from 
optics that intuitively accounts for the mechanism of implementing a Kan 
extension. Given an object B in ℬ, The aim is the canonical construction of 
an object C in ࣝ which extends G along F. For this we consider the set 
solution formed by all the objects in ࣛ who admit the object B as image by 
F. This set solution is then transferred to the category ࣝ through G. From 
this collection of image objects we create a canonical object that is defined 
as a co-cone. It is by definition characterized by the fact that any arrow 
starting from the previous collection of objects in ࣝ and targeting onto any 
object, say D, which is factorized into a composition of an arrow towards 
C followed by a second arrow going from C to D. 



18 

 
 

Figure 5. Schematic representation of Kan extension borrowed from optical analogy. 
 
In other words C carries the different addresses of D. This results 

looks like an optical device, C thus concentrating all relevant information 
held by the previous collection of objects. Equivalence between the 
existence of a adjoint at right for the functor F and the properties relating 
to the transformation ݊ܽܮிG. shows clearly that a Kan extension 
generalizes the concept of adjunction since the property for F to admit a 
adjoint at right is equivalent to the property that ݊ܽܮி1ࣛ  exists in addition 
with F∘ ி1ࣛ݊ܽܮ ≅  ிG for the݊ܽܮ Therefore the existence of .ܨி݊ܽܮ
functor G distinct of F appears as a stronger property than the mere 
existence of ݊ܽܮி1ࣛ  corresponding to the case G = 1ࣛ . Observe also that 
the existence of a Kan extension for G along F amounts to somehow 
pulling back the functor F (by formally introducing	ିܨଵ), therefore Kan 
extension introduces a calculation of fractions. More generally, the 
multiplicity of the extensions of F can be associated with the covering of 
all universal bases built on a field of the auto-morphisms associable with a 
fiber, that is to say with the existence of a flow with first integral along this 
a flow, situation that involves the notion of unique parameter, the scale for 
flow along self-similar structure.  

4.2. Monads and Associated Algebras 

It is useful to introduce here the monoid structure which is the frame 
leading the definition of the monad, an self-ruling structure able lead any 
type of iteration. To do this, let consider a binary or quadratic operation 
defined on a set M: M × M → M : (ݔ (ݕ, 	↦ xy (therefore the notation of an 
object in the form of "words"). It can be recalled in this connection that any 
self-similar structure can be written using an encoding based on letters and 
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words, a remark that allows the reader to anticipate the reasoning on the 
links of the monadic approach with fractal structures. By iteration, to any 
finite sequence of elements (ݔଵ, ଶݔ , …  we can then associate the	௡)ݔ,
composite word ݔଵݔଶ…ݔ௡. By calling T(M) the set of finite sequences or 
"words" of this kind; one can provide the set M using a monoid structure: 

ξ : T (M) → M : (ݔଵ, ଶݔ , … , ,ଵݔ)௡) ↦ ξݔ ଶݔ , …  .௡ ∈ Mݔ…ଶݔଵݔ = (௡ݔ,
The axioms verified by ߦ respond to a composition law with: 

߳ெ  : x ↦ {ݔ} et µெ  : TT (M) → T (M): ((ܽଵଵ , … , ܽ௡భ
ଵ ), … , (ܽଵ௠ , … , ܽ௡೘

௠ )) ↦ 
(ܽଵଵ , … ; ܽ௡భ

ଵ , … ;ܽ௡೘
௠ ) 

with associativity rule. In doing so, the concept of monoid is now 
"categorized" and leads the concept of monad on a category ࣝ.  

 
Figure 6. Representation of functorial diagrams giving  

the main relations associated to a monad.  

 

This is a triplet based by a functor T : ࣝ → ࣝ and a couple of natural 
transforms ε : 1	ࣝ	 → T and a product µ : T∘T → T such as the laws 
summarized in the above diagrams are verified.  

The concept of monad is associated with the concept of algebra since 
it is recalled that an algebra on the monad is a pair (C,	ξ ) with C is an 
object of ࣝ and	ξ : T (C) → C is a morphism over ࣝ	agreeing with the 
following diagrammatic constraints: 

 
Figure 7. Determination of the morphisms required for building 

 an algebra associated with a monad. 
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We thus find, as a special case, the concept of a monoid on a set. If 
(D,ζ) is another algebra, a morphism between algebras (C,	ξ ) → (D,ζ) is a 
morphism in ࣝ: f : C → D such as 
 

 
 

Figure 8. Constraints for a morphism between algebras. 
 
The set of algebras able to be constructed with ࣝ and T constitutes 

itself a category, which is referred as ࣝ	், called d’Eilenberg-Moore 
algebra. A forgotten functor exists U : ࣝ	் → 	ࣝ : (C,	ξ ) ↦ C with f ↦ f. 
The functor U is faithful and reflects the isomorphisms. U admits an 
adjunction at left 

F : ࣝ → ࣝ	்  : C ↦(T (C), µ஼) ; 

(f : C → ܥᇱ) ↦ (T (f) : (T(c),µ஼) → (T( ܥᇱ), µ஼ᇲ)). 

The unit of adjunction is ε : 1	ࣝ	 → UF = T, and the co-unit is η : FU 
→ 1ࣝ	೅  such as η(஼,ஞ)	= ξ. Algebra of the form (T(C),	µ஼) is a special case of 
algebra which is then called free algebra. The complete subcategory of ்ࣝ 
generated by free algebras is called the Kleisli category and is referred as 
்ࣝ  with: 

 Objects of ்ࣝ 	= objects of ࣝ, 
 Morphisms f : C →D in ்ࣝ 	is the morphism f : C →T(D) in ࣝ, and 

the composition of the morphisms in ்ࣝ between f : A → B  
and g : B → C must be understood as a composition seen in  
ࣝ : A 

௙
→ T(B) 

்(௚)
ሱ⎯ሮ TT(C) 

ஜ಴ሱሮ T(C). 
Actually the identity in C in ்ࣝ  is ε஼  : C ↦ T(C), (f : C →D)↦

µ஽ ∘T(f). This functor is faithful, reflects isomorphisms and admits an 
adjoint on the left: 

ࣝ → ்ࣝ  : C ↦C; (f :C →D) ↦ ε஽ ∘	f 
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Figure 9. Schematic representation of the shift from T-monadic structure to 
the Kleisli initial algebra which can be associated to it. The vertical axis is 
the functorial axis T. The diagonal axis concerns the object of the categories. 
The horizontal axis concerns the relations, namely the Kleisli algebra, thus 
the initial algebra related to the monad. The monadic structure is equivalent 
to the F-G structure of adjunction.  

It is appropriate to introduce here the notion of idempotent monad 
[39]. The idempotent property is associable with the notion of fixed point 
of an application whose result does not change that one applies it once or 
several times. An idempotent monad is a monad that "squares to the 
identity" in the category-theoretical meaning. An idempotent monad must 
consider henceforth as a "categorified" projection operator, in which are 
encoded the subcategories and any reflection / localization. In terms of 
type theory idempotent monads interpret (co-) modal operators. The major 
properties of the idempotent monads in relation to the monads are as 
follows: (i) µ : T∘T →T is a natural equivalence of functors; and in addition 
(ii) for any object X of ࣝ, η௑  ∈ ࣭(F), as classes of morphisms and (iii) we 
have the symmetry Tη = 	ηܶ. 

The existence of a canonical transformation that allows passing from 
a general monad to its idempotent subcategory, leads this note to elude this 
aspect, for focusing instead on understanding its links with the categorical 
foundations of the localization that one can obtain within posets, 
localization, localization which is justified by a functorial division at 
differential level. 
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4.3. Functorial Division 

The first step in any analytical process is to construct indexed 
sequences of representation for any object; this indexation is provided by 
the use of integers, introducing hence the role of sets of numbers, relative 
integers, rational numbers, and so on in the problematic. For example a 
word can be constructed in a given order according to a basic algebra ℕ as 
(wo)1(rd)2 ≡ w1o2r3d4. However the theory of the categories brings a lot 
more by allowing factorization on the set of the rational numbers ℚ for 
functors by means of the concept of Span. As T. Leinster [28] has shown, 
there is a generic link between the notion of adjunction and the notion of 
self-similarity so any adjunction can naturally be divided into batches in a 
canonical way. In particular, we can analyze the consequences of this 
factorization in this context. The link with the fractality is clearly drawn in 
particular if, for example, P (X) seen as sum of polynomials on the objects 
X, is considered as an analytic functor [43,44]. It can then benefit from the 
well-known factorization of polynomial structures. Zeros become fixed 
points P(X) = X of Newton’s series. Differential calculus then emerges in 
the framework of categorical limits as the object of morphisms 
corresponding to the standard composition of arrows by using the rules of 
associativity. Yielded homogeneous in the set of real numbers these laws 
of associativity lead to functional equations. Axcel Theorems [45-47] 
allowing to associate a total order with a partial order, by means of an 
invertible function (Exponential for local point of view but also zeta of 
Riemann function for global point of view), - a duality between a linear 
addition (coproduct) an multiplication (product) -, with not any regard to 
scales. It is then, through the mathematical capacity Choquet theory and 
thus through the consideration about non-additive but ordered sets [48,49], 
that the differential calculus of fractional order appears as naturally 
associable with idempotent monadic structures. 

Adjunction, Spans and functor divisions 
We start from the fact that all the preceding categories can be 

enriched since we are able to conceive a splitting of the functors. 
Mathematically such fractions arise from the notion of Span. In a category 
ࣝ a Span is of object x to an object y is a diagram:  

x←s→y 
with s as a third object in ࣝ. Let us consider immediately the two particular 
cases: 

 f	≡	1, the span is then the morphism x 	
௚
→ y, 



23 

 g	≡	1, the span is then the morphism y	
௙
→ x. 

If the category ࣝ has reciprocal or pullback images, it becomes 
possible to compose the spans. Indeed, given an application of x to y and a 

second of y to z, or : x 
௙
← s 

௙
→ y 

௛
← t 

௜
→ z, the central pullback image can be 

built above s 
௙
→ y 

௛
← t, such as s 

௣ೞ← s×௬t 
௣೟→t, then by composition we end up 

with x 
௙௣ೞርሲ s×௬t 

௜௣೤ሱሮz. Let remark that the notion of span generalizes the 
notion of relation, for example between two sets A and B. A relation R can 
be defined as a subset of the Cartesian product A×B, equipped with two 
canonical projections: A 

௣ಲርሲ A×B 
௣ಳሱሮB and if a ∈ A, b ∈ B, we write aRb 

instead of (a,b) ∈ R. In the category of finite sets Ensfin, the spans 
constitute a "categorization" of matrices whose coefficients are natural 
numbers, namely: ܺଵ 	← N → ܺଶ, the cardinal of the fiber ܺ௫భ ,௫మ 	above 
ଵݔ 	 ∈ ܺଵ, ݔଶ ∈ ܺଶ takes the place of the index matrix coefficient (ݔଵ,  .(ଶݔ
The composition of the spans introduced previously is then interpreted as 
the matrix multiplication. A same composition of spans accounts for the 
composition of the relations: if R relation between A and B, S relation 
between B and C, then the composition S∘R between A et C : (a,c) ∈ S∘R 
⇔ ∃ b ∈ B such as (a,b)	∈ R et (b,c) ∈ S. The analogy of the concept of 
span with the zeros of a polynomial equation used for its factorization 
logically connects it to the concept of localization and the calculation of 
fractions. This is fundamentally because a span generalizes morphism by 
breaking the asymmetry between source and goal. In general, localization 
is a process of adding formal inverses to an algebraic structure. Thus the 
localization of a category C associated with a collection W of singularized 
morphisms is a universal process by which all the morphisms of W become 
isomorphisms. The canonical example is that of the passage of ℕ to ℚ by 
formal inversion of all prime numbers. A detour via algebraic geometry is 
useful here. In this particular context, to locate upon a given prime number 
consists in inverting any number which is not divisible by this one; on the 
other hand inverting the prime number p is called inversion outside of p. 
This way of seeing things lights up by considering the ring ℝ[x] 
polynomial functions on the real line. Let a point such as a ∈ ℝ, located by 
introducing an inverse of (x – a); this results is located in the ring of 
rational functions that are defined everywhere on ℝ except on the point a. 
It is said localization outside of “a”, or localization outside of the ideal I 
based on (x – a). If now we introduce an inverse for any element of ℝ[x] 
located in the ideal I, we obtain the ring of rational functions defined on 
the real line at least in a neighborhood of a. These are rational functions 
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that do not have a factor (x – a) in the denominator. We then say that we 
have located in “a”, or localized in the ideal I. We see that we can then 
start a differential calculus from these considerations alone. Indeed:  
f(x) = ܣ଴	+ ܣଵ (x – a) + ܣଶ	(ݔ − ܽ)ଶ +… in a vicinity of “a”. The 
coefficient ܣଵ is the derivative for f in a. This is how the localization 
becomes the canonical process of algebraic nature which makes it possible 
to give birth to the differential calculus, including obviously the non-integer 
fractional calculus. 

Role of the none commutativity 
The above approach can be generalized to the case of ordered 

structures and it can be associated with category theory since every 
polynomial is similar to an analytic functor [43,44]. We can show that this 
approach of the differential calculus passes in category theory through 
Kleisli categories already evoked (Fig. 9) that is to say, by the smallest 
associative algebraic category related to a monad. The class of morphisms 
W which makes it possible to define a calculation of fractions must indeed 
satisfy certain axioms which generalize in a categorical context, the notion 
of multiplicative system. It intervenes in the method of localization in any 
types of rings. The well-known case is the case of commutative rings. But 
the composition in above categories is precisely none commutative. Thus it 
is necessary to distinguish the left fraction calculus of the right fraction 

calculus. The practical idea is to introduce diagrams of the form 
௙
→

௪
← or 

௪
←

௙
→ with w ∈ W and to consider them as fractions: ିݓଵf or fିݓଵ. We 

immediately underline the link with the spans 
௪
←

௙
→ in ࣝ or 

௙
→

௪
← in ࣝ௢௣. We 

can then make the following assumptions about the W class: 
 W is a subcategory of ࣝ, W contains all identities and is closed for 

composition, 

 One condition: for x 
௩
→ z in W an y

௙
→ z in ࣝ, w 

௩′
→	y exists in W  

and w 
௙′
→ x in ࣝ such as the diagram is commutative, namely  

ݒ ∘ ݂ ′ = f∘ ݒ ′, 
 Cancellation at right: for the co-equalizer diagram f,g : x → y, v 
∈W:  y → z v∘f = v∘g, then ݒ ′ ∈ W : w → x exists such as  
f∘ ݒ ′ = g∘ ݒ ′. 

The localization of the category ࣝ in W is a new category ࣝ[ܹିଵ] 
where: 

 The objects of ࣝ[ܹିଵ] are objects of ࣝ, 



25 

 The morphisms a → b in ࣝ[ܹିଵ] are equivalence classes of spans 

of the form a 
௩
←	ܽ′

௙
→b where v ∈ W. 

The equivalence is defined as followed: a 
௩
←	ܽᇱ

௙
→b ~ a 

௪
←	ܽᇱᇱ

௚
→b if an 

only if an object തܽ exists and as well the morphisms തܽ 	
௦
→ ܽᇱ, തܽ 	

௧
→ ܽᇱᇱ such 

as f∘s = g∘t, v∘s = w∘t et v∘s = w∘t in W. The class of equivalence  
a 

௩
←	ܽᇱ

௙
→b is referred as f∘  ଵ. With this notation it is easy to interpret theିݒ

previous conditions in a formal way as similar to those which allow to 
define equivalence classes of pairs of relative integers leading to build ℚ 
from ℤ. These recalls being given, we can go back to building a Kleisli 
category and verify that this type of category results precisely from a 
calculation of fractions.  

Idempotent monads and orthogonality of the morphisms 
The adjunction can be considered from a perspective that will allow 

us to better understand the place held by the idempotent monads. Let	ࣛ 
and ℬ a couple of categories and F : ࣛ	 → ℬ a functor. Let consider the 
class ࣭(F) of the morphisms of ࣛ equipped with an inversion via F. In 
parallel we write ࣞ(F) the class of objects in ℬ isomorph to an FX for a 
certain object X in ࣛ. Therefore: 

ࣛ 
ி
→ ࣞ(F) 

௄
→ℬ	ݐ݅ݓℎ	K inclusion. 

Given T = (T,η, µ) a monad on the category ࣝ. A pair of adjoint 
functors F and G with a unit η and a co unit ε gives birth to the monad T 
over ࣝ with T = GF and µ = GεF (Fig. 9). We have seen previously that 
reciprocally every monad is induced, although in a non-unique way, by a 
pair of adjoint functors. Among possible algebras there is one which is 
initial, namely the Kleisli monad, and another which is terminal, namely 
that of Eilenberg-Moore. We also have met though without going into 
detail, the notion of idempotent monad. In this case the factorization  
ࣝ 

்
→ 	ࣞ(T) 

௄
→ 	ࣝ is an adjoint pair T. ࣞ(T) is then isomorphic to the 

category of Eilenberg-Moore, as well as to the category of Kleisli, the 
latter being the category of fractions of ࣝ with respect to the class ࣭(T). In 
other words, the two adjunction solutions, initial and terminal, attached to 
the monad T, merge together. As we know that any monad can canonically 
be associated to an idempotent monad this situation becomes somehow 
canonical and universal; it corresponds to a situation of fixed point 
F(X) = X which induces self-similar constructions.  
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We now would like to introduce the notion of orthogonality applied 
to morphisms. A morphism f : A →B is an object X in ࣝ; there are 
orthogonal if ࣝ(f,X) : ࣝ(B,X) → 	ࣝ(A,X) is a bijection, where the last two 
categories, source and target, are categories referred as comma respectively 
denoting the set of morphisms in ࣝ	from A or B to X; Intuitively, this 
accounts for the fact that the object X is “seen” from A or B from an 
identical manner. For a class of morphisms	࣭, the class of orthogonal 
objects to any f of ࣭ is written	࣭ୄ. In the same way, for a class of 
objects	ࣞ, ࣞୄ denotes the class of morphisms orthogonal to any object X 
in ࣞ. It is said that a class of morphisms ࣭ and a class of objects ࣞ create a 
pair of orthogonal forms if: ࣭ୄ = ࣞ et ࣞୄ = ࣭. 

If (T,η, µ) is an idempotent monad, both classes previously 
introduced, namely ࣭(T) and ࣞ(T) form such an orthogonal pair. By 
construction ࣞ(T) coincides with the class of X objects in ࣝ such as 
η௑  : X ≅ TX. This relation underlines the self-similar character of the 
objects. Given an orthogonal pair (࣭,	ࣞ), an idempotent monad exists 
(T,η, µ) : ࣭(T) = ࣭ and ࣞ(T) = ࣞ if and only if for any object X, there is a 
morphism φ : X → Y in ࣭ with Y in ࣞ. In this case we say that T is a 
location functor associated with the pair (࣭,	ࣞ); by continuing the 
examination of categorical constraints it is shown that ࣞ(ܶ)ୄ ⊆ ࣭(ܶ)ୄ; 
this means that for any monad (T,η, µ) the objects having a TX, form or any 
isomorph objects, are orthogonal to all morphisms whose image by T is an 
isomorphism. On the other hand ࣭(ܶ)ୄ may be none included, and the 
relation of order can be questioned if the monad considered is not strictly 
idempotent. The concept of orthogonality, which has just been briefly 
described above, is well articulated with the notion of Kan extension by 
staging a particular important idempotence case which is at the heart of the 
interpretation of self-similar structures when they are part of the category 
theory [30]. 

From Kan extension to the location under an idempotent constraint 
Given K : ࣛ → ࣝ and a pair of functors F et L. If ℳ is a complete 

category and with additional quite trivial conditions, we can build the Kan 
extension at right R = ܴܽ݊௄		F of F along K. R can be chosen in such way 
that RK = F. Assuming that K : ࣛ → ࣝ has an adjoint at left L : ࣝ	 → ࣛ, 
then for any F : ࣛ →ℳ and any X ∈ ࣝ, with the same conditions:	 
ܴܽ݊௄		F = FL. Therefore if (T,η, µ) is the monad involves by the pair of 
adjoint functors (L,K) then T = ܴܽ݊௄	ܭ. Such an extension at right of a 
functor along itself – here in K – is called the co-density monad of this 
functor. Indeed, either (ࣝ,ࣞ) an orthogonal pair ࣝ	with	ܭ:	ࣞ	 → ࣝ 
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inclusion, (࣭,ࣞ) admits a location functor – as defined above – if and only 
if ܴܽ݊௄		ܭ exists locally. In this case ܴܽ݊௄		ܭ	is the localisation functor 
associated to the pair (࣭,ࣞ). As we have previously announced, there is a 
canonical process for constructing a idempotent monad from any kind of 
monad under only some weak assumptions. We can assert on a 
monad	ࣝ	~	(ܴ,η, µ), that an idempotent monad (ܴஶ,ηஶ , µஶ) exists on 
ࣝ	and as well, a monomorphism of monads λ : ܴஶ → R such as: (i) λ  
is universal, if ϕ : ෠ܴ  →R with ܴ	෡ idempotente, an unique morphism 
ϕஶ : ෠ܴ  → ܴஶ exists with λϕஶ = 	ϕ; in addition (ii) ηஶR : R	→ ܴஶR is a 
isomorphism and (iii)	݂:ܺ	 → ܻ in ࣝ such as ܴஶf is an isomorphism if an 
only if RF is an isomorphism. The construction of ܴஶ	is achieved by 
iteration from (ܴ଴,η଴, µ଴) = (R,η, µ). For α + 1 ordinal successor, ܴ஑ାଵ	is 
an equalizateur of ܴ஑η஑ an of η஑ܴ஑, for a limit ordinal ܴன = lim⟵ ܴ஑ . For 
any object X thus has an inverse system of monadique arrows stabilized at 
infinity. The result is the object ܴஶX and then ܴஶηஶ 	= ηஶܴஶ, property 
that ensures that ܴஶ is idempotent. By substituting the idempotent monad 
to a monad by constructing the process just described, we are brought back 
to the following canonical situation: ࣝ category asserting the right 
properties, ࣞ a full sub category of ࣝ an K : ࣞ	 → ࣝ the inclusion. If 
ܴܽ݊௄		ܭ exists locally, the orthogonal pair (ࣞୄ,ࣞୄୄ) admits a location 
functor. Starting from the categorical basis already specified, what interests 
us is our capability of defining a differential system over an ordered 
discrete set as a power set compelled to inclusion functors that are able to 
be divided. It is at this point that the functions of Möbius and Riemann 
naturally appear [50-54]. Let show that the differential calculus that 
emerges then belongs mathematically to "capacities Choquet integral 
calculus" [48,49,56,57]. 

5. Set Derivation and Choquet Capacity 

A set function, on a finite set is an application such that	ξ : 2௑  ⟶ ℝ, 
which associates a real number with any subset of X. The notion of 
partition is the first motivation for such a function. It must be: 

 Additive if ξ(A∪B) = ξ(A) + ξ(B) for any A, B disjoint in 2௑  
 monotonous if ξ(A) ≤ 	ξ(B) when A	⊆ B 
 based if ξ(∅) = 0 (retrograde or initial horizon) 
 norm if ξ(X) = 1 (Direct of final horizon). 
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An additive set function is uniquely determined by the values taken 
on the elements of the set X, when ξ(A) = ∑ ξ({ݔ})௫∈஺ . A game is a  
set based function. We can associate him with his conjugate ξ̅, when: 
ξ̅ (A) = ξ(X) – ξ(ܣ௖) for any A ∈ 2௑ . A measure with a norm is called a 
probability measure. A capacity µ :	2௑  ⟶ ℝ is a monotonous and based 
function µ (∅) = 0 and µ (A) ≤ µ (B) when A ⊆ B. The constant function 0 
is a capacity. In addition, a capacity is a monotonous game and takes only 
non-negative values. A capacity is normalized if in addition µ (X) = 1. An 
additive normalized capacity is a measure of probability. By analogy with 
what happens with real-valued functions, the derivative of a set function  
is by definition its variation when an element is added or subtracted from 
the set. 

By pursuing the reasoning it is possible to define partial and multiple 
order derivatives we can define the derivatives with respect to any number 
of elements of X; in other words, we can define the derivative with respect 
to any subset K	⊆ X and more specifically, for A,K ⊆ X and forr ξ set 
function on X, the derivative of ξ	in A with respect to K is defined via 
inductive approach:	Δ௄ ξ(A) = Δ௄∖{௜} ξ(Δ{௜} ξ(A)). With the conventions Δ∅ 
ξ = ξ et Δ{௜} ξ = Δ௜ ξ. Similarly Δ௜௝ ξ = Δ{௜,௝} ξ. When K ∩ A = ∅, we get: 
 = S – A + F 

∑ = ௄ ξ(A)߂	 (−1)|௄∖௅|ξ൫(ܣ ∖ (ܭ ∪ ൯.௅⊆௄ܮ  

It is important here to understand the meaning of the power of the 
term minus one: “–1”. The origin of this term comes from homology 
algebras. A way for memorizing the appearance of the role of parity is to 
refer to the Euler constant  about 3D polytopes.  = S – A + F (where S, 
A, F are respectively the number of vertices, edges and faces of the 
polytope). The approach consists of generalizing this Euler's approach 
when he looks for a constant capable of classifying n-dimensional 
polytopes.  Euler number helps to classify the objects by a relation 
between their “volume” or determinants and their "successive edges" thus 
setting up the germ of the cobordism theory. The fact that the edges are 
affected by the minus sign is due to that, two finite sets cannot be in 
cobordism if their cardinal has the same parity, which is in contrast the 
case of a point and a segment or a face and an edge for example. This type 
of treatment is obviously generalized when one is led to triangulate a 
compact manifold, or a polytope of any integer dimension, by considering 
it as a simplicial complex by means of a tiling by simplexes. In this case, 
the transformations between simplexes lead to the design of so-called 
cohomology groups or rings as a quotient of structures, graduated by 
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inclusion, further associable by generalization to the Grothendieck's Topoi. 
It is in accounting all authorized morphisms that the transformation and the 
function of Mobius steps in. This function will behold associated with the 
differential equations of non-integer order via the concept of convolution. 

5.1. Mobius transform and convolution 

We can introduce the Möbius transform, or Möbius inverse, of the set 
function ξ defined as: 

݉ஞ (A) = ∑ (−1)|஺∖஻|
஻⊆஺  ξ(B) pour tout A ⊆	X. 

It is itself set function ݉కover X. Indeed ݉ஞ(∅) =	ξ(∅). An important 
property is that ݉ஞ allows to find ξ	through inversion: ξ(A) = ∑ ݉ஞ

஻⊆஺  (ܤ)
for A ⊆ ܺ (Eq 1). By induction about the size of A, therefore on |ܣ|, it is 
possible to write the set-derivative in terms of the Möbius transform. More 
precisely: 

Δ௄ ξ(A) = ∑ ݉ஞ
௅∈[௄,஺∪௄]  (ܮ)

with ݉ஞ(A) = Δ஺ ξ(∅). At this step, it is interesting to introduce a couple of 
capacities that frequently appears in physics: 

 A 0 – 1– capacity a capacity with values in {0,1}. Besides the zero 
capacity 0, all others are normalized. Among this family of 
capacities we must mention the smallest µ௠௜௡ and the biggest 
µ௠௔௫ defined by: 

       µ௠௜௡  (A) = 0 for any A ⊂ X et µ௠௔௫ (A) = 1 for any ∅ ≠ A ⊂ X. 
 A second important family consists of what is called the 

Unanimous Games Family (JU). For ∅ ≠ A ⊂ X, le JU focused on 
A is a game ݑ஺ defined by: 

	ܤ	݅ݏ	஺ (B) = ቄ1ݑ ⊇ ܣ
݊݋݊݅ݏ	0 . 

We can then introduce the notion of convolution. Let f and g be two 
functions with real values on a partially ordered set, a poset (P,≤) which is 
locally finite, in the sense that all intervals [x, y] are finite, and which 
admits a smaller element 0. Consider the system of equations 

f(x) = ∑ ௬ஸ௫(ݕ)݃  pour x ∊ P (Eq. 2). 

Our issues in physics and econophysics are to express g according to 
f. The question considered is therefore that of the identification of the 
process underlying a series of experimental data. We know how this 
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identification is a complex problem and the models that compete together 
for the representation, are in infinite numbers. We recall here that the 
experimental work ultimately involving non-integer order derivation 
models, relies precisely on convolution algebras and that it is also an 
identification in terms of self-similar geometries, – above recognized as 
monadic based property –. These aspects have raised the most interesting 
controversies [57-63]  

Mathematically the function g is called the inverse of Möbius of f. In 
the context presented, the solution exists but in addition is proved to be 
unique: g(x) = ∑ µ௬ஸ௫ (y,x) f(y) with µ, Möbius function. This function is 
inductively defined:  

µ (y,x) =൝
	ݔ	݅ݏ	1 = ݕ

−	∑ µ	௫ஸ௧ழ௬ ,ݐ) (ݔ
݊݋݊݅ݏ	0

ݔ	݅ݏ	 <  .ݕ

We observe here how the Möbius function naturally carries in it the 
principles of convolution. Function µ depends only of the structure of the 
poset (P,≤). The Mobius transform can be analyzed from many cases: 
multiplicative monoid, inclusion hierarchies, discrete sets, unanimity 
game, 0 – 1 capacity etc. The fact that the Möbius transform of a set 
function is closely related to its derivatives is therefore quite obvious since 
equation 2 is a discretized version of an integral equation:  
f(x) = ∫ ௫ݕ݀(ݕ)݃

଴  which solution is g(x) = ݂ᇱ(x) under the assumption 
f(0) = 0. The Möbius transform is a transformation that runs on the  
space of set functions X, space written as ℝଶ೉  namely the application  
T : ℝଶ೉  ⟶ ℝଶ೉  associating with each set function ξ its transform T(ξ). 
Such a transformation is linear if and only if we have the relation  
T(αξଵ + ξଶ) = α T(ξଵ) + T(ξଶ) for any set function ξଵ, ξଶ and α ∊ ℝ. It is 
invertible if ܶିଵ exists. The Möbius transform is precisely linear and 
invertible. Its inverse is called Zeta transform. At this step one can 
introduce an algebraic structure well adapted to these transforms. Let call 
for an operator of a set function with two arguments Φ : 2௑  * 2௑  ⟶ ℝ. 
The multiplication" ∗ "	between operators and set functions is here defined 
in accordance with the principles of convolution: 

 (Φ ∗Ψ)(A,B) = ∑ Φ(ܥ,ܣ)Ψ஼⊆௑ (C,B); 

 (Φ ∗ ξ)(A) = ∑ Φ(ܥ,ܣ)ξ(ܥ)஼⊆௑ ;  
 (ξ ∗ Ψ)(B) = ∑ ξ(ܥ)Ψ஼⊆௑   .(ܤ,ܥ)
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For example, we define a linear order on 2௑  which is an extension of 
the partial order induced by the inclusion ⊆; we can identified 2௑  with 
{1,2, … , 2௡} and ∗ becomes the ordinary multiplication of square matrices 
or matrices and vectors. Kronecker delta function is the only neutral 
element on the right and on the left. If Φ is invertible, the inverse of Φ, 
written Φିଵ, verifies Φ ∗ Φିଵ= Δ et Φିଵ ∗ Φ = Δ. All operators verifying 
Φ(A,A) = 1 for any A ⊂X and Φ(A,B) = 0 if A ⊈ B, corresponds to the set 
of triangular matrices with 1 on the diagonal. It forms a group and the 
inverse of an operator in this set is calculated recursively: 
 

Φିଵ(A,B) =൜ 	ܣ	݅ݏ	1 = ܤ
−∑ Φିଵ(ܥ,ܣ)Φ(ܥ ܣ	݅ݏ(ܤ, ⊂ ஺⊆஼⊂஻ܤ

. 

We then introduce the Zeta operator Z(A,B) defined through A ⊆ B, 
Z(A,B)=1 and 0 if not. Möbius operator is its inverse. Therefore : ξ = ݉ஞ ∗Z 

and then ݉ஞ = ξ ∗ ܼିଵ with  ܼିଵ= ൜(−1)|஻∖஺|

݊݋݊݅ݏ	0
. 

In engineering terms, the Zeta operator leads to think of impedances 
or of transfer functions, binding the local to the global properties through 
Fourier transform scaling [50,54,55]. We recall that in this frame, a local 
(respectively global) measurement multiplied by the impedance (respectively 
admittance) leads to a global measurement (respectively local).  

It is then useful to consider some particular classes of operators, for 
example: Φ(A,B) = Φ(	∅,ܤ ∖  .pour A ⊆ B (ܣ

This is an ordinary set function φ(A) = Φ(∅,A). This function is 
called the generating function. All these particular operators form an 
abelian group; it is the same for the generating functions associated: 

{φ: 2௑ ⟶ℝ; 	φ(∅) = 1	} with:	φ ∗ ψ (A) = ∑ φ(ܥ)ψ(ܣ ∖ ஼⊆஺(ܥ  for A ⊆ X. 
The neutral element is (A) =1 only if A= Ø. The inverse for φ with 

respect to this operation is written φ∗ିଵ. The operator Z enter this class; we 
can therefore introduce the generating function Zeta which is: (A) = 1 for 
any A ∊2௑ . The zeta function appears here as a generating function of a set 
transfer operator naturally associated with the Mobius transformation, thus 
with an accounting of the subsets of larger states. Completion is thus 
underlying the convolution which plays a central role in the implement-
tation of the different measures on set partitions 2௑  (set of subsets). The 
order is then the order obtained by the ‘inclusion’. The Choquet integral 
and the notion of Capacity naturally find their importance in the physics of 
non-additive sets exactly at this step of the reasoning. 
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5.2. Choquet integral for non-negative functions 

We will not develop here the general set theory of Choquet integrals 
involving measurable bounded non-negative functions. This theory will be 
easily found in “mathematical references” [48,49]. Note however that all 
functions considered B(ℱ), builds a lattice which induces a closure (max) 
and a kernel (min) for any function f ∊ B(ℱ).  

Let consider: ܩஜ,௙ (t) = µ ({ݔ ∊ ܺ: (ݔ)݂ ≥  the partition ({ݐ
distribution with t ∊ ℝ according to the hypothesis on f the function ܩஜ,௙ is 
well defined for f ∊ ܤା(ℱ) and µ is a capacity over (X,	ℱ), the Choquet 
integral of f with respect to µ is defined by: ∫ ݂	݀µ = ∫ µ,௙ܩ

∞
଴  where ݐ݀(ݐ)

the right-hand integral is a Riemann integral. In physical terms, the relation 
constructs a transposition between the physical time used by the 
experimenter and a set variable associated with the support of integration. 
It is useful and interesting to consider the case of mere and measurable 
functions, when the image of f is a finite set {ܽଵ, ܽଶ, … , ܽ௡} storing the 
image values in ascending order, 0 ≤ ܽଵ < ܽଶ < … < ܽ௡. By introducing 
the order relation: ܣ௜ 	ݔ} =  ∊ (ݔ)݂:ܺ ≥ ܽ௜} as elementary set. Therefore 
 ଵ= X. The partition function is a descending stair function. It is easy toܣ
verify that ∫ ݂	݀µ = ∑ (ܽ௜ − ܽ௜ିଵ)µ௡

௜ୀଵ  with ܽ଴ = 0 then we can find (௜ܣ)
the following equation:	∫ ݂	݀µ = ∑ ܽ௜൫µ(ܣ௜) − µ(ܣ௜ାଵ))൯௡

௜ୀଵ  by writing 
,ଵݔ}= ௡ାଵ = ∅. In the case of X is a finite set, namely Xܣ ଶݔ , …   ௡} andݔ,
ℱ = 2௑ . A non-negative function f can be identified with the vector 
( ଵ݂, ଶ݂ , … , ௡݂) where ௜݂  = f(ݔ௜). Given the permutation X σ such as for 
example ஢݂(ଵ) ≤ ஢݂(ଶ) ≤ …≤ 	 ஢݂(௡). Introducing set (ℝା

௑)஢ = ൛݂:ܺ	 ⟶
	ℝା: ஢݂(ଵ) ≤ 	 ஢݂(ଶ) ≤ 	… ≤ 	 ஢݂(௡)}, we build in the same way the set ℝ஢

௑ . 
With the given set ܣ஢↑ (i) = ൛ݔ஢(௜), ,஢(௜ାଵ)ݔ …  ஢(௡)ൟ for i = 1,…,n then weݔ,
get the following expression ∫݂	݀µ	= ∑ ஢݂(௜)µ({σ(݅)})௡

௜ୀଵ 	= ∑ ௜݂µ({݅})௡
௜ୀଵ  

for the Choquet integral. Such an integral satisfies a series of linear 
properties, but also:	inf ݂= ∫ ݂	݀µ௠௜௡  et sup f = ∫ ݂	݀µ௠௔௫ and futher 
|∫ ݒ݀	݂ − ݂‖‖ݒ‖ ≥ |ݒ݀	݃∫ − ݃‖ où ‖ݒ‖ is the variational norm of v and we 
get in addition ‖݂‖ = ݌ݑݏ௫∊௑|݂(ݔ)|. An important remark must be given at 
this stage; f and g are co-monotonous functions and in particular assuming 
that X is finite with |ܺ| = n, and therefore if f = ( ଵ݂, … , ௡݂) and  
g = (݃ଵ , … ,݃௡), a permutation σ exists on X such as ஢݂(ଵ) ≤ … ≤ ஢݂(௡) and 
݃஢(ଵ) ≤ …≤ ݃஢(௡) Nevertheless the Choquet integral is non additive in the 
sense that∫(݂ +  ,However .ݒ݀	݃∫ + ݒ݀	݂∫ is generally different of ݒ݀	(݃
it never exists x and ݔᇱ such as f(x) < f(ݔᇱ) and g(x) > g(ݔᇱ). So we have 
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the following important result: f,g ∊B (ℱ) comonotonous: f + g ∊ B (ℱ), 
then for any game in ℬࣰ(ℱ) the Choquet integral is then additive in a 
comonotonous way: ∫(݂	 + ∫ = ݒ݀	(݃  In other words, the ݒ݀	݃∫ + ݒ݀	݂
Choquet integral is linear with respect to the games and the set of games on 
a set X form a vector space. It is then possible to consider the bases of 
these spaces and to order it by permutation to return to a game. Both basis 
are (i) the Dirac game and unanimity game. This is where the 
transformation of Mobius deals with. Let σ be a permutation on X ordering 
of f in a non decreasing order. Noting j the leftmost index in the ordered 
sequence	{σ(݅), ݅ ∊ ∫ Then .{ܣ ஺= ௝݂ݑ݀	݂  = ∧௜∊஺ ௜݂  . Then  

∑ = ݒ݀	݂∫ ݉௩(ܣ) ∧௜∊஺ ௜݂஺⊆௑ . 

Schmeidler characterized the Choquet integral as follows [48,49] : 
I:B(ℱ) ⟶ ℝ a functional. Given the set function v(A) = I(1஺), A ∊ ℱ, then 
the following propositions are equivalent: I is monotonous and additive in 
a co-monotonous meaning, and V is a capacity, and for all such as f ∊ B(ℱ), 
I(f) = ∫  The set functions on X with |ܺ| = n can then be considered as .ݒ݀	݂
functions on the vertices of the hypercube [0,1]௡ (the polytopes mentioned 
above appear herein) Using the characteristic function 1 : A ↦ 1஺ which  
is an isomorphism between 2௑  and {0,1}௡. A pseudo-Boolean function 
being a function f :	{0,1}௡ ⟶ ℝ ; x↦ f(x), any set function ξ corresponds 
to a single pseudo-boolean function: ஞ݂ = ξ ({݅ ∊ ܺ: ௜ݔ 	= 1}) for  
x ∊ {0,1}௡. Reciprocally to any pseudo-Boolean function f corresponds  
a unique set function such as ξ௙ = f(1஺) for A ⊆X. Therefore ξ௙ = f∘1  
and ஞ݂ = ξ௙ ∘ 1ିଵ. A pseudo-Boolean function is written: f(x) = 
∑ ݂(1஺)஺∊[௡] ∏ ௜௜∊஺ݔ ∏ (1 − ௜)௜∊஺೎ݔ  for any x ∊ {0,1}௡ 	with ∏ ∅∍௜௜ݔ  = 1. 
Unanimity games form a base of games. In fact the unanimity games 
correspond to the monomials	∏ ௜௜∊஺ݔ . Therefore the pseudo-Boolean 
functions are represented in the specific form involving products:  
f(x) = ∑ ்்ܽ⊆[௡] ∏ ்∍௜௜ݔ  for any x ∊ {0,1}௡ where the coefficients ்ܽ base 
the Mobius transform of ξ௙. This representation is called the Mobius 
representation. Because for any game v(∅) = 0, being a basis {ܾௌ}ௌ∊ଶ೉   
of the space of functions, we can build the basis of the game {ܾᇱௌ}ௌ∊ଶ೉∖{∅} 
by writing: 

்ܾ′ 	= ቄܾௌ	(ܶ)	݅ݏ	ܶ	 ≠ 	∅
݊݋݊݅ݏ	0

 S ∊ 2௑ ∖ {∅}. 
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5.3. Choquet integral on the real straight line  
and non-integer order derivation 

We shall consider now the fractional derivation by computing the 
Choquet integrals on the real non-negative line by connecting them to 
Lebesgue measures. Consider the Lebesgue measure λ on ℝା with 
λ([ܽ, ܾ]) = b – a for any interval	[ܽ, ܾ] ⊂ ℝା; consider also a distortion 
function, that is to say a h function: ℝା ⟶ ℝା continuous, monotonously 
increasing and verifying h(0) = 0. The distorted Lebesgue measure is an 
application such as µ௛ = h∘ λ ; it's clearly a continuous Choquet capacity 
on ℝା. Given f : ℝା ⟶ ℝା which is a non decreasing function and admits 
a Choquet integral over a subdomain [0, ݐ] for a certain t > 0. If f : ℝା ⟶ 
ℝା is non decreasing, continuously differentiable, and if µ is a continuous 
capacity on ℝା	such as µ ([τ,  is differentiable with respect to τ over ([ݐ
[0,  :for any t ≥ 0, then 0 = ({ݐ}) for any t > 0, µ [ݐ

∫ ݂	݀µ[଴,௧]  = – ∫ డஜ
డத

௧
଴  ([τ,  .(*) f(τ)dτ avec t > 0([ݐ

The integral at right is a Riemann integral. In the particular case of a 
distorted Lebesgue measure µ௛ with h continuously differentiable, this 
equation becomes: 

∫ ݂	݀µ[଴,௧]  = ∫ డ௛
డத

௧
଴ 	ݐ)  − 	τ)f(τ)dτ. 

This theorem is valid when f is a constant function or an increasing 
function. We note to simplify µᇱ = డஜ

డத
 . In the case of the physical models 

having initiated these researches, the TEISI model [55], the distorted 
measure was none other than the measure associated with the fractal 
interface, while the function was the flow of extensity across the interface. 
Thus, in a purely physical way, the model account for fractional transfers, 
implemented Choquet integrals. As we shall see below, the transposition of 
the measure of a temporal reference to a spatial reference through non-
linear distortion (power law in TEISI model) expresses a so-called Radon-
Nikodym derivative. Indeed given f(τ) = C ∀τ ≥ 0 then 

∫ µ({τ:ܥ	 ≥ {ݎ ∩ [0, ஶ(ݎ݀[ݐ
଴  =  

∫ µ([0, ஼([ݐ
଴ dr = C µ([0, ∫ – = ([ݐ ,µᇱ([τ	ܥ ௧([ݐ

଴ . dτ (Eq*). 

The result is thus acquired in this particular case. Suppose now that 
the function f is increasing we show using integration by parts that under 
the hypothesis µ({ݐ}) = 0, then:  
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G(t) = ∫ ݂	݀µ௛[଴,௧]  = – ∫ µᇱ([τ, ௧([ݐ
଴ f(τ) dτ (Eq**). 

which is the convolution expected result. It is interesting to recognize in 
these formulas (* and **) convolution products; we can therefore use  
the Laplace transform to express the result in a simpler form. Consider 
G(s) = s.H(s).F(s) with s ∊ ℂ. If now a continuous and increasing function 
g : ℝା ⟶ ℝା	is given with g(0) = 0, the distorted Lebesgue measure 
according to h being given, it becomes possible to find a function f  
as continuous and increasing which verifies (Eq.**), namely  
F(t) = ℒିଵ ቀ ீ(௦)

௦ு(௦)
ቁ. This analysis agrees with the concept of the Radon-

Nikodym derivative of a measurement in the classical sense. For both 
measures ߥ and µ on (X,ℱ), the measure ߥ is said absolutely continuous 
with respect to µ; this can be written ߥ ≪ µ, if µ(A) involves ߥ(A) whatever 
A ∊ ℱ. The Radon-Nikodym theorem then ensures that ߥ(A) = ∫ ݂஺  ݀µ is 
unique. The function f is then called the derivative of Radon-Nikodym and 
is written ௗఔ

ௗஜ
. The computation of Choquet integrals at this stage is 

restricted to monotonous functions. It is possible to overcome this 
restriction by using a rearrangement of the measure support function 
(Annex 1). 

6. Choquet integrals and fractional operators 

At this step it is appropriate to make some general comments about 
the categorical approach followed to achieve Fractional Differential 
Equations [64-66]. The introduction of non-additive measures, or capacities, 
authorizes to abandon the location hypothesis of finite sets – considered 
here to simplify the mathematical approach –, consists of defining 
functions not only in terms of values taken from singletons but in terms of 
values over any subsets of a given set. Order relations then hold a 
fundamental place as in category theory. It is instructive to embrace the 
general evolution from Riemann integral theory of measure to Choquet's 
capacities (knowing that there are still many other approaches to 
integration and measurement). With Riemann integral the localization is a 
basic hypothesis – this localization results in the additive nature of the 
measures – on the other hand the notion of order is missing. With the 
Lebesgue's measure the location hypothesis is preserved but, conversely to 
Riemann integral, the order plays an important role. Finally with Choquet 
integrals the location hypothesis is abandoned – this amounts to consider 
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general set functions defined not only on the singletons but also on any 
subset. In addition, to account for non-localizable processes such as those 
attached to self-similar structures or in connection with fractional 
derivations, it is no longer possible to reduce the analysis to the Lebesgue 
integral. Given the fact that order relations are essential for computing 
when monotonous non-additive measures are involved, it is natural that the 
Möbius functions, and their inverse zeta functions, figure out a close links 
with these measures and therefore with the integrals associated with it. The 
examination carried out by introducing distorted Lebesgue measurements 
involves, on the one hand, Laplace transforms and, on the other hand, the 
equivalent of Radon-Nikodym derivatives [48,49]. It becomes quite clear 
that there is a close link between the Choquet integrals and the fractional 
derivations as they have been defined and studied from Liouville to Caputo 
[64-66]. On imagine in the above lineaments how traditional economic 
theories can be revisited and transformed by introducing the non 
commutativity of the categorical action and the universality of 
idempotence, in the models of economic irreversible dynamics; namely the 
universality of the action (arrow), within connection with the global 
representation of the market and the society (diagrams). This universality 
may firstly be based on the Riemann-Liouville fractional integral of the 
function g over the interval [0,1] defined by: 

ଵ
Γ(஑)

	∫ ௚(த)
(௧ିத)భషಉ

௧
଴  dτ. 

with α a real positive number. This is an extension of the continuous 
Cauchy formula whose prominence has been associated with the Yoneda 
lemma. Γ(α) is the classical gamma function that extends the factorial. 
There is none unique definition of fractional derivation. For a positive real 

number α, the derivation of order α of the f, function written ݀
஑݂(ݐ)

஑ൗݐ݀ . 

Let us recall that ℒ[ݐ஑]= ୻(஑ାଵ)
௦ಉశభ

; then the Riemann-Liouville fractional 
derivative of order ߙ is defined by: 

ቂௗ
ಉ௙(௧)
ௗ௧ಉ

ቃ
ோ௅

 = ቐ
ଵ

୻(௡ି஑)
ௗ೙

ௗ௧೙ ∫
௙(த)

(௧ିத)ಉషభశ೙
݊	ݎ݋݂	߬݀ − 1	 < α < ݊௧

଴
ௗ೙௙(௧)
ௗ௧೙

α	ݎ݋݂	 = ݊
. 

For a constant ܽ ≠0, The Riemann-Liouville integral is given by: 

ቂௗ
ಉ௔
ௗ௧ഀ

ቃ
ோ௅

 = ௔
Γ(ଵି஑)௧ಉ

 si α ≠n 
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which is a non-zero value. The derivative of Grünwald-Letnikov is defined 
by: 

ቂௗ
ಉ௙(௧)
ௗ௧ಉ

ቃ
ீ௅

 = limΔ௧⟶଴
ଵ

(Δ௧)ಉ
∑ (−1)௞൫ఈ௞൯
∞
௞ୀ଴ ݐ)݂ − ݇Δݐ). 

It should be noted that the right-hand side is the expression extending 
the n-order derivative. In fact, both definitions of Riemann-Liouville and 
Grünwald-Letnikov for a given function f, lead to the same result. 
However, these two definitions suffer from the failure to disregard the 
initial conditions involved in the calculation of Laplace transforms. To 
correct this flaw, Caputo proposed another definition, namely: 

ቂௗ
ಉ௙(௧)
ௗ௧ಉ

ቃ
஼

 = ൞
ଵ

Γ(௡ି஑)∫
ௗ೙௙(த)

ௗத೙ൗ

(௧ିத)ಉశభష೙
݀τ	ݎݑ݋݌	݊ − 1 < α < ݊௧

଴
ௗ೙௙(௧)
ௗ௧೙

α	ݎݑ݋݌	 = ݊
. 

In this case fractional derivative of a constant function is zero. 
Moreover, it is easy to verify that the Riemann-Liouville and Caputo 
derivatives are identical applied to a function satisfying the constraint 
݂(௞) = 0 for 0 ≤  k ≤  n – 1.  

Given ݎ஑= ݐ
஑
αൗ 	then ℒ(ݐ

஑
αൗ ) = Γ(α)

஑ାଵൗݏ . Applying the previously 

stated theorem on distorted Lebesgue measure, it comes, for g : ℝା ⟶ ℝା 
a continuous, non-decreasing and measurable function, the Riemann-
Liouville integral of g is computed as a Choquet integral with respect to 
the distorted measure µ௥ಉ , namely: 

ଵ
୻(஑)∫

௚(த)
(௧ିத)భషಉ

௧
଴ ݀τ = ଵ

୻(஑)∫ ݃(τ)݀µ௥ಉ(τ)௧
଴ . 

 

The right-hand member is precisely a Choquet integral. Consider a 
function that is differentiable for the distorted measure µ௥ಉ . therefore 

ௗೖ௙
ௗ௧ೖ

 (0) = 0 pour 1≤ ݇ ≤n −1 

ℒ ൥݀
௡݂

௡ൗݐ݀ ൩ = ݏ௡F – ݏ௡ିଵf(0) 

ℒ ቂ ଵ
୻(௡ି஑)∫(ݐ − τ)௡ିଵି஑ ௗ

೙௙
ௗத೙

݀τቃ = ଵ
୻(௡ି஑)

୻(௡ି஑)
௦೙షಉ

ܨ஑ݏ) − – ஑Fݏ = (௡ିଵ݂(0)ݏ
 ௡ିଵf(0)ݏ

ℒ ൤Γ(α) ௗ௙
ௗஜೝಉ

൨ = Γ(α) ௦ிି௙(଴)
௦మℒቂ୲ಉ ஑ൗ ቃ

 = Γ(α) ௦ிି௙(଴)

௦మ୻(஑)
௦ಉశభൗ

 .஑ିଵf(0)ݏ – ஑Fݏ = 
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Hence the equality announced. For a differentiable and strictly 
increasing function: m:	ℝା ⟶ ℝାsuch as m(0) = 0, and for a real  
positive number	α, we introduce the order generator of α defined by:  
݉∗஑ = ℒିଵ[ݏ஑ିଵܯ஑] with M the Laplace transform of m. It is then obvious 
that for any m = t, we have: 

݉∗஑ = ௧ಉ

Γ(஑ାଵ)
 = ଵ

Γ(஑)
஑ = ௧ݎ ஑ withݎ

ಉ

஑
. 

One defines the Choquet integral of order α for the g function with 
respect to µ௠ as given by ∫݃݀µ௠∗ಉ 	. Therefore: ℒ[∫݃݀µ௠∗ಉ  .஑G(ܯݏ) = [	

So in the case where α	= n is an integer, we find that  
ℒିଵ[ݏ௡ିଵܯ௡] = ݉∗௡. Therefore the fractional Choquet integral is the 
direct extension of an integer n to a positive real number α. For m = t, the 
fractional Choquet integral coincides with the fractional Riemann-Liouville 
integral. Likewise when m = t, the fractional derivative with respect to 
µ௠	coincides with Caputo fractional derivative. The calculations which 
have just been briefly described show that to a large extent the concept of 
fractional derivation, in line with the works of Liouville, Riemann, 
Grünwald, Letnikov and more recently Caputo, is directly related to the 
concept of non-additive measure and Choquet integral. The link of this 
type of integral with the zeta functions of Riemann and Mobiüs, already 
highlighted [12,50-54], is related to the categorical foundations of the 
concept of measure in terms of division, thus in the physical processes, to 
the geometrical absence of commutativity, therefore due to Fractal 
geometry in the TEISI model [55,56]. 

7. A geometrical approach of "zeta management" 

The standard analysis of the dynamics of economy is mainly based on 
the assumption that equilibria and steady states are to be seen as the 
solutions of partial differential equations characterized by integer order and 
by spatially and temporally set-state constants assumed to be well defined. 
The analysis is local under constraint of boundary conditions a priori also 
defined. Variational developments based on “variations of constants” make 
it possible to reach optima of multi local behaviors under external 
constraints. The analysis based on set theory is proved very largely 
reductive and not in conformity with the functioning of the economy which 
involves correlations, non-local exchanges and most of the time deferred in 
timing. The immanent dynamics, therefore monadic one, the self-
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organization etc., are not considered in spite of regularity, universality of 
none-convergent power laws and self-similar properties generally 
observed. The reason is nonetheless rather simple: economic systems as 
language systems, are not additive and there is a grammar and long range 
correlations can induce efficiency or butterfly-effects, out of proportion 
with the optima provided by local variational analysis. Thus, for example, 
we see small teams performing miracles of creativity and productivity and, 
conversely, large resources invested can be dissipated in redundant, though 
perfectly thought organizations. Financial bubbles are examples of the 
harmfulness of correlations that in other contexts can be positive. 
However, the problem of additivity versus non-additivity of integrals in 
economic approaches can very usefully be apprehended by using the 
example of the project management. It can indeed be asserted that the 
paradigm of additive integrals is based on the implicit use of Poincaré's 
automorphic groups, which represent, as Poincaré has shown with his work 
on Fuchsian functions, the set of solutions of the integer differential 
equations. The diagram below summarizes the properties of auto internal 
correlations associated with any differential equations whose solutions are 
developable over an exponential basis. We recall that the Fourier 
Transformation of an exponential is given by the inversion of a straight 
line with respect to a singularity out of this line, in the complex plane:  
Z ∼ 1/(1+ i ω τ). In Project Management, the global task is divided into 
sub-tasks (each with its time constant), which are grouped in batches that 
can be run in series or in parallel. The representation of their organization 
in the complex plane used below makes it possible to distinguish the part 
of the task (the semicircle) which has a cost (real axis) of a non-dissipative 
part, delayed in its the execution, carried by the imaginary axis. Any semi-
circle represents the inversion of an action line, vertical conveying the 
temporality of the task, inversion with respect to a singular point whose 
distance to the right represents the entropy associated with the task 
according to a priority given in the global time table. 
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 Figure 10. Schematic representation of the tiling of the complex plane 
underlining both (i) the Poincaré Fuschian like covering of an exponential 
dynamics and (ii) a representation of the sharing of any exponential action 
within a set of tasks characterized by the same dynamic properties. A usual 
mere self-similarity can be noticed herein. The link with standard Fourier 
transform of exponential is obvious.  

Under its apparent objectivity this structuring of the project is 
however misleading. Indeed in the strict mathematical interpretation, to be 
perfectly accomplished every task requires infinite time. However, as the 
set-theoretic additivity hypothesis is applicable, the project manager 
considers at his level that each of the tasks must be achieved within a time 
given by its specific time constant of the task; a constant given by an 
exponential dynamics considered as convergent. The project manager thus 
legitimately assigns to the global process a schedule based on the sum of 
all these constants of time. The fact that each geodesic is none other than 
the Fourier transform of an exponential function with such a time constant 
merely justifies the managing hypothesis. However, the use of this 
hypothesis implies another hypothesis highly questionable: the strict local 
equivalence between the implementation of the task and partition up to the 
level of the agent, namely the completeness of the set covering of the tasks; 
the field of the actor is here considered as a hardware, a mechanical kit, 
extremely strong constraints on the human beings exclusively applicable 
for a Turing machine. But for a project, the machinist point of view is 
thinkable only at the global level not at a local level which is constraint by 
internal correlations between the tasks down to the level of the worker. 
Then the equivalence construction / partition (addition / multiplication) 
namely the duality applied on the tasks must take into account the none 
additivity and therefore the analysis has to introduce the role of universal 
functions according to the Voronin like approximation [67-69]. Among 
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these universal function is the zeta Riemann function whose link with  
non-additive self-similar systems has been proved [50-54]. Returning to 
the so-called Poincaré representation above, the task to be performed is 
approximated on the basis of an action that locates its horizon on the real 
axis. The real axis thus represents the edge of the global task in its perfect 
fulfillment and the entropy (the cost of the task) is a real number. But it is 
no more the case for non-additive system. To understand the subtlety we 
have to point out that the cost of the task may be embedded in the field of 
complex number according to the diagram below, which leads to an 
interrelation of tasks and overlapping between them and makes 
singularities to emerge in the complex field. We have proved elsewhere 
that this interrelation is of a financial nature and obviously has an influence 
on the cost of the project [12].  

Our analysis gives rise to a Poincaré-Grothendieck representation 
directly based on non-integer order differential equations, furthermore 
completed in a Galoisian way (economy / finance completion [12]). In this 
diagram, the standard Poincaré tiling of the complex plane by semicircles 
is transformed to make the place for interactions here represented by 
overlapping semi-circles. Exactly as it is possible to extend a straight line, 
any arc of a circle can be prolonged, but this time in a bounded manner by 
a singularity on zero. Thus the crossing of the semi-circle points out the 
presence of singularities at infinity (zero frequency) on dynamic tiling of 
the complex plane. These singularities are the mark of a suspension of the 
running of the physical time (the time of the experimenter different of the 
timing determined by the project manager clock). The suspension, clearly 
observed in the diagrams, is a physical representation of the Husserl's 
Epoché [70] which gives rise to the need of non-causal completion 
(motivation, knowledge, emergence of the currencies etc. [12]). The 
singular points of zero frequency are indeed located in a position out of the 
real entropic axis. The incompleteness and the necessity of extension of the 
non-integer order differential operator are here clearly perceived.  

This diagram can be analyzed from equation of the causal arc  
Zα ∼ 1/[1+(iωτ)α] which is precisely the integro-differentiation operator of 
non-integer order. It is obtained from a generalization of the exponential 
function called alpha-exponential. It has been shown that it is related to 
Riemann zeta function. The extension of the arc of representation pointing 
out the Epoché, introduces, an a-causal character because, according to a 
Galoisian way of thinking, it brings together in the same set (the arc for 
completion), all the possible discrete values of the time constants 
compatible with the dynamic equations. He can be shown that it is 
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associated with the function of Möbius precisely dual of the zeta function, 
relevant for the causal part of the dynamics. The link between the two 
functions ultimately ensures an overall additivity justifying the timing of 
the complex plan, tiling required for the definition of a condition of 
possibility of the concept of project management in complex (self-similar) 
environment. As to remind, it has been shown elsewhere [12] that currency 
in relation to the real economy could be associated with this Möbius 
function. Therefore, in the same way that the complex plane can be “auto-
morphically” paved with semicircles, it is natural to pave the complex 
plane by duopolies of any alpha value (the order of derivation). 

 
Figure 11. Extension of the figure 10 (Poincaré tiling) when fractional 
differentiation and completion are implemented. This extension is 
characterized by the overlapping of the semi-circles and the emergence of a 
field or singularities outside the real axis. This fields points out the role of 
the Husserl like époque, suspension of the action and complex extension of 
the unit of time required to consider the field of possible, namely the future 
or the completion of our representation of the world. 
 
As shown in the diagram (Fig. 11), the representation gets 

complicated because the separable tasks in very elementary models of 
tasks management overlap systematically resulting that each of them 
possesses a singularity of whose anti-entropic character -concretized by the 
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matching between the dual notions of entropy/anti-entropy- can precisely 
be quantified. As shown in the set of singularities, the link between field of 
complex numbers (the plane) seeded with singularities and the field of real 
numbers (the dynamics) is then characterized by auto-morphisms which 
builds a non-commutative geometry [71]. The auto-correlated system then 
appears systematically less dissipative than the strictly hierarchical system 
from tasks distinguished according to Poincaré tiling. But the model 
reveals features infinitely more paradoxical ...  

The exponentiation alpha operator modifies our representation of 
time. The time of the hierarchical system according to Poincaré is none 
other than the time of the clock and the hierarchy operates by using time 
constant directly associated with a distance on the temporal line associated 
with the action seen as physical relaxation. This means that one can be 
assigned to each task a certain velocity. The time associated with the 
Poincaré Grothendieck representation proposed here is a radically different 
time because as complex number, it is composed of a usual temporality 
stricken by a singularity on board. The imaginary component of entropy, 
the anti-entropy component, carries the information associated with the 
irreducible collective share of the individual action and as well, a factor of 
anticipation, social investment, and rest. This element is perfectly 
quantifiable here as well as its dual complex component through the 
Mobius field. This field is the distribution of the whole possibilities offered 
in front of a sole managerial choice related to initial situation of choices 
which in fine cannot be many. To consider the Mobius component defines 
and expresses the trust within the link between the collective (global) and 
the individual (local) decision. By fixing the global and but also the 
distribution of the investment required by the correlations between tasks, 
the manager not only operates a pull back of the additive paradigms to be 
carried out but also determines the distribution of the time constants 
compatible with the global action. This entropic complex and represented 
in the figure 11 through an edge of the dynamics as a set of singular points 
located at the infinity. We call Zeta-Management the management classes 
that implement the operation that relies on a collective operation based on 
Poincaré Grothendieck type auto-morphisms here clearly opposed 
quantitative and machinist managerial strategies based on Poincaré 
automorphisms and on an additive set-theoretic vision, for example the 
military tactic, whose purpose can only be entropic (cost reduction without 
any consideration for intangible capital). 
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8. Pro Tempore Conclusion 

The present work confirms Zeljko Rohatinski's hypothesis as regard 
the need to consider the concept of functional time in economics, a thesis 
explained in his recent book "Time and Economy" [1].  
  

"The main purpose of this book is to introduce, explain, and demonstrate 
the importance of determining the time dimension of economic activity. This book 
employs an understanding of time as a relative concept against a background 
from modern physics and philosophy, and it shows that such an approach applied 
to economics enables better comprehension of the forms and modalities of 
economic activity". 

"Definitions and understanding of time through the history have been 
presented through works of Aristotle, Descartes, Newton, Boscovich, Einstein, 
Bloch, and others who observe it as an objective category, as well as through the 
conclusions of Plotinus, Augustine, Leibnitz, Kant, Heidegger, Husserl, Merleau-
Ponty, and others who perceive it as a subjective category. In questioning the 
problem of absolute (Newton) and relative time (Einstein), special focus is put on 
Whitehead’s philosophical description of time relativity, which analyzed the 
space-time structure of an individual event, as well as the impact of that structure 
on relations of this event with other events. 

Far from Einstein Relativity, the idea of writing the time variable in 
the field of complex numbers and of coupling this tactic with Riemann and 
Mobiüs functions logins very naturally to the framework of this thesis but, 
in addition, opens new issues even in physics, though this analytic solution 
is not the only one. Indeed, the time appears in the frame of category 
theory as an homological universal invariant of self-similar structures, 
namely to summary the Haudorff content. Therefore the theory of 
categories not only helps us to fully agree to what Rohatinski has written 
about the need of revisiting the concept of time, but also to give a 
categorical "measure" to this point of view. Virtually, his intuition 
anticipated this possibility: 

"The economical phenomena observed in this model (the model of the 
Marx's Capital but herein the topos model of Poincaré Grothendieck) – the 
appearance of dilation of time (Hausdorff content) and the contraction of costs in 
economic systems and sub-systems (anti entropy) that "move" relative to each 
other (in scales) – are analogous to the ones in physics-dilation of time and 
contraction of lengths of subjects in the inertial reference frames that move 
relative to each other that are described by modified Lorentz transformations 
(such as Einstein, 1950, and Ugarov, 1979). This implies different capital 
efficiency in these two systems, despite the equal initial conditions of their 
reproduction (role of initial conditions). Such an understanding of time has direct 
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implications on modalities of economic activity (fractional differential equations) 
and should be taken into account when considering the time dimension or 
maturity of economic activity, for instance in creating economic policy". 

We will simply assert here that the movements evoked and the spaces 
to which Rohatinski refers are, in above studies, extended to the drift 
within scaling and also to the spaces characterized by curvatures because 
the problems of dynamics appear in all hyperbolic spaces, moreover most 
of the time coupled with self-similarity. In project management these 
properties are likely to give rise to overlapping of the tasks, to some rules 
of homologies and internal project morphisms (categorization) whose most 
beautiful expression is none other than the social function of the enterprise 
that in fine justifies the concept of human project and the labor in a share 
common field. The categorical concepts taken into account to formalize 
this common field are synthesized in what we call the Zeta Management. 
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ANNEX 
For f : ℝା ⟶ ℝା 	and a Lebegue measure λ, a reordering equi-mesurable of f  

with respect to λ is a function ݂∼ :	ℝା  ⟶ ℝା 	which is non decreasing and verifies:  
λ(f ≥t) = λ(݂∼ ≥t) t ∊ ℝା 	If such a function exits therefore : ∫ ݂	݀µ௛  = ∫݂∼ 	݀µ௛  for any 
distorted Lebesgue measure µ௛  = h∘ λ. If f : [0, ℝା ⟶ [ݐ  is such as ݉ܽݔ௫∊[଴,௧] f(x) = M, if 
f is continuous and if λ is confirmed as a Lebesgue measure on ℝା 	then we have  
݂∼  : [0, ஛,௙ܩ = given by: ݂∼(τ) [ܯ,0] ⟶ [ݐ

ିଵ(t – τ) which is a non-decreasing reordering 
equi-measurable function. We know that ܩ஛,௙  is decreasing and then inversible, since f is 
continuous and λ is a Lebesgue measure. If we have ܩ஛,௙(x) = α, then x = ݂∼(t – α). 
Therefore: ܩ஛,௙∼ (x) = λ(݂∼ ≥  .஛,௙(x)ܩ = t – (t – α) = α = (ݔ


