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The interaction of the EGFR–PI3-K/AKT pathway with the tumour 

microenvironment in head and neck cancer  

 

 

Head and neck squamous cell carcinoma  

Head and neck squamous cell carcinoma (HNSCC) belongs to the ten most common 

carcinomas with an incidence of 800.000 new cases annually worldwide and 2,400 

cases annually in The Netherlands. HNSCCs arise from the mucosa of the upper 

aerodigestive tract and include squamous cell carcinomas of the larynx, pharynx, and 

the oral cavity [1]. Less frequent tumour entities are tumours of the nasal cavity, 

paranasal sinuses or salivary gland, and sarcomas. The most common risk factors are 

alcohol and tobacco abuse, but infection with the Human-Papilloma virus (HPV) has 

recently been identified as a cause of oropharyngeal cancer in relatively young, non-

smoking patients [2]. Successful treatment depends mainly on the stage of the tumour 

at presentation. Early diagnosis and treatment offers patients the best change of 

complete recovery. As patients often experience vague complaints such as throat ache 

or dysphagia, many of them present with advanced local disease already with lymph 

node metastases [3]. Due to a preference for organ preservation, the principal 

treatment modality is radiotherapy; which is effective in early-stage tumours, but less 

effective for advanced tumours and only palliative in metastatic disease [4]. 

Resistance of tumour cells to radiation is complex and many intrinsic and extrinsic 

factors are involved. In recent years, research has focussed on optimizing treatment 

modalities such as accelerated radiation schedules and combination therapies like 

chemoradiation or molecular targeting agents in addition to radiation to increase 

survival rates [5,6]. Although only for a selection of patients, (15% at best) there is 

benefit from these combination therapies, all patients experience the increased side 

effects. Therefore, it is mandatory to be able to select those patients who are most 

likely to profit prior to treatment.  

 

Radioresistance mechanisms 

The tumour microenvironment plays a key role in resistance to radiotherapy. How 

well tumour cells respond to radiotherapy does not only depend on their ability to 

repair the radiation-induced DNA-damage, but also on their proliferative response 

capacity induced by and during radiotherapy. Furthermore, tumour cell hypoxia 

induces radioresistance, and in addition, it is also known to promote genetic 

instability, leading to a more aggressive phenotype with increased tumour cell 

invasiveness and metastasis, resulting in worse clinical outcome.  
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Intrinsic radiosensitivity  

Although HNSCCs are mostly intermediate sensitive for radiotherapy, there are broad 

inter-tumour variations. There exist significant patient-to-patient differences between 

tumours of the same clinical stage and histology in response to radiation treatment. 

This variation can be explained by differences in intrinsic or microenvironmental 

factors. Intrinsic radiosensitivity is influenced by factors as the ability to repair 

radiation-induced DNA single- and double-stranded breaks (DSB). DSBs are 

potentially lethal DNA lesions and targeting signalling pathways involved in the DNA 

repair response sensitises tumour cells to ionising radiation. Combining radiotherapy 

with blockade of these signalling pathways, thereby interfering with DNA DSB repair, 

has resulted in improved local control compared to radiotherapy alone [7].    

 

Enhanced proliferation 

Between treatment intervals, cells are triggered to repopulate more effectively. This 

enhanced tumour cell proliferation is an important cause of treatment failure [8,9]. 

Accelerating radiation treatment schedules have been shown to be effective to 

counteract accelerated proliferation. By delivering more than one fraction per day, the 

overall treatment time can be reduced whilst maintaining the same total radiation 

dose. With acceptable acute toxicity levels, shortening the overall treatment time has 

been demonstrated to contribute to a significant benefit in loco-regional control and 

disease-specific survival in head and neck cancer patients [10,11]. Tumour cell 

proliferation depends on multiple factors such as differentiation grade and 

microenvironmental elements such as oxygen and nutrient availability. 

 

Tumour cell hypoxia 

Hypoxic regions are found in almost all solid tumours. Two major forms of hypoxia 

can be distinguished: chronic (diffusion-limited) and acute (perfusion-limited) 

hypoxia, although regions of intermediate hypoxia within a tumour can be found 

(Figure 1). Due to this variable degree of hypoxia, a cut-off value to distinguish 

normoxic from hypoxic tumour cells does not exist. In most experiments, values below 

10 mm Hg have been defined as hypoxic areas although radioresistance may already 

occur below 25-30 mm Hg [12]. Both forms of hypoxia can co-exist within the same 

tumour with large differences between tumours regarding the amount of hypoxia and 

the relative contribution of acute versus chronic hypoxia. Acute hypoxia is often 

transient and due to a chaotic network of blood vessels with leaky vessels, shunts and 

other structural and functional abnormalities. Chronic hypoxia is caused by tumour 

growth thereby increasing the distance of tumour cells to the nearest blood vessels, 

leaving cells deprived of oxygen and nutrients [13]. There are many studies linking 

tumour cell hypoxia to the prognosis of head and neck cancer patients and outcome 

after radiotherapy [14,15]. Because of the “oxygen enhancement ratio (OER)”, hypoxic 
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cells are approximately three-fold more radioresistant than are normoxic cells 

[16,17]. Directly, oxygen is essential for the efficacy of radiation-induced DNA damage. 

Indirectly, hypoxia can lead to activation of hypoxia-induced proteins and genes 

responsible for tumour progression via various mechanisms [18]. These alterations 

may help tumour cells to become less dependent of oxygen for survival or help cells to 

escape to a more favourable environment, for example by the transformation of cells 

from an epithelial to a more mesenchymal phenotype (EMT) [19]. This leads to more 

aggressive tumour cells that are able to spread, forming regional and distant 

metastases and ultimately negatively affecting the prognosis for the patient.  

 

 

 
Figure 1. Acute & chronic hypoxia. Acute hypoxia is due to occluded blood vessels while chronic 

hypoxia is caused by increased distance of tumour cells to the nearest blood vessels. Hypoxia 

staining by pimonidazole (green), perfusion (red) of blood vessels (blue).  
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Metastases formation  

Metastasis formation not only involves EMT, but also the detachment from the 

primary tumour site and escape of single cells into the blood or lymph vessels 

followed by reattachment, transition back to the epithelial state and angiogenesis are 

required to form a secondary tumour [20,21]. During the first step, EMT, the 

expression of epithelial markers (for example E-cadherin) is suppressed and the 

expression of mesenchymal markers (vimentin) is enhanced. Regional and distant 

metastases have a major impact on prognosis and it is therefore of great importance 

to understand the mechanisms to be able to explore strategies that interfere early in 

this process.  

 

Epidermal Growth Factor Receptor  

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with 

intrinsic tyrosine kinase activity and commonly overexpressed in most epithelial 

cancers in particular HNSCC [22]. Overexpression correlates with resistance of 

tumour cells against radiotherapy and poor prognosis [23]. Ligand binding to EGFR, 

for example by EGF, or activation by ionizing radiation [24,25] induces conformational 

changes leading to receptor homo- or heterodimerization at the plasma membrane 

with one of its family members, ErbB2 (HER2), ErbB3 or ErbB4. As Figure 2 shows, 

activation of EGFR causes autophosphorylation (pEGFR) resulting in receptor 

internalisation and stimulation of many signalling pathways including RAS-mitogen-

activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK), 

phosphatidylinositol-3-kinase-AKT (PI3-K/AKT), signal transducers and activators of 

transcription (STAT) and the phospholipase C gamma (PLC- γ) pathways [7,24,26]. All 

these pathways are responsible for regulation of tumour cell proliferation, DNA-

damage repair, migration, angiogenesis, and tumour cell survival. The main focus of 

this thesis will be the activation of the PI3-K/AKT pathway. 

 

PI3-K/AKT pathway 

EGFR can lead to activation of the protein AKT by phosphorylation of Thr308 and 

Ser473 at the cell membrane via activation of PI3K. Phosphorylated AKT (pAKT) then 

translocates to the cytoplasm and nucleus leading to transcription of genes 

responsible for tumour progression, such as cellular proliferation and DNA-damage 

repair. Also genes involved in the cellular response to hypoxia, for example hypoxia-

inducible factor1α (HIF-1α) and vascular endothelial growth factor (VEGF) are, at 

least partly, controlled by pAKT. Besides activation through EGFR, the PI3-K/AKT 

pathway can be activated by several other mechanisms. These include activation 

through other receptor tyrosine kinases (RTKs), mutations in oncogenes upstream 

such as ras, loss of Phosphatase and tensin homolog deleted on chromosome 10 
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(PTEN) [27], or amplifications or mutations of the gene pik3ca, encoding the catalytic 

subunit of PI3K, or AKT itself [28,29]. 

 

The EGFR-PI3-K/AKT pathway is relevant for radiation response since it regulates a 

variety of cellular functions, including proliferation rate, DNA-repair and metastasis 

formation. In addition, a feedback between hypoxia and EGFR activation exists, 

making this pathway a key element in treatment responsiveness and therapeutic 

targeting in head and neck cancer.  

 

 
 

Figure 2. Downstream signalling pathways of the Epidermal Growth Factor Receptor (EGFR). 

Scheme only denotes a simplified representation.  

 

 

Prognostic and predictive value of EGFR-PI3-K/AKT signalling 

Several investigators have explored the prognostic role of EGFR in solid tumours. 

Mostly, they found a strong correlation between high EGFR expression and poor 

clinical outcome and resistance to radiotherapy [23,30]. EGFR activation can lead to 

enhanced proliferation during radiotherapy. Patients with high EGFR levels showed 

increased locoregional control rates after treatment with accelerated radiotherapy 
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compared to conventional radiotherapy schedules, while there was no benefit for 

those with low EGFR expression [31,32]. Thus, EGFR expression in HNSCC is a 

predictive factor for a benefit from accelerated radiation treatment. Intensive 

research during the last decade with focus on EGFR inhibition has resulted in a 

randomised clinical trial in patients with advanced head and neck cancer reporting an 

improved loco-regional control and survival when radiotherapy is combined with 

cetuximab, a monoclonal antibody against the outer part of the EGF receptor [6]. 

Unfortunately, these improvements are modest whereas all patients experience 

increased toxicity to some extent. Besides this, although EGFR expression is an 

important prognostic marker, it does not seem to predict treatment response to anti-

EGFR therapy. A possible explanation is that overexpression of EGFR in tumour cells 

does not necessarily implicate phosphorylation of the receptor and activation of 

downstream pathways; cells have to be dependent on EGFR signalling for their 

survival in order to respond to EGFR inhibition.  

 

Next to the prognostic value of EGFR, pAKT was also found to be an independent 

significant factor for patient outcome. Although most studies correlate high pAKT 

expression to poor outcome [33-37] there are also studies linking high pAKT levels to 

better survival [38-41] or reduced migration with variable results in different tumour 

types [42-45]. These contradictory results point out the need for tumour-type specific 

research to unravel this complex signalling cascade.   

 

The tumour microenvironment plays an important role in signalling of EGFR and 

activation of AKT. Not only do not all EGFR expressing cells activate AKT signalling, it 

is also shown that in hypoxic areas within tumours of the head and neck pAKT is 

present without EGFR expression. Cells that retain their potential to activate survival 

pathways in harsh circumstances like hypoxia represent an important subpopulation 

of tumour cells that are responsible for treatment failure [46]. Besides 

immunohistochemically staining for EGFR and pAKT expression, tumour cell hypoxia 

and proliferation can be assessed in patient biopsies prior to treatment. Endogenous 

markers such as Ki-67 and proliferating cell nuclear antigen (PCNA) or exogenous 

markers like S-phase specific thymidine analogues bromodeoxyuridine (BrdUrd) and 

iododeoxyuridine (IdUrd) are available to indicate the amount of proliferating tumour 

cells. In several studies the relationship between these markers and response to 

radiotherapy was assessed, with inconclusive results about their predictive value 

[31,47,48]. This suggests that the proliferative response of tumours during treatment 

is probably independent of baseline proliferation. Hypoxic areas can be stained by 

intravenously administered bio-reductive chemical markers such as the 

nitromidazoles pimonidazole or EF5 [49]. These markers have the advantage that 

they only metabolise in active cells and, therefore, necrotic tissue does not generate a 
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signal. Endogenous hypoxia-related markers are involved in the tumour cell response 

to hypoxia, but also to other stress-related aspects like intratumour pH. Proteins that 

show the most promising results as potential hypoxic markers are hypoxia-inducible 

factor 1α (HIF-1α), carbonic anhydrase IX (CAIX) and glucose transporters 1 and 3 

(GLUT) [13,50]. 

 

Counteracting radioresistance in head and neck cancer 

To overcome enhanced tumour cell proliferation during treatment and tumour cell 

hypoxia numerous strategies have been clinically tested. Different studies show that 

accelerated tumour cell proliferation can be counteracted by accelerated radiotherapy 

[10,11], while tumour hypoxia can be reduced using a hypoxia-modifying treatment 

combined with radiotherapy [51,52]. These latter treatments vary from hyperbaric 

oxygen and carbogen breathing to hypoxic cell sensitizers, using nitroimidazoles, and 

hypoxic cytotoxins, to destroy hypoxic cells [53]. A recently published meta-analysis 

including 32 randomized clinical trials demonstrated that there is a significant 

beneficial effect of hypoxic modification if combined with radiotherapy [54]. 

A strategy that integrates both accelerated radiotherapy and hypoxia modification is 

Accelerated Radiotherapy with CarbOgen and Nicotinamide (ARCON) [16]. Breathing 

carbogen, a hyperoxic gas (98% O2; 2% CO2), during accelerated radiation treatment 

will sensitize tumour cells through reduction of diffusion-limited hypoxia. The orally 

administered vasodilating compound nicotinamide reduces perfusion-limited hypoxia 

by preventing intermittent closure of tumour blood vessels. A phase II study involving 

215 patients with advanced head and neck cancer showed high local and regional 

control rates, in particular for oropharynx and larynx tumours [55]. Results from a 

subsequent phase III study involving 345 patients with laryngeal carcinoma showed 

higher regional control rates without an increase in toxicity [56]. Results from a side 

study using the exogenous hypoxia marker pimonidazole revealed that this increase 

was only significant in the more hypoxic tumours. Patients with hypoxia higher than 

median levels receiving ARCON had higher regional control and disease-free survival 

rates compared to the standard AR treatment. Patients with well-oxygenated tumours 

did not benefit from the addition of carbogen and nicotinimide to radiotherapy. This 

illustrates that identification of microenvironmental characteristics, in this example 

the amount of hypoxia, may allow a better selection of patients for different treatment 

methods, with the ultimate aim to provide the best quality of life for individual cancer 

patients.  

Another way to try to predict patients from a beneficial effect of ARCON treatment is 

possibly via the activation of the EGFR-PI3-K/AKT pathway, which is associated with 

proliferation and hypoxia response. This signalling pathway may influence the 

therapeutic effect and may therefore be a powerful predictor for treatment with 

ARCON.  
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Outline of this thesis 

The central aim of the present thesis is to investigate the activation of the EGFR-PI3-

K/AKT pathway in biopsies of head and neck squamous cell carcinoma patients and 

its implication for radiation resistance. Besides their potential prognostic or 

predictive value, we evaluated their expression related to microenvironmental factors, 

like the presence of hypoxia or vasculature.  

 

Chapter 2 gives an overview of the role of EGFR in head and neck cancer, its 

interaction with the tumour microenvironment and their involvement in 

radioresistance. This chapter illustrates that both irradiation and hypoxia can 

influence EGFR activation and we therefore hypothesized that EGFR could modulate 

the response to accelerated radiotherapy and hypoxia modification. Chapter 3 

describes the findings on the predictive value of EGFR expression in 272 laryngeal 

cancer patients on the outcome of hypoxia modification in addition to accelerated 

radiotherapy (ARCON). 

In chapter 4, the relative contribution of activated EGFR on the activation of 

the PI3-K/AKT pathway was examined in a cohort of 58 patients. We investigated 

expression levels of pEGFR and pAKT and correlated these to patient outcome. Also, 

the relationship between pEGFR, pAKT, vessels, and hypoxia was assessed. We 

discovered a distinct relationship of pAKT expression in the primary tumour of HNSCC 

patients and lymph node metastases. Our hypothesis was that this counterintuitive 

correlation between pAKT and an increased metastasic risk might be due to epithelial-

mesenchymal transition (EMT). This led us to explore the association of markers; i.e. 

E-cadherin and vimentin, involved in EMT in this patient group.  

Chapter 5 describes the association between EGFR and pAKT and E-cadherin 

and vimentin expression. Low E-cadherin and high vimentin expression lead to 

reduced cell-cell contact and higher possibility of cells to migrate and form 

metastases.  

There is an increasing number of early clinical trials exploiting the inhibition of 

specific target proteins and genes in addition to radiotherapy. One such inhibitor is 

MK-2206, an allosteric inhibitor of pAKT. It alters the shape of AKT so that ATP 

binding at the phosporylation sites Th308 and Ser473 is prevented. Due to our 

previous finding that pAKT expression seemed to be involved in increased regional 

and distant metastatic risk we performed experiments to investigate the effect of 

pAKT inhibition on EMT in laryngeal cancer cells, which are described in chapter 6.  

 

Chapter 7 provides a general discussion including future perspectives. A 

summary of this work is given in chapters 8 (Dutch) and 9 (English).  
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Abstract 

Treatment failure through radioresistance of tumours is associated with activation of 

the epidermal growth factor receptor (EGFR). Tumour cell proliferation, DNA-repair, 

hypoxia and metastases-formation are four mechanisms in which EGFR signalling has 

an important role. In clinical trials, a correlation has been demonstrated between high 

EGFR expression in tumours and poor outcome after radiotherapy. Inhibition of EGFR 

signalling pathways improves the effectiveness of radiotherapy of head and neck 

cancers by overcoming these main mechanisms of radioresistance. The fact that only a 

minority of the patients respond to EGFR inhibitors reflects the complexity of 

interactions between EGFR-dependent signalling pathways and the tumour 

microenvironment. Furthermore, many components of the microenvironment are 

potential targets for therapeutic interventions. Characterisation of the interaction of 

EGFR signalling and the tumour microenvironment is therefore necessary to improve 

the effectiveness of combined modality treatment with radiotherapy and targeted 

agents. Here, the current status of knowledge is reviewed and directions for future 

research are discussed. 
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Introduction 

The epidermal growth factor receptor (EGFR) attenuates the efficacy of radiotherapy 

in tumour cell killing through its association with enhanced proliferation, DNA-repair 

and hypoxia. Intracellular signalling of EGFR occurs via phosphorylation cascades in 

different pathways in which protein kinase B (PKB/AKT) is a key-regulating factor. 

However, immunohistochemical staining of EGFR and phosphorylated (p)AKT shows 

that EGFR-independent activation of AKT also occurs, predominantly in hypoxic areas 

[1,2]. This observation suggests that activation of specific proteins in the important 

signalling cascades may also depend on microenvironmental characteristics, such as 

tumour oxygenation status. Vice versa, manipulation of EGFR affects the tumour cells 

[1]. Understanding the microenvironmental conditions that influence important 

signalling pathways in tumours insensitive to particular treatment regimens can 

improve selection of patients for individualized treatment options. In this review we 

will discuss the interactions between the EGFR signalling cascade and the tumour 

microenvironment (Figure 1), using mainly preclinical data as well as the available, 

albeit limited information from clinical studies.  

 

Tumour microenvironment  

Our current conception of a malignant tumour is that of a complex structure 

containing not only cancer cells but also a variety of normal cell types that intimately 

interact with a microenvironment that is characterised by both temporal and spatial 

heterogeneity. It has become clear that this tumour microenvironment is important 

during early cancer development and progression, and is also of influence on the 

response of tumours to radiation [3,4]. Elements that make up the tumour 

microenvironment include endothelial cells of the blood and lymphatic vessels, 

fibroblasts, infiltrating cells of the immune system and the tumour extracellular 

matrix (ECM) [5]. Availability of oxygen and nutrients depends on the functionality of 

the vascular bed and affects the metabolic state of tumour and stromal cells. An 

imbalance between oxygen and glucose supply and consumption will result in hypoxia 

and acidification. Within the tumour microenvironment, hypoxia is relevant in almost 

all solid tumours. Reduced oxygen supply can be lethal for some cells, but others are 

able to survive under even severe or prolonged hypoxic conditions. Hypoxia-induced 

cell signalling promotes tumour growth, migration and survival. The development of 

new vasculature within a tumour involves the formation of new vessels from 

endothelial cells (vasculogenesis) in addition to sprouting (angiogenesis) of new 

vessels from existing ones [6]. New tumour blood vessels, prerequisite for tumour 

progression and metastasis formation, the result of interplay between pro- and anti-

angiogenic factors, is predominantly regulated through transcription of the hypoxia-

inducible-factor (HIF)-1 complex. The pro-angiogenic factor VEGF is a crucial gene 

involved in angiogenesis that is strongly induced by hypoxia. Anti-angiogenic therapy, 
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for example by using anti-VEGF monoclonal antibodies such as bevacizumab, can 

result in a reduction of tumour vascularisation, but counter-intuitively also in 

normalisation of the aberrant tumour vasculature, thereby improving oxygenation 

and blood flow that could enhance the efficacy of radiation [7,8]. However, VEGF can 

also be upregulated in an oxygen-independent manner. Also, low extracellular pH 

causes stress-induced alteration of gene expression including the upregulation of 

VEGF in tumour cells in vitro. Tissue pH appears to regulate VEGF transcription 

through a different pathway independently of hypoxia, namely Ras-ERK1/2 instead of 

HIF mediated [8].  

 

 

 
 

Figure 1. Interaction between EGFR signalling, radiotherapy and the tumour microenvironment 

leading to radioresistance. Different aspects of the tumour microenvironment can activate 

signalling pathways, via EGFR or directly and EGFR-independent. Activation of downstream 

proteins/genes affects the tumour microenvironment, e.g. via angiogenic factors and effects on 

the extracellular matrix. Both tumour microenvironmental factors as well as EGFR signalling 

can lead to more radioresistant tumours.  



Interaction EGFR and tumour microenvironment 

 

25 

 

Cancer-associated fibroblasts can influence different aspects of tumour cell behaviour 

such as growth and migration trough release of growth factors and chemokines. 

Various cells of the immune system found in solid tumours play an important role in 

modulating tumour growth. Macrophages form a major inflammatory population in 

most cancers but other components of the inflammatory infiltrate also module tumour 

behaviour, having pro- and anti-tumour functions [5].  

Exchange of information between tumour cells can occur from the ECM to tumour 

cells directly, via mechanical forces, or can be mediated by ECM-associated growth 

factors [9]. The signals triggered by components of the ECM are not function-specific 

and depending on the local environment they can induce proliferation as well as the 

phenomen known as epithelial-mesenchymal transition (EMT). During this process 

tumour cells change from an epithelial morphology to a migratory and invasive, 

mesenchymal phenotype [10]. Growth factors, such as EGF, and stress stimuli like 

hypoxia, have been shown to induce EMT in vitro by inducing phosphorylation of E-

cadherin resulting in its degradation thereby linking growth factor receptor signalling 

to the induction of EMT [11]. 

 

Epidermal growth factor receptor and downstream signalling pathways 

EGFR is a transmembrane protein with intrinsic tyrosine kinase activity that is 

overexpressed in most epithelial cancers, e.g. in over 80% of head and neck squamous 

cell carcinomas (HNSCC) [12,13]. Overexpression could lead to resistance of tumour 

cells against radiation as demonstrated by in vivo studies [14-16] and is associated 

with poor prognosis in HNSCC [13]. (p)EGFR and HER2 expression are mostly 

determined by intrinsic features of the tumour cell, while the activation of 

downstream kinases is highly influenced by the tumour microenvironment [17]. 

Ligand binding to EGFR induces conformational changes leading to receptor homo- or 

heterodimerization at the plasma membrane with one of its family members, ErbB2 

(HER2), ErbB3 or ErbB4. This causes autophosporylation, subsequent receptor 

internalisation and stimulation of multiple signalling pathways including ras-mitogen-

activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK), 

phosphatidylinositol-3-kinase-AKT (PI3-K/AKT)), signal transducers and activators of 

transcription (STAT) and the phospholipase C gamma (PLC- γ) pathways [3,18,19]. 

These pathways all share that they counteract radiation efficacy being involved in 

proliferation, migration, apoptosis and angiogenesis. Of note is that, besides through 

ligand binding, EGFR can also be activated by ionizing radiation itself, again leading to 

radioresistance [18,20-22]. EGFR tyrosine kinase inhibition with erlotinib or gefitinib 

improves progression-free survival in advanced non-small cell lung cancer (NSCLC) 

with EGFR mutations [23]. In preclinical studies EGFR-expression was needed for 

C225-response, but this was not sufficient to predict response to C225 plus 

radiotherapy. Evaluation of the microenvironment revealed that basal expression of 
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additional growth factor receptors and effects on proliferation, correlated to a certain 

extend with response to combined C225-radiotherapy [24]. Combining radiotherapy 

with blockage of EGFR by the chimeric (mouse/human) monoclonal antibody 

cetuximab, has resulted in improved locoregional control and survival for patients 

with HNSCC [25] demonstrating that EGFR is an clinically relevant target for 

molecular therapies in addition to radiation. 

 

A key protein activated through EGFR is AKT that can be phosphorylated at Thr308 

and Ser473 at the cell membrane after activation of PI3-K. pAKT then translocates to 

the cytoplasm and nucleus where it can activate or deactivate a myriad of substrates 

via its kinase activity or via transcription of genes responsible for tumour progression. 

Although most studies correlate high pAKT expression to poor local control [26,27], 

there are also studies linking high pAKT to better survival or reduced migration 

[2,28]. This suggests that the concept of EGFR induced AKT activation leading to 

treatment resistance and poor outcome is a simplification of a complex interaction 

between the EGFR signalling network and the tumour microenvironment. 

Importantly, it is shown that hypoxia can induce cellular changes and in hypoxic areas 

of HNSCC activated AKT has been observed in absence of EGFR expression (Figure 2). 

Immunohistochemical staining for EGFR and pAKT in biopsies of patients with HNSCC 

reveals a lack of association: tumour cells positive for EGFR were found negative for 

pAKT and vice-versa (Figure 3). Although a better correlation between activated EGFR 

(pEGFR) and pAKT existed, there were still tumour cells present with pAKT but no 

pEGFR [2]. A possible explanation is that AKT can be activated by different members 

of the ErbB family and other type of receptors like VEGFR. This is supported by the 

observation that blocking VEGFR-2 caused a suppression of pAKT [29]. Also, these 

observations suggest that the tumour microenvironment may stimulate activation of 

AKT in an EGFR-independent manner and is likely to be involved in the other EGFR-

driven signalling pathways as well.  
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Figure 2. Immunohistochemial staining of whole consecutive laryngeal tumour sections shows 

that pAKT (green) expression (B) occurs predominantly in hypoxic areas stained with 

pimonidazole (green; A). Red is EGFR expression, mostly seen in normoxic areas closer to 

tumour blood vessels (white). 200X magnification. Scalebars represent 100 µm. 

 
Figure 3. Mismatch of EGFR (red) and pAKT (green) in tumour sections of a laryngeal carcinoma 

(200X magnification). A Tumour section with EGFR expression present but no activated AKT 

(white arrow) and tumour cells with EGFR-independent pAKT expression (yellow arrow). 

White is tumour vasculature (stained with PAL-E). Scalebar represents 100 µm. 
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Tumour microenvironmental factors and radioresistance  

Not only do tumours from different origins respond differently to radiotherapy, also 

tumours with similar pathology show broad variations in response. Resistance of 

cancer cells to radiation is complex and many intrinsic and extrinsic factors are 

involved. Activation of EGFR signalling pathways can influence various cellular 

functions that are involved in the major mechanisms leading to radioresistance 

including tumour cell proliferation, DNA-repair and hypoxia. Activation of EGFR is 

also involved in a fourth mechanisms leading to radioresistance of tumours namely 

the escape of tumour cells from local therapy by radiation through the formation of 

metastases. 

 

Tumour cell proliferation 

The accelerated proliferation rate of tumour cells during radiotherapy is one reason 

for locoregional failure [30]. A number of clinical trials have confirmed that 

shortening the overall treatment time leads to increased tumour control probability 

by reducing the possibility of tumour cells to enhance repopulation between 

radiotherapy fractions [31]. This accelerated proliferation rate can be a result of 

activation of EGFR in response to ionizing radiation and an explanation why tumours 

with high EGFR expression have a worse prognosis [13]. Two clinical studies have 

indeed confirmed that accelerated radiotherapy, either moderate acceleration with 6 

fractions per week over 5.5 weeks or accelerated hyperfractionation with 3 fractions a 

day, and a total treatment time of 12 consecutive days, results in better locoregional 

control when EGFR was overexpressed, but not in tumours with low EGFR expression 

[30,32]. This suggests that EGFR-related signalling is involved in the proliferative 

response to radiotherapy thereby enhancing tumour survival probabilities. Preclinical 

data confirm that radiation-induced activation of EGFR represents a critical step in the 

activation this mechanism [33]. Large-scale studies with fractionated irradiation in 

xenografted FaDu (HNSCC) tumours demonstrated that after 3-4 weeks of 

fractionated radiotherapy an enhancement of repopulation occurs. At the same time 

an upregulation of EGFR expression was observed, indicating that EGFR is involved in 

this response [34]. Inhibition of EGFR through cetuximab [35] or tyrosine-kinase 

inhibitors such as erlotinib [15] was found to reduce tumour cell repopulation. EGFR 

inhibition with cetuximab during fractionated radiotherapy reduced tumour cell 

repopulation and improved local control in FaDu tumours [35] but also leads to a 

change in spatial distribution of EGFR favouring the membranous expression [36]. 

Erlotinib can inhibit radiation-induced activation of EGFR thereby reducing its 

proliferative signalling capacity. Both agents have demonstrated to lower the 

percentage of human tumour cells in the more radioresistant S-phase fraction and 

induce an accumulation of cells in the more radiosensitive cell cycle phases [37]. 
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Consistent with these findings, Krause et al. observed a significantly lower S-phase 

fraction measured by BrdU labelling after treatment with a tyrosine kinase inhibitor in 

FaDu tumours compared to untreated tumour. However, this reduced proliferation 

did not lead to improved local tumour control after radiation [38]. Additionally, 

Gurtner et al showed that in a panel of HNSCC models erlotinib as well as cetuximab 

lead to tumour growth delay but only simultaneous application of cetuximab during 

fractionated irradiation improved local control, while erlotinib did not enhance the 

radiotherapy effect [39], illustrating that different models of EGFR inhibition may lead 

to different ultimate treatment results.  

 

DNA-repair 

Activation of the EGFR downstream pathways RAS and PI3-K/AKT have been found to 

increase the resistance of tumour cells to agents that cause DNA damage [40]. DNA 

double strand breaks (DSB) are the most important DNA lesions leading to cell kill 

after radiotherapy. Tumour cells can repair DSBs through non-homologous end-

joining (NHEJ) and homologous recombination (HR). NHEJ is the major process 

responsible for survival of cells exposed to ionizing radiation, making this type of 

repair probably most influencial for treatment outcome. An important molecular 

complex involved in this process is the DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs), which is known to reside primarily in the nucleus. An interaction 

between nuclear EGFR and DNA-PKcs has been described suggesting a crucial role of 

nuclear EGFR for regulation of DNA repair after radiation [41]. Activated EGFR can be 

internalized and translocated to the nucleus and irradiation-induced nuclear EGFR 

can stimulate the formation of the nuclear EGFR/DNA-PKcs complex [42].  Selective 

inhibition of these pathways was found effective in reducing tumour cell survival. For 

example, cetuximab blocked radiation-induced nuclear translocation of EGFR and was 

associated with inhibition of radiation-induced activation of DNA-PKcs in a human 

bronchial carcinoma cell line [42]. Combined treatment of radiation and cetuximab 

resulted in a redistribution of DNA-PKcs from the nucleus to the cytoplasm. The 

reduction of DNA-PKcs in the nucleus leads to impeded NHEJ, essential for DNA-repair 

and survival. This might be a potential mechanism of the combined modality approach 

whereby the repair of DNA-DSBs after radiotherapy is impaired by cetuximab [37]. 

Blockage of radiation-induced DNA-PKcs activation by EGFR, PI3-K or AKT inhibition 

as well as through knockdown of AKT1 by siRNA indicates the requirement of the 

EGFR-PI3-K/AKT pathway for regulation of DNA-DSB repair after exposure to ionizing 

radiation [43]. Selective EGFR inhibition by gefitinib increased radiosensitivity of 

stem-like gliomaspheres by reducing DNA-PKcs expression, accompanied by reduced 

repair of radiation-induced DNA DSBs [44]. These studies suggest that EGFR mediated 

repair of DNA damage might play a prominent role in the mechanism of 

radioresistance. Further preclinical in vivo and clinical research is required to 
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determine to what extent this is a tumour type specific mechanism and to identify 

predictors of response to EGFR- or downstream PI3-K/AKT-targeted DNA-repair 

inhibitor. 

In conflict with other studies, a novel finding showed that cetuximab as well as 

irradiation can promote EGFR translocation to the nucleus. Cetuximab treatment 

resulted in phosphorylation of the EGFRy845 site leading to an increased translocation 

to the nucleus of HNSCC tumour cells. This process can be inhibited by dasatinib, an 

inhibitor of several kinases including SRC family kinases (SFKs), which are suggested 

to be necessary for the phosphorylation of the EGFRy845 site and cetuximab-induced 

EGFR translocation to the nucleus [45]. Whether this cetuximab-induced nuclear 

EGFR is able to activate target genes to the same extend as ligand binding or radiation 

does is still unclear.  

 

Hypoxia 

The consequences of tumour cell hypoxia for treatment and patient outcome have 

been well established [46,47]. Hypoxia is associated with treatment failure as hypoxic 

tumour cells are significantly more resistant to radiation than normoxic cells. 

Although hypoxia is considered a limiting factor for tumour growth it is a stimulus for 

invasion and metastasis formation [5]. To adapt to hypoxic conditions, cells can 

respond by activating hypoxia-inducible genes or pro-survival signalling pathways, 

directly or indirectly through induction of the transcription factor hypoxia-inducible-

factor (HIF)-1 complex [48,49]. HIF-1 modulates the expression of genes involved in 

cell survival, angiogenesis and migration [10,50,51]. After HIF activation by hypoxia, 

processes are induced in cells to adapt to low oxygen levels, including metabolic 

changes and angiogenesis. Various treatment strategies have been developed to 

address the hypoxia problem [52,53]. The hypoxic sensitizer nimorazole has been 

shown to improve locoregional control in HNSCC when applied in conjunction with 

radiotherapy [54]. Also, ARCON (accelerated radiotherapy with carbogen breathing 

(98% O2, 2% CO2) and nicotinamide) a treatment method that aims to counteract both 

tumour cell repopulation and hypoxic radioresistance has demonstrated benefit for 

hypoxic laryngeal carcinomas [55,56]. A meta-analysis demonstrated that there is a 

level 1a evidence in favour of adding hypoxic modification to radiotherapy in HNSCC 

[53].   

In biopsies of breast cancer patients, expression of HIF-1α is associated with EGFR 

expression [57]. A feedback loop between hypoxia-induced upregulation of HIF-1α 

and EGFR provides sustained signalling when oxygenation of tumour cells improves, 

even up to normoxic conditions. Preclinical research shows that activation of HIF is 

required for the up-regulation of EGFR protein levels in hypoxic cancer cells. 

Conversely, EGFR-driven PI3-K/AKT activation in breast cancer cells can also lead to 

increased levels of HIF-1α independently of hypoxia [58]. The exact mechanism by 

which PI3-K/AKT signalling mediates the induction of HIF is not clear yet and is not 
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confirmed in other tumour cell lines [59], suggesting that this phenomenon may be 

cell type specific. In cervix carcinoma and pheochromocytoma cells, hypoxia resulted 

in the induction of HIF-1α proteins with AKT activation present. However, after 

growth factor stimulation under normoxic conditions there was no induction of the 

HIF protein and/or its transcriptional activity although the treatment resulted in 

activation of the PI3-K/AKT pathway. These data suggest that merely the activation of 

this pathway may not be sufficient for the accumulation of the HIF-1α protein, at least 

not in all tumour types.  

Thus, interactions between the EGFR-PI3-K/AKT and HIF pathways vary with tumour 

type and oxygenation status. Furthermore, different effects can be measured at 

protein and mRNA levels. For example, blocking EGFR in HNSCC cells leads to 

decreased translation of HIF-1α protein under hypoxia, but inhibition does not 

completely eliminate HIF expression under hypoxic circumstances nor are the HIF-1α 

mRNA levels altered [60]. Pore et al. also found that nelvavir, a drug known to inhibit 

PI3-K/AKT signalling, decreases HIF-1α protein expression in HNSCC and lung cancer 

cells indicating that hypoxia-driven EGFR signalling might act via this downstream 

pathway in these tumour types [61]. HIF activation can also occur via radiation-

induced EGFR signalling. Recently, Lu et al. showed that cetuximab could inhibit 

radiation-induced HIF-1α upregulation in HNSCC [62]. This inhibitory effect of 

cetuximab was much weaker for hypoxia-induced HIF-1α than for radiation-induced 

HIF-1α expression supporting the mediator role of EGFR in the latter. In addition, a 

connection between EGFR and VEGF, a downstream target of HIF-1α exists and EGFR 

inhibition using erlotinib leads to downregulation of HIF-1α expression and decreased 

VEGF secretion [29]. Erlotinib improves tumour oxygenation via improved vascular 

perfusion but this decrease in hypoxia did not seem to have an effect in 

radiosensitivity in HNSCC xenografts and cells [63]. Gefitinib treatment reduced 

pimonidazole binding in A431 xenografts after 5 and 8 days of treatment showing that 

gefitinib reduces intratumoural hypoxia [64].  

These data indicate that activation of hypoxia-inducible genes is cell type specific, and 

that there is an intricate interaction between growth factor receptor activation and 

microenvironmental signalling. Tumour cell hypoxia can result in creating an optimal 

environment for tumour regrowth by activating hypoxia-induced genes leading to 

angiogenesis, while it also is associated with decreased radiation-induced DNA 

damage and a poorer response to radiotherapy making hypoxia a key element in the 

clinical outcome of patients [65]. Therefore, inhibition of EGFR in combination with 

hypoxia modification should be further explored as it might offer a powerful strategy 

for treatment of a number of cancer types.  

 

Experimental evidence has also provided a relationship between EGFR signalling and 

angiogenic proteins such as VEGF. Tumours often express high levels of VEGF leading 
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to an abnormal vasculature. Vascular normalization and an increase in tumour blood 

flow can be achieved by directly targeting VEGF or its receptor (VEGFR), with for 

example the anti-VEGFR monoclonal antibody bevacizumab. Also, EGFR inhibition 

with erlotinib in mice bearing SQ20B head and neck xenografts caused changes in 

vessel morphology, a decreased vascular permeability and an increase in tumour 

blood flow. This indicates that EGFR inhibition has an effect on vasculature resulting 

from a decrease in VEGF expression [63]. The combination of four weeks treatment 

with cetuximab and ZD6474, a potent inhibitor of VEGFR-2 tyrosine kinase with a 

significant anti-EGFR tyrosine kinase activity, showed a more significant growth 

inhibition in mice bearing colon or lung adenocarcinoma xenografts as compared to 

single agent treatment [29]. A normal tumour vasculature and improvement in 

tumour blood flow can lead to better drug delivery or increased tumour oxygenation, 

and, thereby, a better response to radiotherapy.  

 

Metastases formation  

The escape of tumour cells from the primary tumour to distant sites and subsequent 

formation of metastases is a fourth mechanism leading to treatment failure. During 

EMT, the loss of E-cadherin proteins leads to the disruption of stable adherent 

junctions. In addition, cells develop a more mesenchymal phenotype, e.g. increased 

expression of mesenchymal proteins like vimentin, and thereby more able to spread 

to secondary locations in the body. Increasing evidence indicates that EGFR signalling 

pathways are implicated in the regulation of proteins involved in EMT. In cervical as 

well as prostate cancer cells lines, EGF treatment significantly decreased the 

abundance of E-cadherin protein and upregulated vimentin expression [66,67]. Also, 

in surgical biopsies of cervical carcinomas EGFR overexpression was accompanied by 

decreased E-cadherin and increased vimentin expression seen by immunofluorescent 

staining [66].  

More evidence was provided by studies using EGFR inhibitors. An HNSCC tumour 

model in which cells dominantly express epithelial markers was found to be very 

sensitive to cetuximab, whereas those expressing mesenchymal markers revealed low 

sensitivity [68]. Although the exact interaction was not elucidated, this response to 

EGFR inhibition suggests that there is an association between EGFR pathways and 

EMT. However, this interaction between EGFR signalling and EMT seems to be tumour 

line specific. Combining cetuximab with irradiation induced EMT in the cetuximab-

sensitive cells while triggering the reverse mesenchymal-epithelial transition (MET) 

in the more mesenchymal cell line [68]. The idea is that cells that have undergone 

EMT become less dependent on EGFR signalling for cell proliferation and survival and 

are thus less responsive to EGFR inhibitors [69]. This also points towards a possibility 

of using EMT-related proteins as predictive markers for sensitivity to cetuximab. This 

hypothesis needs to be confirmed in tumours from patients either sensitive or 

resistant to EGFR inhibition but it clearly suggests a potential for individualised 



Interaction EGFR and tumour microenvironment 

 

33 

 

treatment approaches employing EGFR-targeting or more aggressive anti-metastasis 

treatment based on EMT phenotype. 

Conversely, it has been shown that E-cadherin-mediated-cell-cell adhesion can trigger 

a ligand-independent activation of EGFR thereby regulating various signalling 

pathways such as MAPK and AKT [70,71]. Reddy et al. showed that activation of AKT 

and MAPK by E-cadherin mediated cell-cell adhesion in ovarian cancer cells is 

regulated by EGFR activation. However, no direct physical interaction between E-

cadherin and EGFR could be detected in the cells used, suggesting the existence of 

intermediate molecules [71]. In contrast, it was demonstrated that in oral squamous 

carcinoma cells E-cadherin can physically interact with and activate EGFR, leading to 

the activation of MAPK [70]. This interaction leads to EGFR-E-cadherin complex 

formation at cell-cell junctions and receptor oligomerization. Although the exact 

mechanism is unclear and needs to be verified, both studies show that E-cadherin may 

not only act as an adhesion molecule but also as an upstream regulator that triggers 

EGFR signalling pathways.  

Further, a relation between oxygenation status and EMT also exist. Hypoxia can down 

regulate E-cadherin and upregulate mesenchymal markers, indicating that hypoxia 

can contribute to metastases-formation through induction of EMT [72]. The 

morphological transformation induced by hypoxia in breast cancer and FaDu cells 

associated with EMT can be reversed after re-oxygenation or by repression of HIF-1α 

[72,73]. This finding at least partly explains the relation between tumour cell hypoxia, 

migration and ultimately metastasis formation.  

 

Conclusion  

There is strong evidence, both from preclinical and clinical studies that there is a 

positive correlation between the levels of EGFR found in tumour cells and resistance 

to radiation therapy and consequently treatment failure. EGFR signalling pathways 

are implicated in all major mechanisms of radioresistance. The tumour 

microenvironment has important influences on EGFR signalling. The fact that only a 

minority of the patients respond to EGFR inhibitors reflects the complexity of 

interactions between the EGFR-dependent signalling pathways and the tumour 

microenvironment. To improve the effectiveness of combined modality treatment 

with radiotherapy and targeted agents two strategies should be explored. One is 

patient selection based, not only on EGFR expression patterns, but also on 

microenvironmental characteristics to identify the tumour phenotypes that are most 

likely to benefit from the combined approach. Second is to combine radiotherapy, not 

only with EGFR signalling inhibition but also with treatments that counteract 

microenvironmental resistance mechanisms such as hypoxia, e.g. nimorazole, ARCON 

or angionesesis inhibition (VEGF inhibitors). Future preclinical and clinical studies 
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should focus on these multimodality approaches with mechanistic basis to bring 

cancer research forward. 
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Abstract 

Accelerated radiotherapy (AR) improves the poor prognosis associated with 

Epidermal Growth Factor Receptor (EGFR) overexpression frequently seen in head 

and neck carcinomas. Combining AR with carbogen and nicotinamide (ARCON) 

counteracts enhanced tumour cell proliferation- and hypoxia-related radioresistance. 

The purpose of this study was to investigate if EGFR expression levels are associated 

with response to ARCON in patients with carcinoma of the larynx.  

Patients (N=272) with advanced stage larynx carcinoma were randomized between 

AR alone and ARCON. Paraffin-embedded biopsies from these patients were processed 

for immunohistochemical staining of EGFR. EGFR fraction was quantitated by 

automated image analysis and related to clinical outcome.  

A large variation was observed in EGFR fraction between tumours with expression 

levels ranging from 0-0.93 (median fraction 0.4). No difference in 5-year locoregional 

control was found between low and high EGFR expressing tumours in the AR arm 

(69% versus 75%), which is in line with the established effect of AR in EGFR 

overexpressing tumours. There was, however, a significant association in the ARCON 

arm: patients with low EGFR levels had a better 5-year locoregional control (88% 

versus 72% p=0.02) and disease-specific survival (92% versus 77% p=0.01). ARCON 

improved locoregional control relative to AR only in patients with low EGFR 

expression (HR 0.34 p=0.009). 

In conclusion, only in tumours with a low EGFR fraction, adding hypoxia modification 

to AR has an additive beneficial effect on outcome. EGFR expression is a predictive 

biomarker for the selection of patients that will or will not respond to ARCON. 
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Introduction 

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine 

kinase that plays a major role in regulating tumour cell proliferation and cell cycle 

progression [1,2]. EGFR is highly expressed in many solid cancers, including head and 

neck squamous cell carcinomas (HNSCC) [3] and is correlated with resistance to 

radiotherapy and decreased patient survival [4]. Ligand binding as well as ionizing 

radiation can phosphorylate EGFR [5] leading to activation of downstream cascades, 

like the PI3-K/AKT and the MAPK pathways [6]. These signalling pathways are 

responsible for enhanced proliferation, cell cycle progression and increased DNA-

repair leading to treatment failure [2,7,8]. 

How well tumour cells respond to radiotherapy depends on their proliferative 

response induced by and during treatment, their ability to repair the radiation-

induced DNA-damage and the amount of hypoxia within a tumour [9]. EGFR is 

involved in the regulation of intrinsic DNA-repair mechanisms and tumour cell 

proliferation via downstream pathway activation [10]. Tumour cell hypoxia induces 

radioresistance, directly as DNA-damage is maximized in the presence of oxygen and 

indirectly by promoting genetic instability [11,12]. An autocrine route has been 

described by which hypoxia induces expression of EGFR and its ligands [13,14] and in 

addition, EGFR can stabilize one of the key proteins in the hypoxia response namely 

hypoxia-inducible factor 1α (HIF-1α) [11]. Thus, EGFR is involved in all aspects of 

radioresistance. These resistance mechanisms play a role in HNSCC while EGFR is 

expressed at high levels in the majority of these tumours. This makes head and neck 

cancer the tumour archetype to further investigate these interactions.  

Various studies have shown that enhanced tumour cell proliferation can be 

counteracted by accelerated radiotherapy (AR) [15-17], while tumour hypoxia can be 

reduced using hypoxia-modifying treatment modalities [18]. A strategy that combines 

both AR and hypoxia modification is Accelerated Radiotherapy with CarbOgen (98% 

O2; 2% CO2) and Nicotinamide (ARCON) [19]. Results from clinical trials with ARCON 

show high locoregional control rates, in particular for oropharynx and larynx tumours 

[20,21].  

Both irradiation [22] and hypoxia [13] can enhance phosphorylation of EGFR thereby 

regulating intrinsic DNA-repair mechanisms [10] and cellular proliferation. We 

therefore hypothesized that EGFR could modulate the tumour response to accelerated 

radiotherapy with hypoxia modification. The purpose of our study is to investigate the 

predictive value of EGFR expression for ARCON in patients with advanced laryngeal 

carcinoma using material from a recently completed trial randomizing between AR 

and ARCON [21].  
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Materials and Methods 

Patients and treatment 

Three-hundred-and-forty-five patients with advanced laryngeal carcinoma were 

included in a randomized trial comparing AR and ARCON between April 2001 and 

February 2008 at seven centres for head and neck oncology (six from the Netherlands 

and one from the UK). The eligibility criteria were published previously [21]. Approval 

from the local Ethics Committee of the Radboud University Nijmegen Medical Centre 

was obtained and all patients gave written informed consent. Pre-treatment paraffin-

embedded biopsies were retrieved for immunohistochemical staining. 

 

Immunohistochemistry 

Sections from tumour biopsies were stained for EGFR expression as described 

previously with minor modifications [23]. Briefly, sections of 5µm were cut, 

deparaffinised and rehydrated through a graded ethanol series. Sections were 

incubated with proteinase-K (DAKO, Glostrup, Denmark) at 37°C. The primary 

antibody used was mouse anti-EGFR (DAKO M7239, Glostrup, Denmark) diluted 1:50 

in PAD. The secondary antibody was a biotinylated F(ab)’2-donkey anti-mouse IgG 

(Jackson Immunoresearch Laboratories Inc. West Grove, PA, USA), diluted 1:200 in 

PBS. Sections were counterstained with haematoxylin. 

 

Image acquisition and quantitative analysis 

All patient tissue sections were scanned with a Leica DM 6000 microscop 

(monochrome CCD camera (Retiga SRV) with an RGB filter (Slider module, QImaging, 

Burnaby, BC, Canada)) using IPlab imaging software (Scananalytics Inc., Fairfax, VA, 

USA). EGFR signal was scanned at 100X magnification. For every scanning session a 

background image was recorded. Extraction and separation of the individual colours 

from the DAB (brown) and haematoxylin (blue) signals was conducted using the RGB 

linear unmixing module in the TRI2-software (Randall Division and Gray Cancer 

Institute, London, UK). Based on a haematoxylin/eosin stained consecutive section, 

the tumour area of each section was delineated (necrotic areas and artefacts 

excluded). The EGFR fraction was defined as the tumour area positive for EGFR 

relative to the total tumour area. EGFR assays were performed blinded to the clinical 

endpoint.  

 

Statistical analysis 

Statistical analyses were performed on a Macintosh computer using Prism 4.0c 

(Hearne Scientific Software, Dublin, Ireland) software package. Comparison of 

baseline characteristics between patient groups was performed using the χ2-test for 

categorical variables, and using the independent Students t-test for continuous 

variables. Correlations between the EGFR fraction and ordinal tumour characteristics 
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(T-classification, N-classification, and histopathological grade) were assessed using 

the Spearman and the Kruskal-Wallis tests. To determine correlations between EGFR 

expression level and survival (locoregional control (LCR) and disease-specific survival 

(DSS)), Kaplan-Meier graphs with log-rank testing were used after dichotomizing the 

patients into two groups based on low and high EGFR fractions. p ≤ 0.05 was 

considered indicative of statistical significance. Multivariate analysis was performed 

using Cox proportional hazards analysis. Data are presented as hazard ratios (HR) 

with 95% confidence intervals (CI).  

 

Results 

Patients and treatment 

A total of 345 patients were randomized. From these, 73 patients were excluded from 

the current analysis, 39 because biopsy material could not be retrieved, 24 biopsies 

contained no or very little invasive carcinoma, and 10 because of poor quality due to 

mechanical damage during biopsy procedure or poor staining quality. Thus, 272 

histological confirmed squamous cell carcinomas of the larynx were available for 

analysis. The minimal duration of follow-up for all patients was two years with a 

median of 52 months for surviving patients. Patient and tumour characteristics were 

not significantly different between the AR and ARCON groups (Table 1). Treatment 

schedules and patient outcome have been published previously [21]. 

 

EGFR expression and correlation with tumour characteristics 

Most tumours showed membranous EGFR expression (median fraction 0.4), but there 

was a wide range (0.00-0.93) (Figures 1 and 2). Based on the bimodal distribution, 

patients were dichotomized at a fraction of 0.43, resulting in a low EGFR fraction 

group (n=144, 53%) and a high EGFR fraction group (n=128, 47%). There was no 

correlation between EGFR levels and clinical parameters except for a difference 

between EGFR high and low groups with regard to N-classification. Tumours with high 

EGFR expression were more frequently lymph node positive at time of presentation 

(Table 1). 
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Table 1. Patient and tumour characteristics of 272 laryngeal tumour patients 

 All (%) Treatment (%)  EGFR expression 

  ARCON 

(n=138) 

AR  

(n=134) 

p EGFR  

low 

EGFR 

high 

p 

Age 

Median (range) 

 

60.6 

(38 – 88) 

 

60.8 

(42 – 84) 

 

60.1 

(38– 88) 

 

0.65 

 

60.8 

(39-83) 

 

62.8 

(38-88) 

 

0.09 

Gender 

   male 

   female 

 

219    (81) 

53      (19) 

 

116   (84) 

22     (16) 

 

103   (77) 

31     (23) 

 

0.13 

 

112 (78) 

32  (22) 

 

 

107 (84) 

21 (16) 

 

0.23 

Primary site 

   glottic 

   supraglottic 

 

115    (42) 

157    (58) 

 

60    (43) 

78    (57) 

 

55     (41) 

79     (59) 

 

0.68 

 

58 (40) 

86 (60) 

 

 

57 (45) 

71 (55) 

 

   0.48 

T-classification 

   T2 

   T3 

   T4 

 

99      (36) 

133    (49) 

40      (15) 

 

46     (33) 

73     (53) 

19     (14) 

 

53     (39) 

60     (45) 

21     (16) 

 

 

0.40 

 

50  (35) 

76  (53) 

18  (12) 

 

49 (38) 

57 (45) 

22 (17) 

 

 

0.33 

N-classification 

   N0 

   N+ 

 

178    (65) 

94      (35) 

 

91     (66) 

47     (34) 

 

87     (65) 

47     (35) 

 

0.79 

 

104 (73) 

40    (27) 

 

74 (58) 

54 (42) 

 

0.01 

Histopathological  

differentiation grade 

  well 

  moderate 

  poor 

  n.k. 

 

 

17      (6) 

153    (56) 

47      (17) 

55      (20) 

 

 

9       (7) 

78     (56) 

29     (21) 

22     (16) 

 

 

8       (6) 

75     (56) 

18     (13) 

33     (24) 

 

 

 

 

0.18 

 

 

8  (5) 

79  (55) 

26  (18) 

31  (22) 

 

 

9  (7) 

74  (58) 

21  (16) 

24  (19) 

 

 

 

 

0.71 

n.k. not known 

 

Table 2. 5-years loco-regional control and disease-specific survival (%) and hazard ratio of 

patients treated with ARCON versus AR by EGFR expression fraction.  

Outcome end points AR ARCON p HR (95% CI) 

Disease-specific survival Low EGFR 82 91 0.08 0.38 

(0.12-1.12) 

High EGFR 77 78 0.54 1.23 

(0.58-2.86) 

Loco-regional control Low EGFR 69 88 0.009 0.34 

(0.14–0.79) 

High EGFR 75 71 0.85 1.07 

(0.53-2.15) 

HR, hazard ratio; CI, confidence interval  
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Table 3. Multivariate analysis of clinical parameters and EGFR fraction 

 

Variables 

DSS AR 

p                HR 

              (95% CI) 

DSS ARCON 

p                HR 

                (95% CI) 

LRC AR 

p                  HR 

                (95% CI) 

LRC ARCON 

p                 HR 

                  (95% CI) 

T-classification  

(T2 vs T3 vs T4) 

0.156 1.54 
(0.85-2.79) 

0.726 1.14 
(0.55-2.39) 

0.349 0.79 
(0.49-1.29) 

0.261 1.39 
(0.78-2.51) 

N-classification  

(N0 vs N+) 

0.019 1.33 
(1.05-1.69) 

0.010 1.43 
(1.09-1.87) 

0.198 1.15 
(0.93-1.41) 

0.742 0.95 
(0.69-1.25) 

Histopathological 

grade  
(poor vs moderate vs well) 

0.571 0.96 
(0.81-1.12) 

0.367 0.88 
(0.66-1.17) 

0.321 0.94  
(0.84-1.06) 

0.283 1.08 
(0.34-1.25) 

EGFR fraction  

(low vs high) 

0.912 0.95 
(0.40-2.26) 

0.05 3.00 
(0.99-9.16) 

0.507 0.79 
(0.39-1.58) 

0.048 2.43 
(1.01-5.87) 

HR, hazard ratio; CI, confidence interval  

 

 

 
Figure 1. Range of the EGFR expression in laryngeal carcinoma (A) no expression; (B) 

intermediate expression and (C) high expression at 400x magnification. Scalebars represents 

100 µm.  

 

 

 

Figure 2. Distribution of EGFR expression based on EGFR fraction of whole tissue section in 272 

laryngeal tumours analysed in the ARCON trial. Line represents cut-off.  
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Associations between EGFR expression and treatment outcome 

No difference in 5-year disease specific survival (DSS) or locoregional control (LRC) 

was found between low and high EGFR expressing tumours in the AR arm (DSS 81% 

versus 78% and LRC 69% versus 75% respectively) (Figure 3a, c). In the ARCON arm, 

however, EGFR fraction was a significant prognostic factor for DSS and LRC. Patients 

with low EGFR levels had a better 5-year DSS (92% versus 77% p=0.01) and LRC 

(88% versus 72% p=0.02) compared to patients with high EGFR (Figure 3b, d).  

Table 2 shows the same data, now comparing AR against ARCON in the subgroups of 

patients with low and high EGFR fractions. ARCON improves 5-year LRC relative to AR 

in patients with low EGFR fraction (88% for ARCON versus 69% for AR p=0.009; 

Hazard Ratio (HR) 0.34) but there was no effect of ARCON in patients with high EGFR 

fraction. The same phenomenon was observed for DSS, albeit that the difference was 

borderline significant (p=0.08).  

The multivariate analysis (Table 3) confirmed EGFR fraction as an independent 

predictive factor for DSS and LRC in the patients treated with ARCON. After correction 

for T-, N-classification and histopathological grade, EGFR expression remained 

associated with LRC and DSS in the ARCON treatment arm (HR 2.43 CI 1.01-5.87 

p=0.048 and HR 3.00 CI 0.99-9.16 p=0.05 respectively). 

 

 
Figure 3. Kaplan-Meier estimates of (A) disease-specific survival in AR arm versus (B) in ARCON 

arm and (C) locoregional control in AR arm versus (D) in ARCON arm. Stratification is by the 

cut-off value of EGFR fraction. Comparison by log-rank test. 
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Discussion 

ARCON, a new treatment option for larynx carcinoma, combines AR with hypoxic 

modifiers to counteract enhanced tumour cell repopulation and reduce intratumoural 

hypoxia [19]. Selection of patients for new treatments is traditionally based on 

standard clinical and histopathological tumour characteristics. Predictive assays, 

based on molecular tumour markers and the oxygenation status of tumour cells, may 

provide better tools to select patients for new treatment approaches. EGFR is involved 

in all mechanisms of radioresistance and we therefore hypothesized that EGFR could 

be a powerful biomarker to predict tumour response to biology-based radiotherapy 

modifications. In the current study, we demonstrated that tumours with low EGFR 

expression respond better to ARCON compared to AR. EGFR expressing tumours were 

more likely to be node positive. However, as ARCON is most effective for regional 

control [21], this putative bias would indicate that the actual effect may be even more 

pronounced. In tumours with a high EGFR fraction, adding hypoxia modification to AR 

had no additive beneficial effect on outcome.  

Biopsies of patients with advanced laryngeal carcinoma were examined for EGFR 

expression. Similarly to other studies [4,24-26], we observed a wide variation in the 

EGFR expression levels. Most of the previous studies found a correlation between high 

(above median) EGFR expression and worse clinical outcome. One of the larger series 

including 155 head and neck cancer patients demonstrated that EGFR expression was 

a strong and independent prognostic indicator for LRC (HR 1.95 p=0.002) and overall 

survival (HR 1.75 p=0.006) [4]. In this study, all patients were treated with 

conventionally fractionated radiotherapy [4]. Two subsequent randomized trials 

consistently demonstrated that differences in outcome between high and low EGFR 

expressing tumours disappeared when accelerated radiotherapy was employed 

[26,27]. The latter improves tumour control only in tumours with high EGFR-

expression levels [26-28], most likely through suppression of EGFR-induced tumour 

cell proliferation.  

In the current study, both for the patient’s cohorts with high as well as low EGFR 

expressing tumours, 5-year LRC in the AR arm was around 70%, confirming the 

observations in the previously mentioned studies that acceleration radiation can 

counteract EGFR-associated radiation resistance [26-28]. Also in the tumours with 

high EGFR-expression treated with ARCON, a LRC rate of about 70% was obtained. 

However, the LRC for tumours with low EGFR levels treated with ARCON was 

significantly improved (88%, p=0.02). So, patients with low EGFR expressing tumours 

benefit from ARCON, whereas patients with high EGFR expressing tumours do not. 

Multivariate analysis indicated that EGFR expression is an independent predictor of 

LRC and DSS in patients treated with ARCON. 
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Table 4. Chi-square  

 EGFR low EGFR high 

Pimo low 21 28 

Pimo high 8 14 

p=0.402  

 

 
Figure 4. Fluorescence image from three xenografted larynx carcinomas showing (A, C & E) HIF-

1α (red) with vessels (blue) and (B, D & F) an adjacent section pimonidazole (green) in 

combination with EGFR (red) and vessels (blue). HIF-1α expression is present in pimonidazole 

positive (hypoxic) and negative (normoxic) areas. 100x magnification. Bar represents 100 µm.  
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From studies performed with EGFR inhibitors it is known that EGFR signalling is 

associated with the hypoxia response. Blocking EGFR can reduce intratumoural 

hypoxia possibly by normalization of the irregular dysfunctional tumour vasculature, 

thereby improving perfusion and oxygen delivery [29-31]. A major pathway in the 

hypoxia response is the HIF-pathway. HIF-1 is a heterodimer consisting of two 

subunits: HIF-1α and HIF-1β. Under normoxic conditions, HIF-1α is rapidly degraded, 

but under hypoxia it is stabilized [32]. Interestingly, EGFR itself can induce the HIF-1 

pathway in an oxygen-independent way by stabilizing HIF-1α, thereby activating the 

same target genes [33]. Tumour cells with high pre-treatment EGFR expression levels 

might be better able to rapidly activate downstream survival pathways, resulting in 

activation of the HIF-pathway, thereby thwarting the hypoxia modifying effect of 

ARCON. Low EGFR expressing tumours possibly lack this capacity and thus might be 

more likely to respond to ARCON. ARCON might reduce activation of the HIF-1 

pathway in hypoxic tumours but possibly cannot counteract the EGFR-induced HIF-

response in normoxic tumour cells. Therefore, in high EGFR expressing tumours, the 

defence mechanism through the HIF-1 pathway can still be active despite hypoxia 

modification. Figure 4 illustrates that in laryngeal tumours there is expression of HIF-

1α present in normoxic and EGFR-positive tumour areas, supporting this EGFR-

dependent HIF-response. Due to technical limitations HIF-1α could only be assessed 

qualitatively and not quantitatively. No correlation was found between overall 

fractions of EGFR and pimonidazole (Table 4). In the absence of hypoxia upregulation 

of HIF-1 may drive cells toward glycolysis, known as the Warburg effect, providing a 

growth advantage for tumour cells and resistance to ionizing radiation [11]. Hypoxia-

independent but EGFR-dependent upregulation of HIF-1α could account for the 

resistance of EGFR expressing tumours to hypoxia-modifying treatment. This 

hypothesis will be further explored in animal experiments. EGFR inhibitors also have 

an effect on the reoxygenation of tumour cells [34,35]. Possibly, in tumours with high 

EGFR expression signalling must be inhibited prior to ARCON treatment in order to 

benefit. 

 

Conclusion 

Current knowledge provides strong evidence that EGFR signalling plays an important 

role in the regulation of tumour cell survival during and after radiation treatment. 

EGFR evolved from a prognostic marker for patient outcome after conventional 

fractionated radiotherapy to a predictive biomarker for the effect of accelerated 

radiotherapy. In the current study we demonstrate that EGFR expression is also 

predictive for the response to hypoxic modification but with a reverse association. In 

patients with laryngeal carcinomas with low EGFR levels outcome can be further 

improved with ARCON, while there is no advantage of ARCON for patients with high 
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EGFR expressing tumours. In the latter, the effect of EGFR inhibition in combination 

with hypoxia modification needs to be explored.  

 

Acknowledgments 

We are grateful to Ms. S.E. Rademakers, Ms. W.J. Peeters, and Mr. P. F. Rijken for their 

valuable advice and excellent technical assistance.  

 

References 

[1] Carpenter G Cohen S. Epidermal growth factor. Annu Rev Biochem 1979;48:193-216. 

[2] Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW Burgess AW. Epidermal growth factor 

receptor: mechanisms of activation and signalling. Exp Cell Res 2003;284:31-53. 

[3] Kalyankrishna S Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin 

Oncol 2006;24:2666-2672. 

[4] Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and 

pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 2002;62:7350-

7356. 

[5] Schmidt-Ullrich RK, Contessa JN, Lammering G, Amorino G Lin PS. ERBB receptor tyrosine kinases and 

cellular radiation responses. Oncogene 2003;22:5855-5865. 

[6] Nijkamp MM, Hoogsteen IJ, Span PN, et al. Spatial relationship of phosphorylated epidermal growth 

factor receptor and activated AKT in head and neck squamous cell carcinoma. Radiother Oncol 

2011;101:165-170. 

[7] Rodemann HP, Dittmann K Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage 

repair. Int J Radiat Biol 2007;83:781-791. 

[8] Chen LF, Cohen EE Grandis JR. New strategies in head and neck cancer: understanding resistance to 

epidermal growth factor receptor inhibitors. Clin Cancer Res 2010;16:2489-2495. 

[9] Bussink J, van der Kogel AJ Kaanders JH. Activation of the PI3-K/AKT pathway and implications for 

radioresistance mechanisms in head and neck cancer. Lancet Oncol 2008;9:288-296. 

[10] Toulany M, Kasten-Pisula U, Brammer I, et al. Blockage of epidermal growth factor receptor-

phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human 

tumor cells in vitro by affecting DNA repair. Clin Cancer Res 2006;12:4119-4126. 

[11] Meijer TW, Kaanders JH, Span PN Bussink J. Targeting Hypoxia, HIF-1, and Tumor Glucose Metabolism 

to Improve Radiotherapy Efficacy. Clin Cancer Res 2012;18:5585-5594. 

[12] Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38-47. 

[13] Nishi H, Nishi KH Johnson AC. Early Growth Response-1 gene mediates up-regulation of epidermal 

growth factor receptor expression during hypoxia. Cancer Res 2002;62:827-834. 

[14] Swinson DE O'Byrne KJ. Interactions between hypoxia and epidermal growth factor receptor in non-

small-cell lung cancer. Clin Lung Cancer 2006;7:250-256. 

[15] Bourhis J, Overgaard J, Audry H, et al. Hyperfractionated or accelerated radiotherapy in head and neck 

cancer: a meta-analysis. Lancet 2006;368:843-854. 

[16] Fu KK, Pajak TF, Trotti A, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized 

study to compare hyperfractionation and two variants of accelerated fractionation to standard 

fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. 

Int J Radiat Oncol Biol Phys 2000;48:7-16. 

[17] Overgaard J, Hansen HS, Specht L, et al. Five compared with six fractions per week of conventional 

radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled 

trial. Lancet 2003;362:933-940. 

[18] Hoogsteen IJ, Marres HA, van der Kogel AJ Kaanders JH. The hypoxic tumour microenvironment, 

patient selection and hypoxia-modifying treatments. Clin Oncol (R Coll Radiol) 2007;19:385-396. 

[19] Kaanders JH, Bussink J van der Kogel AJ. ARCON: a novel biology-based approach in radiotherapy. 

Lancet Oncol 2002;3:728-737. 

[20] Kaanders JH, Pop LA, Marres HA, et al. ARCON: experience in 215 patients with advanced head-and-

neck cancer. Int J Radiat Oncol Biol Phys 2002;52:769-778. 



EGFR expression, hypoxia and treatment response 

 

51 

 

[21] Janssens GO, Rademakers SE, Terhaard CH, et al. Accelerated radiotherapy with carbogen and 

nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 2012;30:1777-

1783. 

[22] Schmidt-Ullrich RK, Mikkelsen RB, Dent P, et al. Radiation-induced proliferation of the human A431 

squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 1997;15:1191-

1197. 

[23] Nagelkerke A, Mujcic H, Bussink J, et al. Hypoxic regulation and prognostic value of LAMP3 expression 

in breast cancer. Cancer 2011;117:3670-3681. 

[24] Rubin Grandis J, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and 

neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998;90:824-832. 

[25] Maurizi M, Almadori G, Ferrandina G, et al. Prognostic significance of epidermal growth factor 

receptor in laryngeal squamous cell carcinoma. Br J Cancer 1996;74:1253-1257. 

[26] Bentzen SM, Atasoy BM, Daley FM, et al. Epidermal growth factor receptor expression in pretreatment 

biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from 

accelerated radiation therapy in a randomized controlled trial. J Clin Oncol 2005;23:5560-5567. 

[27] Eriksen JG, Steiniche T Overgaard J. The influence of epidermal growth factor receptor and tumor 

differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head 

and neck in the randomized DAHANCA 6 and 7 study. Radiother Oncol 2005;74:93-100. 

[28] Smid EJ, Stoter TR, Bloemena E, et al. The importance of immunohistochemical expression of EGFr in 

squamous cell carcinoma of the oral cavity treated with surgery and postoperative radiotherapy. Int J 

Radiat Oncol Biol Phys 2006;65:1323-1329. 

[29] Solomon B, Binns D, Roselt P, et al. Modulation of intratumoral hypoxia by the epidermal growth 

factor receptor inhibitor gefitinib detected using small animal PET imaging. Mol Cancer Ther 

2005;4:1417-1422. 

[30] Qayum N, Muschel RJ, Im JH, et al. Tumor vascular changes mediated by inhibition of oncogenic 

signaling. Cancer Res 2009;69:6347-6354. 

[31] Cerniglia GJ, Pore N, Tsai JH, et al. Epidermal growth factor receptor inhibition modulates the 

microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. 

PLoS One 2009;4:e6539. 

[32] Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ Bussink J. Molecular aspects of 

tumour hypoxia. Mol Oncol 2008;2:41-53. 

[33] Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem 

Mol Biol 2000;35:71-103. 

[34] Bussink J, Kaanders JH van der Kogel AJ. Microenvironmental transformations by VEGF- and EGF-

receptor inhibition and potential implications for responsiveness to radiotherapy. Radiother Oncol 

2007;82:10-17. 

[35] Krause M, Ostermann G, Petersen C, et al. Decreased repopulation as well as increased reoxygenation 

contribute to the improvement in local control after targeting of the EGFR by C225 during 

fractionated irradiation. Radiother Oncol 2005;76:162-167. 

 

 



52 

 

 



 

Chapter 
 

 

 

 

 

 

 

 

 

 

 

Spatial relationship of phosphorylated epidermal growth factor 

receptor and activated AKT in head and neck squamous cell 

carcinoma 

 

 

 

 

 

Monique M. Nijkamp  

Ilse J. Hoogsteen 

Paul N. Span  

Robert P. Takes 

Jasper Lok 

Paul F. Rijken 

Albert J. van der Kogel 

Johan Bussink 

Johannes HAM. Kaanders 

 

 

Radiotherapy & Oncology 2011 Oct;101(1) 165-70 



54 

 

Abstract 

Overexpression of EGFR correlates with decreased survival after radiotherapy in head 

and neck squamous cell carcinoma (HNSCC). However, the contribution of the 

activated form, pEGFR, and its downstream signalling (PI3-K/AKT) pathway is not 

clear yet.  

Fifty-eight patients with HNSCC were included in the study. pEGFR, pAKT, hypoxia, 

and vessels were visualized using immunohistochemistry. Fractions (defined as the 

tumour area positive for the respective markers relative to the total tumour area) 

were calculated by automated image analysis and related to clinical outcome. 

Both pEGFR (median 0.6%, range 0-34%) and pAKT (median 1.8%, range 0-16%) 

expression differed between tumours. Also, a large variation in hypoxia was found 

(median pimonidazole fraction 3.9%, range 0-20%). A significant correlation between 

pEGFR and pAKT (rs 0.44, p=0.004) was seen, however, analysis revealed that this was 

not always based on spatial coexpression. Low pAKT expression was associated with 

increased risk of regional recurrence (p<0.05, log-rank) and distant metastasis 

(p=0.04).  

The correlation between expression of pEGFR and pAKT is, indicative of activation of 

the PI3-K/AKT pathway through phosphorylation of EGFR. Since not all tumours show 

coexpression to the same extent, other factors must be involved in the activation of 

this pathway as well.  
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Introduction 

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane tyrosine kinase 

that can be activated in response to binding of ligands or irradiation [1]. 

Phosphorylated EGFR (pEGFR) results in activation of various downstream pathways 

e.g. the phosphatidyl-inositol-3’ kinase (PI3-K)/Akt pathway [2]. After 

phosphorylation, AKT (pAKT) translocates to the cytoplasm and nucleus leading to 

transcription of genes responsible for cell cycle progression, cellular proliferation, 

DNA-damage repair, and apoptosis, processes contributing to tumour progression [3-

9]. Genes involved in the cellular response to hypoxia such as hypoxia-inducible 

factor-1α (HIF-1α) are also activated by pAKT [10].  

Several investigators have explored the role of EGFR or (p)AKT expression in patients 

with HNSCC. Mostly, they found a strong correlation between high EGFR expression 

and poor clinical outcome [11-15]. In addition, pAKT was found to be a significant 

predictor for local control [16,17]. There are indications that activation of the EGFR-

PI3-K/AKT pathway plays a role in radiation resistance with subsequently poor 

treatment outcome [18-21]. EGFR as well as pAKT are highly expressed in the 

majority of patients with head and neck squamous cell carcinoma (HNSCC) [6,15]. 

Overexpression of EGFR does not necessarily implicate phosphorylation of the 

receptor and activation of downstream pathways and there are, to our knowledge, no 

clinical studies relating pEGFR expression to clinical outcome. Besides activation 

through EGFR, the PI3-K/AKT pathway can be activated by several other mechanisms. 

These include activation through other receptor tyrosine kinases (RTKs), mutations in 

oncogenes upstream such as ras, loss of Phosphatase and tensin homolog deleted on 

chromosome 10 (PTEN) [22], or amplifications or mutations of the gene PIK3CA, 

encoding the catalytic subunit of PI3K, or AKT itself [23,24].  

The purpose of this study was to examine the relative contribution of activated EGFR 

on the activation of the PI3-K/AKT pathway by investigating expression levels of 

pEGFR and pAKT, and spatial coexpression of these two markers. Hypoxic tumour 

cells with an activated EGFR-PI3-K/AKT pathway could have a survival advantage 

after treatment with radiotherapy. Therefore, the relationship between pEGFR, pAKT, 

and hypoxia was also investigated in these tumours.  

 

Patients and Methods 

Patients 

Between May 1998 and November 2001, 58 patients with HNSCC were included in our 

study at the Radboud University Nijmegen Medical Centre, Nijmegen. Patients with 

primary stage II to IV squamous cell carcinoma of the oral cavity, oropharynx, 

hypopharynx, or larynx were included. Patients were treated with radiotherapy alone 

or in combination with other treatment modalities such as chemotherapy or surgery. 

A written informed consent and approval from the local ethics committee was 
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obtained. Approximately 2 h before taking a biopsy, patients received a 20 min 

intravenous (i.v.) infusion of the hypoxia marker Hypoxyprobe-1 (500 mg/m2) 

(pimonidazole hydrochloride; NPI Inc., USA). A maximum dose of 1 g was given to 

patients >2m2. Biopsies were taken for routine diagnostic purposes before treatment 

and additional biopsies were taken for multiple marker analyses. The latter were 

immediately snap frozen in liquid nitrogen until immunohistochemical processing.  

 

Immunohistochemistry 

From the biopsy material, sections of 5 µm were cut, mounted on poly-l-lysine coated 

slides and stored at -80 °C. Prior to staining the sections were fixed in acetone of 4 °C 

for 10 min and rehydrated in phosphate buffered saline (PBS Klinipath, The 

Netherlands). Afterwards sections were incubated in primary antibody dilution (PAD, 

GeneTex Inc., USA) for 5 min at room temperature. Between all consecutive steps of 

the staining procedure, sections were rinsed in PBS three times for 5 min. The 

sections were incubated overnight at 4 °C with rabbit anti-pAKT antibody (Ser473) 

and goat anti-pEGFR antibody (Santa Cruz Biotechnology Inc., USA) diluted 1:50 and 

1:100 in PAD respectively. Adjacent sections were incubated overnight at 4 °C with 

rabbit anti-pimonidazole antibody (J.A. Raleigh, Department of Radiation Oncology 

and Toxicology, University of North Carolina, USA) and goat anti-pEGFR antibody 

1:1000 and 1:100 in PAD respectively. The second incubation was for 30 min at 37 °C 

with donkey anti-rabbit Alexa488 (Molecular Probes, The Netherlands) and donkey 

anti-goat Cy3 (Jackson Immunoresearch Laboratories Inc., USA) diluted 1:600 in PBS. 

The sections were stained for vessels by incubation with the mouse antibody PAL-E 

(Euro Diagnostica, The Netherlands) diluted 1:10 in PAD followed by incubation for 

30 min at 37 °C with chicken anti-mouse Alexa647 antibody (Molecular Probes) 

diluted 1:100 in PBS. The monoclonal antibody PAL-E is a marker for human 

endothelium, especially useful in frozen tissue sections. After the staining procedure, 

the sections were mounted in fluorostab (ProGen Biotechnik GmbH, Germany). 

 

Image acquisition 

The tissue sections were scanned with a digital image processing system consisting of 

a high-resolution 12-bit CCD camera (Micromax, Roper Scientific Inc., USA) on a 

fluorescence microscope (Axioskop, Zeiss, Germany) and a computer-controlled 

motorized stepping stage. Image processing was done using IPLab software 

(Scanalytics Inc., USA) on a Macintosh computer, as described earlier [25]. Each tissue 

section was sequentially scanned for the pimonidazole, pEGFR, pAKT and vessel 

signals at 200x magnification. The resulting composite gray value images were 

converted to binary images for further analysis. Thresholds for the fluorescence 

signals were interactively set at intensities where the steepest gradient occurred 

between background and foreground intensity levels. The corresponding composite 
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binary images were superimposed into one pseudocoloured image for visual 

evaluation.  

 

Analysis 

With H&E staining of a consecutive section, the tumour area of each section was 

delineated. This area was used as a mask in further analysis from which non-tumour 

tissue, necrotic areas, and artifacts were excluded. To calculate the amount of 

coexpression of pEGFR and pAKT, a binary closing operation on the pEGFR signal was 

done. The fractions of pEGFR (FpEGFR), pAKT (FpAKT) and hypoxia (HFpimo) were 

defined as the tumour area positive for the markers divided by the total tumour area. 

The vascular density (VD) was calculated as the number of vascular structures per 

square millimeter. The fraction of pAKT expressing cells positive for pEGFR was 

defined as the area that stained positive for both pEGFR and pAKT divided by the total 

pAKT-positive area (FpAKT[pEGFR]).  

To quantify the distribution of hypoxia, pEGFR, and pAKT in relation to the 

vasculature, zones were chosen at increasing distance from the surface of the nearest 

vessel (0-50 µm, 51-100 µm, 101-150 µm, 151-200 µm, and 201-250 µm). Hypoxic 

fraction, as well as fractions pEGFR and pAKT, and FpAKT[EGFR] were calculated within 

these vasculature zones.  

 

Statistics 

Statistical analyses were done on a Macintosh computer using Prism 4.0c (Hearne 

Scientific software, Ireland) software package. Data were log transformed passing 

normality testing. Correlations between parameters were assessed using the Pearson 

correlation test. To determine correlations between these parameters and categorical 

tumour characteristics (site, T-classification, N-classification, and histopathological 

grade) the Spearman correlation and the Kruskal-Wallis tests were used. To 

determine correlation between the parameters and risk (local and regional control, 

metastasis-formation) Kaplan-Meier graphs with log-rank testing was used. p≤0.05 

was considered indicative of statistical significance.  

 

Results 

Patients and treatment 

A total of 58 patients were included in this study. Pimonidazole was given to all 

patients before biopsy and none of them had adverse reactions. Table 1 shows the 

clinical characteristics of the patients. Seventeen biopsies were excluded from the 

analysis, six because they contained no or very little invasive carcinoma, eight because 

of poor quality due to mechanical damage during biopsy procedure or poor staining 

quality and three because the histological diagnosis was not squamous cell carcinoma. 

Thus, 41 histological confirmed squamous cell carcinomas were used for analysis. 
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There was no significant difference between the clinical parameters of the included 

and excluded patients. The median duration of follow-up for all patients was 25.7 

months and for surviving patients 86.6 months.  

 

Table 1. Patient and tumour characteristics of 41 HNSSC 

Age   

Mean (range) 

 

58 (36-85) 

 Number (%) 

Gender  

       Male  

       Female 

 

35 (85) 

6 (15) 

T-classification 

       T2 

       T3 

       T4 

 

14 (34) 

17 (41) 

10 (24) 

N-classification 

       N0 

       N+ 

 

11 (27) 

30 (73) 

Tumour site 

       Larynx 

       Hypopharynx 

       Oropharynx 

        Oral cavity 

 

20 (49) 

10 (24) 

9 (22) 

2 (5) 

Differentiation grade 

      Good 

       Moderate 

       Poor 

     

2 (5) 

21 (51) 

18 (44) 

 

 

Immunohistochemistry pEGFR, pAKT, pimonidazole and vessels 

Every biopsy was stained for pEGFR, pAKT or pimonidazole, and vessels. All markers 

gave bright fluorescent staining with little background except in areas of necrosis and 

stromal components of the tumour. Pimonidazole binding and pAKT expression was 

observed in the cytoplasm, while pEGFR staining was limited to the cell membrane 

(Figure 1). Coexpression of pEGFR and pAKT (FpAKT[pEGFR]) could identify tumour 

cells in which activated EGFR is linked to the activation of the PI3-K/AKT pathway. 

Figure 2 illustrates tumour cells in which pEGFR is coexpressed with pAKT, but also 

tumour cells with mismatch all within the same tumour section. The median values 

and range for all quantitatively measured parameters are summarized in table 2. A 

moderate but significant correlation between the overall expression of pEGFR and 

pAKT in the different tumours was found (rs=0.4 p=0.004) (Figure 3). There was no 

correlation between pimonidazole binding and expression of pEGFR or pAKT. As 

expected, pimonidazole binding increased with increasing distance from the blood 

vessels with highest fractions at >200 µm from the nearest vessel (Figure 3B). 

Expression of pEGFR and pAKT was found in normoxic as well as hypoxic tumour 
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cells. Most FpAKT[pEGFR] was observed at close distance to the vessels, mainly below 

100 µm, while less overlap was seen in the more hypoxic areas at greater distance 

(Figure 3B).  

 

 

 
Figure 1. Fluorescence image (grey values) at 400x magnification of (A) cytoplasmatic 

pimonidazole binding, and (B) pAKT expression, and (C) membranous pEGFR expression. Bar 

represents 50 µm.  

 

 

 
Figure 2. Fluorescence image showing membranous pEGFR and cytoplasmatic pAKT staining of 

a squamous cell carcinoma of the larynx. Grey scale image of (A) pEGFR, (B) pAKT, and (C) 

vessels (100x magnification). (D) Composite fluorescence image at 100x magnification and (E) 

detailed image at 400x magnification. Red: pEGFR, green: pAKT, blue: vessels. White arrow: 

coexpression, yellow arrow: cell with mismatch. Bar represents 100 µm (A-D) and 50 µm (E).  
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Figure 3. Fraction pEGFR versus pAKT in 41 head and neck squamous cell carcinomas (A) and 

distribution of HFpimo (black bars) and FpAKT[pEGFR] (grey bars) as a function of distance (µm) of 

nearest vessel (B). Plots show average values of 41 tumours (+/- SEM). *Significant difference 

compared to <50 µm. 

 

 

Table 2. Overall values for all parameters in 41 patients with HNSSC, measured with image 

analysis 

 HFpimo (%) FpEGFR 

(%) 

FpAKT (%) FpAKT[pEGFR] VD (N/mm2) 

Median 3.9 0.6 1.5 1.8 293 

Range 0-20 0-34 0-16 0-78 80-1440 

No. positive biopsies 31 (76%) 27 (66%) 30 (74%) - 41 (100%) 

 

 

Correlation between molecular markers and tumour characteristics  

A significant correlation was found between pAKT expression and N classification 

(p=0.001). Figure 4 shows that tumours with lymph node metastases had lower pAKT 

expression compared to lymph node negative tumours (median FpAKT 0.5% versus 

5.8%).  

Apart from a moderate, positive correlation of FpAKT[pEGFR] with T-classification (data 

not shown), no other correlations between the individual markers or coexpression of 

the markers and T- and N-classification, tumour site, or histological grade were found.  

 

Correlation between microenvironmental parameters and outcome 

Patients were dichotomized based on median expression values. A low pAKT 

expression was associated with a significantly shorter time to regional recurrence and 

on metastasis formation (log-rank p=0.04 resp. p<0.05) (Figure 5). The 5-year 
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regional recurrence and metastasis-risk was 40% and 64% for patients with low 

pAKT expression versus 6% and 36% for patients with high pAKT expression. There 

was no association between pEGFR expression and regional control or distant 

metastasis. Local control was not associated with pEGFR or pAKT expression.  

 

 
Figure 4. Expression of pAKT in node positive (N+) versus node negative (N0) tumours. Lines 

represent the median; p = 0.001. 

 

 

 

 

Figure 5. Kaplan-Meier estimates of regional recurrence (A) and metastasis-risk (B). 

Stratification by median pAKT value.  
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Discussion 

Overexpression of EGFR is commonly found in HNSCC [26]. Previous studies have 

revealed that higher expression of EGFR as well as pAKT is associated with a poor 

response to radiotherapy [13,16,17,20,21,27]. Activation of EGFR may result in 

activation of the PI3-K/AKT pathway. However, it is unknown to which extent this 

pathway is involved in radiation resistance in vivo. In our study, a heterogeneous 

group of head and neck cancer patients (with regard to site, classification, and 

treatment) was investigated for expression of pEGFR and pAKT, in relation to the 

microenvironment. In general, total EGFR is highly expressed (>90%) in HNSCC [11]. 

In our study the activated form, pEGFR, was observed in 66% of the tumours and 

expression of pAKT was found in 74% of the patients. The large variation in 

expression levels is in agreement with previous studies, which showed a high 

variation in expression of pEGFR [28-30] and pAKT [16,31,32] in other solid tumours 

as well. In addition, in the current study a positive relationship was found between 

pEGFR and pAKT, suggesting that EGFR signalling is one of the upstream regulators of 

the PI3-K/AKT pathway in HNSCC. A correlation between pEGFR and pAKT was found 

previously in patients with nasopharyngeal carcinoma [30]. Of note, in that study a 

clear distinction was made between the two known phosphorylation sites of AKT 

(Thr308 and Ser473), while in the present study one phosphorylation site of pAKT 

(Ser473) was investigated, in consensus with most other studies. The authors 

suggested that the increased activation of PI3-K/AKT signalling in nasopharyngeal 

cancer is most likely due to overexpression of pEGFR rather than mutations of the 

PIK3CA gene since they detected no mutations. 

Coexpression of pEGFR and pAKT might identify tumour cells in which EGFR is 

responsible for the activation of AKT and may therefore be a predictive factor for the 

response to EGFR-inhibitors, radiotherapy, or both. The PI3-K/AKT pathway triggers 

a cascade of responses, which are involved in all major radiation resistance 

mechanisms [18]. In the present study, a large variation was found in coexpression of 

pEGFR and pAKT, indicating that in head and neck cancer not all tumour cells that 

express pAKT are activated by EGFR and vice versa. Activation of AKT can occur by 

several mechanisms, independent of EGFR activation. These include amplifications or 

mutations of the gene PIK3CA [23,24], amplifications of AKT, activation by other RTKs 

or hetrodimerization of other ErbB family members [33], and decreased expression of 

PTEN [22]. PTEN, which acts a tumour suppressor, limits the activity of PI3K pathway 

and loss of PTEN results in unrestrained activation of AKT [5] and upregulation of the 

downstream proteins responsible for all major cancer growth mechanisms, thereby 

increasing radiation resistance. On the other hand, our results, i.e. pEGFR expression 

without pAKT expression, indicate that not in all cells activation of EGFR necessarily 

leads to activation of the downstream PI3-K/AKT pathway. Apart from of the PI3-
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K/AKT pathway, EGFR can activate other cell survival pathways including mTOR, 

RAS/MAPK, and the STAT/JAK pathway [34]. 

Coexpression, suggesting activation of AKT through pEGFR, is highest in parts of the 

tumour at a relatively short distance (below 100 µm) from the vessels. Figure 3B 

shows that in severely hypoxic tumour cells, pEGFR is of little influence on the 

activation of the PI3-K/AKT pathway. This suggests that activation of AKT in hypoxic 

cells is more commonly due to the other mechanisms previously mentioned. Also, 

activation of EGFR without pAKT expression was present, possibly leading to EGFR-

dependent activation of other pathways. It has been described earlier that hypoxia 

induces expression of EGFR, and in turn EGFR might enhance the cellular response to 

hypoxia and may therefore act as survival factor for hypoxic cells [35,36]. In response 

to hypoxia, cells have the ability to undergo adaptive changes [37], which can result in 

survival of the tumour cells and activation of the EGFR-PI3-K/AKT pathway under 

reoxygenated conditions. Even a small proportion of these reoxygenated cells may 

repopulate the tumour after treatment with radiotherapy. Recent studies show that 

inhibition of EGFR by the monoclonal antibody C225 leads to a decreased AKT 

phosphorylation, reduces tumour repopulation during radiotherapy and contributes 

to an improvement of tumour control [38,39].   

An inverse correlation between pAKT and N-classification was found. Patients with 

negative lymph nodes have a significantly higher expression of pAKT compared to 

patients with positive lymph nodes. This was previously also reported for patients 

with gastric carcinomas [40]. In addition to these findings, we found that low pAKT 

expression is associated with worse regional control, which, obviously, is directly 

linked to the higher incidence of lymph node metastases at presentation, and 

metastasis formation. These results are in contrast with several clinical studies were 

high pAKT expression is a prognostic factor for poor disease control [17,20,21]. 

However, recent studies demonstrated a role of pAKT in invasion and metastasis. One 

study showed that activation of AKT1 can suppress tumour invasion and lung 

metastasis formation in a mammary mice model [41]. Their hypothesis is that AKT1 

may hinder metastasis by preventing the degradation of the extracellular matrix and 

promoting differentiation of the mammary epithelium. In another study, with a breast 

epithelial cell line, downregulation of AKT1 enhanced EGF stimulated migration of 

cells [42]. The enhanced migration was accompanied by changes in protein expression 

that are consistent with epithelial-mesenchymal transition (EMT) characterized by 

loss of cell adhesion. Whether pAKT has the same role in HNSCC is under 

investigation.  

In conclusion, in a group of 41 head and neck carcinomas the presence of pEGFR, 

pAKT expression in relation to hypoxia and blood vessels was determined. Our data 

suggest that activation of the PI3-K/AKT pathway is only partly due to activation of 

EGFR in HNSCC. The high percentage of pEGFR and pAKT positive patients seen in this 
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study supports an important role for the EGFR-PI3-K/AKT pathway in the biology of 

head and neck cancer. Our data are consistent with a role for pAKT in cell migration 

and thwarting of metastasis. Currently, analysis of tumour material obtained from a 

randomized trial employing accelerated radiotherapy and oxygenation modification in 

patients with advanced laryngeal carcinoma (ARCON) [43] has started confirm these 

observations in a more homogenous group of patients. 
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Abstract 

E-cadherin is a transmembrane glycoprotein, involved in cell-cell adhesion and 

epithelial-mesenchymal transition (EMT). Vimentin is highly expressed in 

mesenchymal cells and is positively correlated with increased metastasis. Here we set 

out to determine the expression of E-cadherin and vimentin in head and neck 

squamous cell carcinomas (HNSCC). 

Twenty-six patients with primary stage II to IV HNSCC were included. E-cadherin and 

vimentin were visualized using immunohistochemistry, semi-automatically analyzed 

for expression patterns and correlated with the clinical behaviour of these tumours.  

A large variation in E-cadherin and vimentin expression was observed between 

tumours (median 17% range 0-51% respectively median 0% range 0-20%). Tumours 

with low E-cadherin expression showed a significantly higher incidence of metastasis 

formation compared to tumours with high expression (81% versus 19%, p=0.004). 

Enhanced expression of vimentin was associated with a trend towards a higher 

metastatic risk (33% versus 77%) compared to tumours without expression of 

vimentin. All patients with low E-cadherin and high vimentin expression (an EMT-

phenotype) developed distant metastases versus only 44% of the other patients 

(p=0.008).  

Loss of E-cadherin and gain of vimentin may be associated with enhanced migration of 

tumour cells, leading to higher metastatic risk of HNSCC patients.  
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Introduction 

Regional or distant metastasis formation is a major determinant in the prognosis of 

patients with head and neck squamous cell carcinoma (HNSCC). For these patients 

there is no curative treatment and they will die of their disease. Metastasis formation 

requires the spreading of cancer cells from their primary site to secondary locations in 

the body, the reattachment and growth at the new location. For tumour cells to 

migrate and form metastases, they must undergo changes in cell-cell adhesion, 

remodel cell-matrix adhesion sites and follow a chemoattractive path through the 

extracellular matrix; a phenomenon known as epithelial-mesenchymal transition 

(EMT) [1-3]. Loss of E-cadherin expression, leading to reduced cell-cell adhesion, as 

well as elevated levels of the mesenchymal marker vimentin, are distinctive events in 

EMT and common in metastatic carcinomas [1,2,4]. 

E-cadherin is a cell adhesion molecule present in the plasma membrane of most 

epithelial cells and has been implicated as a tumour suppressor in several types of 

human epithelial tumours, inhibiting migration and metastasis [3,5]. E-cadherin itself 

does not exhibit enzymatic activity. However, it has been shown that E-cadherin-

mediated-cell-cell adhesion can trigger a ligand-independent activation of the EGFR, 

regulating important cell signalling pathways such as PI3-K/AKT and Extracellular 

Signal-Regulated Kinase (ERK) [6-8]. On the other hand, E-cadherin inhibits ligand-

dependent activation of EGFR [9] (reviewed in Cavallaro 2011 [10]). Furthermore, 

increasing evidence indicates that the EGFR signalling pathways are able to regulate 

expression of the proteins involved in EMT [11,12].  Although some studies explored 

the expression of E-cadherin in HNSCC [13,14] and its relation with EGFR [15], it 

remains unclear whether there is a correlation between E-cadherin and the EGFR 

signalling pathways within tissue context.  

Vimentin is a intermediate-sized filament that is highly expressed in mesenchymal 

cells and is commonly used to identify cancer cells undergoing EMT based on a 

positive correlation of vimentin expression with increased invasiveness and 

metastasis [4].  

In HNSCC, radiotherapy is effective in early-stage tumours, but less effective for 

advanced tumours and only palliative in metastatic disease [16]. Loss of E-cadherin 

and gain of vimentin expression as well as activation of EGFR, are associated with 

tumour progression and EMT [4]. These considerations have led us to explore 

whether there is an association between E-cadherin and vimentin expression and the 

EGFR-PI3-K/AKT signalling pathway and/or metastasis formation in patients with 

head and neck cancer.   
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Patients and Methods 

Patients 

Twenty-eight patients with primary stage II to IV squamous cell carcinoma of the oral 

cavity, oropharynx, hypopharynx or larynx, treated at the Radboud University 

Nijmegen Medical Centre, Nijmegen, The Netherlands were included. Written 

informed consent was obtained from all patients after approval from the local ethics 

committee. Biopsies were taken for routine diagnostic purposes before treatment and 

during this procedure additional biopsies were taken from all patients for multiple 

marker analysis. The latter were immediately snap frozen in liquid nitrogen until 

immunohistochemical processing.  

 

Immunohistochemistry 

From the biopsy material, sections of 5 µm were cut, mounted on poly-l-lysine coated 

slides and stored at -80 °C. Prior to staining the sections were fixed in acetone of 4 °C 

for 10 min and rehydrated in phosphate buffered saline (PBS Klinipath, The 

Netherlands). Afterwards, sections were incubated in primary antibody diluent (PAD, 

GeneTex Inc., USA) for 5 min at room temperature. Between all consecutive steps of 

the staining procedure, sections were rinsed in PBS three times for 5 min. The 

sections were incubated overnight at 4 °C with goat anti-E-cadherin (Santa Cruz 

Biotechnology Inc., USA) 1:50 in PAD. The second incubation was for 30 min at 37 °C 

with donkey anti-goat Cy3 (Jackson Immunoresearch Laboratories Inc., USA) diluted 

1:600 in PAD. The sections were stained for vessels by incubation with the mouse 

antibody PAL-E (Euro Diagnostica, The Netherlands) diluted 1:10 in PAD. Next, 

sections were incubated for 30 min at room temperature with rabbit anti-vimentin 

(Santa Cruz Biotechnology Inc.) 1:200 in PAD followed by incubation for 45 min at 

37°C with donkey anti-rabbit Alexa488 (Molecular Probes, The Netherlands) and 

chicken anti-mouse Alexa647 antibody (Molecular Probes) diluted 1:100 in PAD. 

EGFR and pAKT (goat anti-EGFR and rabbit anti-pAKT 1:50, Santa Cruz Biotechnology 

Inc.) staining was combined with either E-cadherin or vimentin staining. After the 

staining procedure, the sections were mounted in fluorostab (Euro Diagnostica). 

 

Image acquisition and analysis 

The tissue sections were scanned with a digital image processing system consisting of 

a high-resolution 12-bit CCD camera (Micromax, Roper Scientific Inc., USA) on a 

fluorescence microscope (Axioskop, Zeiss, Germany) and a computer-controlled 

motorized stepping stage. Image processing was done using IPLab software 

(Scanalytics Inc., USA) on a Macintosh computer, as described earlier [17]. Each tissue 

section was sequentially scanned for all signals at 200x magnification. The resulting 

composite gray value images were converted to binary images for further analyses. 

Thresholds for the fluorescence signals were interactively set at intensities where the 
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steepest gradient occurred between signal to background intensity levels. The 

corresponding composite binary images were superimposed into one image for 

further image analysis. With help of an H&E staining of a consecutive section, the 

tumour area of each section was delineated. This area was used as a mask in further 

analysis from which non-tumour tissue; necrotic areas and artifacts were excluded. 

Vimentin expression in mesenchymal cells other than tumour cells (blood vessels, 

stromal components) was excluded from analysis. The fractions of expression of the 

markers were defined as the tumour area positive for the individual marker divided 

by the total tumour area.  

 

Statistics 

Statistical analyses were done on a Macintosh computer using Prism 4.0c (Hearne 

Scientific software, Ireland) software package. To determine correlations between 

parameters and categorical tumour characteristics (T-classification, N-classification, 

and differentiation-grade) χ2–test, Spearman correlation and Kruskal-Wallis tests 

were used. To determine associations with distant metastasis formation, Kaplan-

Meier graphs with log-rank testing were used. p≤0.05 was considered indicative of 

statistical significance.  

 

Results 

Patients and treatment 

Twenty-eight patients were included in this study. Two biopsies were excluded from 

the analysis because they contained very little invasive carcinoma. Thus, 26 

histologically confirmed HNSCC remained for analysis. Table 1 shows the clinical 

characteristics and treatment modalities of the patients. The median duration of 

follow-up was 25.9 months for all patients and 90.3 months for surviving patients. 



72 

 

Table 1. Patient and tumour characteristics of 26 HNSCC 

Age   

Mean (range) 

 

58 (36-80) 

 Number (%) 

Gender  

       Male  

       Female 

 

23 (88) 

3 (12) 

T-classification 

       T2 

       T3 

       T4 

 

7 (27) 

12 (46) 

7 (27) 

N-classification 

       N0 

       N+ 

 

7 (27) 

19 (73) 

Tumour site 

       Larynx 

       Hypopharynx 

       Oropharynx 

       Oral cavity 

 

12 (47) 

5 (20) 

6 (24) 

2 (9) 

Treatment 

       Radiotherapy alone 

       Chemoradiation 

       Radiation + surgery 

     

14 (54) 

5 (19) 

7 (27) 

 

E-cadherin and vimentin expression in head and neck cancer 

Staining of E-cadherin was limited to the cell membrane, while vimentin expression 

was observed in the cytoplasm. All markers gave bright fluorescent staining with little 

background except in areas of necrosis and stromal components of the tumour. E-

cadherin expression was present in 96% (25/26) of the biopsies and was found 

throughout the tumour tissue in all samples (Figure 1). Vimentin expression was 

present in 46% (12/26) of the biopsies and was observed in tumour cells surrounding 

blood vessels (Figure 1). Sporadically, in three biopsies, we found vimentin expression 

in solitary tumour cells further away from blood vessels. No correlation was observed 

between overall expression of E-cadherin and vimentin in the different biopsies. No 

associations were found between expression of these markers and T-stage, N-stage or 

differentiation grade. Tumours with low E-cadherin and high vimentin fractions could 

identify tumours in which EMT has occurred (Figure 2A). In addition, no associations 

were observed for patients with low E-cadherin and high vimentin and T- and N-stage 

or differentiation grade.  

 

Exploring the expression of E-cadherin and vimentin in relation to EGFR and pAkt 

might reveal associations between EMT and the EGFR-PI3-K/AKT pathway in patients 

with HNSCC. We observed tumour cells that show expression of E-cadherin, vimentin, 

EGFR and pAKT but also tumour cells without coexpression of more than one marker 

in the same tumour cell (Figure 1). We found a non-significant and weak association 
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between high E-cadherin fractions and high EGFR (rs 0.28 p=0.18) and pAKT 

expression (rs 0.27 p=0.19). Also, high vimentin expression was very weakly 

correlated with high EGFR (rs 0.14 p=0.48) and not with pAKT fractions (rs 0.02 

p=0.9). 

 

 

 
Figure 1. Fluorescence image at 200x magnification of (A) membranous E-cadherin (red), 

cytoplasmatic vimentin expression (green) and vessels (blue), (B) E-cadherin, pAKT (green) 

expression and vessels and (C) EGFR (red), vimentin expression and vessels.  Bar represents 50 

µm.  

 

 

EMT and distant metastasis formation 

Patients were dichotomized based on median expression values. A low expression of 

E-cadherin was significantly associated with a higher incidence of distant metastasis 

formation (p=0.004). The 5-year metastatic risk was 81% for patients with low E-

cadherin expression versus 19% for patients with high E-cadherin expression (Figure 

2B). Also, a high expression of vimentin showed a non-significant trend towards a 

higher metastatic risk (5-years risk 33% versus 77%, p=0.07) (Figure 2C). Figure 2D 

shows that patients with an EMT-phenotype (low E-cadherin and high vimentin 
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expression) have a significantly higher incidence of distant metastasis formation 

compared to the remaining patients (100% versus 44%, p=0.008). A further subgroup 

analysis is not realistic in view of the low total number of patients.  

 

 
Figure 2. Distribution and correlation of E-cadherin and vimentin expression based on whole 

tissue sections in 26 head and neck biopsies. Tumours with an EMT-phenotype are encircled 

(A) and Kaplan-Meier estimates of metastatic risk of (B) E-cadherin expression, (C) vimentin 

expression (stratification by the median value) and (D) EMT-phenotype. Comparison by log-

rank test. Numbers represent number of patients at risk.  
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Discussion 

Changes in cell adhesion molecules have an important role in increasing the motility 

of tumour cells and thereby enhancing migration and the formation of metastasis. 

During EMT, epithelial cells transform and attain mesenchymal-like properties, such 

as loss of E-cadherin and gain of vimentin expression. Here, we investigated a 

heterogeneous (with regard to site, classification and treatment) group of head and 

neck cancer patients for expression of E-cadherin and vimentin. We found that loss of 

E-cadherin significantly correlated with increased risk of distant metastasis formation 

while increased vimentin expression showed a trend towards a correlation with this 

endpoint. Of the 26 patients included in our study, 21 patients received only local 

treatment, while five patients received chemotherapy in addition to radiation. 

Chemotherapy reduces the risk of metastatic failure. Therefore, we repeated the 

analysis excluding those patients (data not shown). This, however, did not lead to 

relevant differences in results or conclusions.  

Previously, the expression of E-cadherin in primary carcinomas and nodal metastases 

of HNSCC and the relation to metastasis and patient survival has been explored 

[13,14]. The authors described more intense expression of E-cadherin in 

differentiated cells, but no correlation was found between reduced E-cadherin 

expression and survival (51 patients included in this study) [13]. This discrepancy in 

outcome might be explained by differences in staining techniques. Their group used 

the monoclonal antibody HECD-1, which detects the intracellular cytoplasmatic 

domain of the E-cadherin molecule, while a polyclonal antibody raised against the 

extracellular domain of E-cadherin was used in our study. A second study 

investigating E-cadherin expression and treatment outcome also showed no 

significant correlation with survival [14]. In contrast to our study, they dichotomized 

57 patients in negative and positive for E-cadherin and correlated this only to overall 

survival, while we divided patient based on median values and looked for the 

incidence of distant metastasis formation.   

Despite the fact that vimentin has been correlated with increased metastasis [4], it has 

not been extensively studied as prognostic marker in head and neck cancer treated 

with radiotherapy. Our results revealed that high vimentin expression shows a trend 

towards a higher incidence of metastasis formation. No correlation was observed 

between overall expression of E-cadherin and vimentin in the different biopsies, 

suggesting the presence of an intermediate phenotype with cells that passed only 

partly through the EMT. Although the numbers are small, we were able to identify a 

subset of tumours with low E-cadherin together with high vimentin fractions. These 

patients showed a significantly higher risk of metastasis formation compared to the 

tumours without this EMT-phenotype. A confirmatory study is currently being 

performed in a larger and more homogeneous cohort of patients with laryngeal 

carcinoma.  
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Overactivation of EGFR signalling pathways is related to more aggressive tumour 

behaviour and correlates with poor prognosis in patients with HNSCC [18-20]. 

Activation of the EGFR signalling cascades in turn can lead to transcription of genes 

responsible for cell cycle progression, cellular proliferation, DNA repair and 

metastasis [21,22]. EGFR signalling pathways are highly expressed in many human 

cancers, including carcinoma of the head and neck [23,24], leading to radioresistance 

and tumour progression [18,19,25]. Increasing evidence indicates that the EGFR 

signalling pathways can regulate expression of proteins involved in EMT in several 

tumour types [11,12]. This is supported by a study using a head and neck tumour 

model that highly expressed E-cadherin and that was very sensitive to the anti-EGFR 

antibody Cetuximab, whereas a tumour line that expressed vimentin revealed low 

sensitivity [26]. We observed that not all tumour cells that express E-cadherin also 

express EGFR although we found a weak association between high E-cadherin and 

high EGFR fractions. The relevance of this correlation for the prognosis of patients 

with head and neck cancer is not clear and could be due to the small number of 

patients. 

The role of the EGFR down-stream target AKT in cell migration and metastasis is less 

clear. One study [27] showed that expression of AKT can induce EMT and promote 

enhanced motility and invasiveness in squamous cell carcinoma lines, while another 

study demonstrated that activation of AKT1 might suppress tumour invasion [28]. Irie 

et al described isoform-specific functions of AKT in the regulation of cell migration 

and invasion [29]. AKT1 down-regulation enhanced migration in response to EGF 

stimulation and induced an EMT phenotype: repressed E-cadherin expression and a 

small increase in vimentin expression. In contrast, AKT2 down-regulation does not 

enhance migration or alter expression of E-cadherin, but it does reduce vimentin 

expression. 

In conclusion, our results show that a phenotype resembling EMT in patients with 

HNSCC, with loss of E-cadherin and gain of vimentin, is associated with a significantly 

higher risk of distant metastasis formation. If confirmed, this observation may have 

important implications for treatment decisions (e.g. (neo)adjuvant chemotherapy).     
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Abstract  

The PI3-K/AKT pathway plays an important role in tumour cell survival and 

radioresistance. Targeting AKT is considered as a treatment option in several solid 

tumour types. Recently; however, we found in head and neck cancer patients that low 

phosphorylated (p)AKT expression in the primary tumour was associated with lymph 

node metastasis. Here, we set out to validate this finding in an independent cohort of 

laryngeal cancer patients and to examine the effect of pAKT inhibition on epithelial-

mesenchymal transition (EMT) of laryngeal cancer cells. 

Seventy-eight patients with laryngeal cancer were included. EGFR, pAKT, vimentin, E-

cadherin, hypoxia and blood vessels were visualized in biopsy material using 

immunohistochemistry. Positive tumour areas and spatial relationships between 

markers were assessed by automated image analysis. In six laryngeal cancer cell lines 

E-cadherin and vimentin mRNA was quantified by real-time polymerase chain 

reaction and by immunohistochemistry before and after treatment with the pAKT 

inhibitor MK-2206.  

A significant correlation was found between low pAKT in the primary tumour and 

positive lymph node status (p=0.0005). Tumours with lymph node metastases had 

approximately 10-fold lower median pAKT-value compared to tumours without 

lymph node metastases, albeit with large inter-tumour variations, validating our 

previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206 

upregulation of vimentin and a downregulation of E-cadherin occurred, consistent 

with EMT. 

Low pAKT expression in larynx tumours is associated with lymph node metastases. 

Further, inhibition of pAKT in laryngeal cancer induces EMT predisposing for an 

increased metastatic risk.  
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Introduction 

Radiotherapy is an effective treatment modality for head and neck cancer, in 

particular for early-stage tumours. In advanced stages the effectiveness of 

radiotherapy has been improved by the addition of chemotherapy or the Epidermal 

Growth Factor Receptor (EGFR) inhibition by cetuximab [1,2]. Currently, the 

combination of radiotherapy with inhibitors of pAKT, a signaling molecule 

downstream of EGFR, is under clinical investigation. However, recent findings showed 

an association of low pAKT with increased metastases formation in patients with head 

and neck cancer treated with radiotherapy [3]. This raises the question if pAKT 

inhibition in head and neck cancer may actually promote a more metastatic phenotype 

leading to a worse clinical outcome.  

AKT, a serine/threonine protein kinase, is one of the most frequently hyperactivated 

signaling pathways in human cancers. It is phosphorylated by phosphatidylinositide-

3-kinase (PI3-K) after activation through receptor tyrosine kinases (RTK) like EGFR. 

After phosphorylation at the plasma membrane AKT translocates to the cytosol and 

nucleus to activate its substrates [4]. Although the main known biological 

consequences of AKT activation are proliferation, growth and tumour-induced 

angiogenesis, the prognostic significance of AKT activation in cancer is inconclusive. 

High pAKT expression has been associated with poor [5] and favorable prognosis [6] 

in different types of tumours.  

Three isoforms of AKT exist, of which AKT1 and AKT2 are ubiquitously expressed. All 

are activated by similar mechanisms in PI3-K signaling [7]. The different isoforms of 

AKT all have cancer-type specific roles in cell migration and metastasis formation. In 

prostate cancer cells, both AKT1 and AKT2 function as negative regulators of cell 

migration and invasion. Downregulation of AKT1 but not AKT2 in breast cancer cells 

caused an enhancement of cell migration [8]. This enhanced migration was 

accompanied by phenotypical changes that are consistent with the phenotypical 

change of epithelial-mesenchymal transition (EMT). In EMT, the expression of 

epithelial markers (E-cadherin) is suppressed and the expression of mesenchymal 

markers (vimentin) is enhanced, leading to reduced cell-cell adhesion and possibly 

increased cell migration. Earlier investigations show more metastases and a reduced 

patient survival when tumour cells exhibit a more mesenchymal phenotype [9,10].  

MK-2206, currently used in clinical trials, is an allosteric inhibitor of AKT 

phosphorylation [11].   

The purpose of this study was to validate the association of pAKT with lymph node 

metastasis in an independent, homogeneous cohort of patients with larynx cancer. 

Furthermore, we studied the effect of MK-2206-induced pAKT inhibition on the 

expression of two major proteins involved in EMT, E-cadherin and vimentin, in 

laryngeal cancer cell lines.  
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Patients and methods 

Patients 

Between April 2001 and January 2008, 78 patients with squamous cell carcinoma of 

the larynx were included. All patients were treated in the Radboud University 

Nijmegen Medical Centre Nijmegen, The Netherlands. The study was approved by 

from the local ethics committee and all patients provided written informed consent. 

Patients were treated with (accelerated) radiotherapy alone or surgery with post-

operative radiotherapy. Approximately 2 h before taking a biopsy, patients received a 

20 min intravenous (i.v.) infusion of the hypoxia marker Hypoxyprobe-1 (500 mg/m2) 

(pimonidazole-hydrochloride; NPI Inc.). Biopsies were taken for routine diagnostic 

purposes and additional biopsies were taken for multiple marker analyses. The latter 

were snap frozen in liquid nitrogen.  

 

Immunohistochemistry  

Frozen tumour sections (5 µm) were mounted on poly-L-lysine coated slides and 

stored at -80°C. Next sections were fixed in cold acetone (4°C, 10 min) and rehydrated 

in phosphate buffered saline (PBS Klinipath, The Netherlands). Between all steps of 

the staining procedure, sections were rinsed in PBS three times. Sections were 

incubated overnight at 4°C with rabbit anti-pAKT antibody (Ser473) and goat anti-

EGFR antibody diluted 1:50 in primary antibody dilution (PAD, GeneTex Inc.). 

Adjacent sections were incubated overnight with rabbit anti-pimonidazole antibody 

(J.A. Raleigh, University of North Carolina, USA) and goat anti-EGFR antibody (1:1000 

and 1:50 in PAD respectively). A third adjacent tumour section was incubated with 

goat anti-E-cadherin 1:50 in PAD. For all sections, the second incubation was with 

donkey anti-rabbit Alexa488 (Molecular Probes, The Netherlands) or donkey anti-goat 

Cy3 (Jackson Immunoresearch Laboratories Inc.) diluted 1:600 in PBS for 30 min at 

37°C. The sections were stained for vessels by incubation with the mouse anti-human 

endothelium antibody PAL-E (Euro Diagnostica, The Netherlands) (1:10 in PAD) 

followed by incubation for 30 min at 37°C with chicken anti-mouse Alexa647 antibody 

(Molecular Probes) (1:100 in PBS). Next, sections stained for E-cadherin were 

incubated with rabbit anti-vimentin 30 min (room temperature, 1:200 in PAD) 

followed by incubation for 45 min with donkey anti-rabbit Alexa488 1:100 in PAD. 

Antibodies were purchased from Santa Cruz Biotechnology Inc., CA. After the staining 

procedure, the sections were mounted in fluorostab (ProGen Biotechnik GmBH, 

Germany). UT-SCC cells cultured on chamberslides were stained similarly.     

 

Image acquisition 

The tumour sections were scanned with a digital image processing system on a 

fluorescence microscope (Axioskop, Zeiss, Germany) and a computer-controlled 

motorised stepping stage. Image processing was done using IPLab (Scanalytisc Inc.) 
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and ImageJ software (National Institute of Health, USA) on a Macintosh computer, as 

described earlier [12,13]. Each section was sequentially scanned for all signals at 200X 

magnification. The resulting composite grey value images were converted to binary 

images for analyses. Thresholds for the fluorescence signals were interactively set at 

intensities where the steepest gradient clearly distinguishing between signal and 

background. The corresponding composite binary images were superimposed into 

one pseudo-coloured image for visual evaluation.  

 

Analysis 

With H&E staining of a consecutive section, the tumour area of each section was 

delineated. This area was used as a mask in further analysis from which non-tumour 

tissue; necrotic areas and artefacts were excluded. Vimentin expression in 

mesenchymal cells other than tumour cells (blood vessels, stromal components) was 

excluded from analysis. The fractions of marker expression were defined as the 

tumour area positive for the individual marker divided by the total tumour area.  

To quantify the distribution of hypoxia, EGFR and pAKT in relation to the vasculature, 

zones were chosen at increasing distances from the nearest vessel (0-50, 51-100, 101-

150, 151-200, and >201 µm). Hypoxic fractions, as well as fractions EGFR and pAKT 

were calculated within these vascular zones.  

 

Cell culture 

Six human laryngeal cancer cell lines (UT-SCC lines, University of Turku, Finland) 

were cultured in vitro. All patients from whom the cell lines were derived were N0 

except UT-SCC9, which was N1. Cells were cultured under humidified conditions 

(37°C, 5% CO2), and passaged twice weekly in DMEM containing 2mM L-glutamine, 

1% nonessential amino acids, 20 mM Hepes, 10 units/ml penicillin, 10 units/ml 

streptomycin and 10% foetal bovine serum. To determine the effect of low pAKT 

levels in tumours, cell lines were treated overnight with 1 µM of the pAKT inhibitor 

MK-2206 (Selleckchem, Houston, USA) under standard normoxic conditions. 

 

qPCR  

To determine the effect of pAKT inhibition on EMT, cells were lysed, RNA isolated, and 

E-cadherin and vimentin mRNA quantified using qPCR. Total RNA was isolated with 

total RNA purification kit (Norgen Biotek Corp., Canada) with on-column DNAse 

treatment. RNA was reversed-transcribed using I-script (Bio-Rad) and cDNAs were 

amplified with specific primers (E-cadherin forward: AGGCCAAGCAGCAGTACATT,  

reverse: ATTCACATCCAGCACATCCA; Vimentin forward: 

ACACCCTGCAATCTTTCAGACA, reverse: GATTCCACTTTGCGTTCAAGGT) using Sybr 

Green Master Mix (Applied Biosystems, Nieuwerkerk a/d IJssel, the Netherlands) on a 

CFX96 realtime-PCR detection system (Bio-Rad Laboratories Inc. Richmond, CA). All 
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samples were normalized for levels of hypoxanthine-guanine phosphoribosyl-

transferase (HPRT) expression.  

 

Western blot 

To verify if pAKT expression was inhibited by MK-2206 cells were lysed, debris was 

removed and protein was quantified using a standard Bradford absorbance assay. 

Proteins were separated by SDS-PAGE and blotted onto PVDF membrane. Membrane 

was incubated with a pAKT (Ser473) antibody (Cell Signaling Technology, Danvers, 

MA) followed by incubation with HRP-conjugated antibody goat anti-rabbit IgG (Santa 

Cruz Biotechnology, Santa Cruz, USA) and detected with an ECL chemiluminescence 

system. Protein quality and loading check was performed with α-tubulin (Calbiochem 

San Diego, CA)  

 

Statistics  

Statistical analyses were done on a Macintosh computer using Prism 4.0c (Hearne 

Scientific software, Ireland) software package. To determine correlations between 

parameters and categorical tumour characteristics (T-classification, N-classification 

and differentiation grade) Spearman correlation and Kruskal-Wallis tests were used.  

p ≤ 0.05 was considered statistical significant.  

 

Results  

Patients  

A total of 78 patients were included in this study. Pimonidazole was given to all 

patients before biopsy taking and none of them had adverse reactions. Nine biopsies 

were excluded from analysis, three because they contained no or little invasive 

carcinoma, four because of poor staining quality and two because histological 

diagnosis was not laryngeal carcinoma. Thus, 69 histological confirmed laryngeal 

carcinomas were used for analysis (Table 1).  
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Table 1. Patient and tumour characteristics  (N=69) 

Age   

Mean (range) 

 

61 (38-83) 

 Number (%) 

Gender  

       Male  

       Female 

 

50 (72) 

19 (28) 

T-classification 

       T2 

       T3 

       T4 

 

29 (42) 

27 (39) 

13 (19) 

N-classification 

       N0 

       N+ 

 

42 (61) 

27 (39) 

Tumour site 

       Glottic 

       Supraglottic 

       Subglottic 

       Transglottic 

 

20 (29) 

43 (62) 

2     (3) 

4     (6) 

Diff. grade 

       Good 

       Moderate 

       Poor 

       Not classified 

     

5     (7) 

41 (60) 

18 (26) 

5     (7) 

 

 

EGFR, pAKT, E-cadherin & vimentin expression in larynx carcinoma 

Staining of EGFR and E-cadherin was limited to the cell membrane, while pAKT and 

vimentin expression was observed in the cytoplasm (Figure 1). As expected, 

pimonidazole binding increased at increasing distances from the blood vessels with 

highest fractions at >150 µm from the nearest vessel. Expression of EGFR was 

predominantly found in better-oxygenated areas close to blood vessels, while pAKT 

expression was higher in pimonidazole positive, hypoxic areas (Figure 2).  

There was a strong significant negative correlation between pAKT expression and N-

stage (p=0.0005). Laryngeal carcinomas with lymph node metastases had much lower 

pAKT expression compared to tumours with negative lymph node (median fraction 

0.08 versus 0.009, Figure 3). No further associations were found between expression 

of EGFR or pAKT and other clinical parameters.  

Previously, we hypothesized that pAKT attenuates the transition of epithelial cells to a 

more mesenchymal phenotype, thereby explaining lymphatic invasion specifically in 

pAKT negative tumours. We therefore explored E-cadherin and vimentin expression 

in relation to pAKT. Some pAKT positive cells were also positive for E-cadherin, while 

others coexpressed pAKT and vimentin.   
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Figure 1. Immumofluorescene image of a biopsy of a laryngeal carcinoma showing (A) 

membranous EGFR staining (red) and cytoplasmatic pAKT staining (green) (100X 

magnification) and (B) membranous E-cadherin staining (red) and cytoplasmatic vimentin 

(green) (200X magnification). Scalebars represent 100 µm.   
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Figure 2. Distribution of pimonidazole (black), fraction EGFR (light gray) and pAKT (dark gray) 

as a function of distance (µm) from nearest vessel. Average values of 69 tumours (± SEM). ** 

p<0.01 *** p< 0.0001 significant difference compared to <50µm zone. 

 

 

 

 

 
Figure 3. Expression of pAKT in node positive (N+) versus node negative (N0) tumours. Lines 

represent median values. p=0.0005  

 

 

 



90 

 

pAKT inhibition leads to reduced E-cadherin and upregulation of vimentin in larynx 

tumour cells   

To place the results from the patient data in context, we examined if inhibition of 

pAKT with MK-2206, a novel allosteric pAKT inhibitor, would induce EMT in laryngeal 

carcinoma cells. We found that pAKT inhibition after 24 or 48 hr incubation 

upregulated vimentin mRNA in all six cell lines, although not all differences were 

statistically significant. In four cell lines mRNA of E-cadherin was reduced (Figure 

4A.). Two cell lines, UT-SCC 9 and UT-SCC 29, downregulated E-cadherin and 

upregulated vimentin mRNA within 24 hr of pAKT inhibition, which is a classical 

indication of EMT. All other cells lines showed a non-significant trend towards EMT. 

Figure 4B shows that treatment with 1 µM MK-2206 inhibited expression of pAKT 

assessed by the means of western blotting.   

To investigate the effect of pAKT inhibition on protein expression of EGFR, E-cadherin 

and vimentin we immunohistochemically stained these markers in UT-SCC 9 cells. 

This tumour cell line, showing an EMT-like transition with qPCR (Figure 4A), was 

cultured on chamberslides. Figure 4C&D clearly shows that after pAKT inhibition a 

downregulation of E-cadherin expression and an upregulation of vimentin expression 

occur. Unexpectedly, we found expression of nuclear EGFR after treatment with MK-

2206 (Figure 5).  
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Figure 4. mRNA levels of Ecadherin and vimentin relative to HPRT after 24, 48 or 72 hr pAKT 

inhibition (A). *Represent significant difference compared to control cells. Downregulation of 

pAKT was shown by Western Blot analysis; numbers below the bands are densitometry values 

of pAKT normalized against AKT values  (B). Fluorescence images (200X magnification) of E-

cadherin (red) and vimentin (green) before (C) and after (D) pAKT inhibition. Scalebars 

represent 100 µm 
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Figure 5. UT-SCC cells after treatment (B) with MK-2206 for 24 hr an upregulation of nuclear 

EGFR was present, control cells showing membranous EGFR (A). Magnification 200X, scalebars 

represent 100 µm. 

 

 

Discussion 

Anti-EGFR targeted therapy in combination with radiotherapy has been shown to 

improve survival but only in a small percentage of patients with head and neck cancer 

[2]. Therefore, new targets are tested for their usefulness as treatment options. The 

PI3-K/AKT pathway is a downstream effector of EGFR, and AKT is an interesting 

candidate for therapeutic purposes because, like EGFR, it is often overexpressed in 

HNSCC [14]. However, we predominantly found EGFR expression in better-

oxygenated areas of the tumour, while pAKT levels were higher in hypoxic areas. This 

finding supports the evidence that not only EGFR, but multiple receptors can activate 

AKT. It also points out the need for improved targeted therapies, as EGFR inhibition 

does not automatically lead to inhibition of AKT-dependent survival mechanisms.  

Although it is generally accepted that activation of AKT leads to enhanced tumour 

growth and poor outcome, preclinical studies indicate that low AKT1 expression can 

lead to more metastases [8]. Recently, we found an association between low pAKT 

expression and positive nodal status of HNSCC patients prior to treatment [3]. We 

speculated that pAKT inhibition could stimulate metastasis formation in these 

tumours. Here, we have validated this observation in an independent cohort of 

laryngeal cancer patients. Patients presenting with lymph node metastases appear to 

have 10-times lower median pAKT expression levels in their primary tumour 

compared to patients without nodal metastases, although there are large variations 

between tumours and an overlap between both groups exists. This further supports 

the evidence that AKT is associated with metastatic prevalence of HNSCC.  

Different AKT isoforms are found to have distinct functions in tumour progression 

depending on tumour type. Enhanced AKT1 signaling promotes tumour progression 

through increased cellular survival mechanisms, whereas AKT2 reportedly inhibits 
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cancer growth [15]. AKT1 reduces while AKT2 enhances cell invasion and migration 

in breast and ovarian cancer but, on the other hand, no different isoform specific 

functions were found in prostate cancer [8,15,16] This indicates that treatment with 

pAKT inhibitors, aimed at both isoforms together, might inhibit growth of some 

tumours, but could also induce more pronounced metastatic behavior in others. These 

findings highlight the necessity for isoform-specific inhibitors. For example, AKT1 

inhibition may not be recommended in breast and, maybe, in head and neck cancer 

patients, as it may promote cell migration, whereas in other cancer types, such as 

prostate cancer, all AKT inhibition may be beneficial to inhibit tumour progression.  

Also, in vivo, there are contradicting results on the role of AKT in metastasis 

formation. In mice with mammary tumours overexpressing ErbB2 AKT1 coexpression 

impaired metastases while AKT2 coexpression increased the proportion of mice with 

metastasis [8,17]. Inhibition of pAKT with MK-2206 in an orthotopic model of a 

tongue tumour led to reduced primary tumour size and less cervical metastases [11]. 

When testing different clonal mammary tumour cell lines Dillon et al. found that 

highly metastatic clones displayed upregulated AKT2 expression compared to less 

metastatic clones. Interestingly, the highest pAKT levels, all due to elevated AKT1 

phosphorylation, were found in the low metastatic clones [17]. The data presented in 

the current study also showed a higher pAKT level in tumours without lymph node 

metastasis.  

Although downstream effectors of AKT isoforms remain to be identified, candidate 

pathways have been suggested. One study found that AKT1 could inhibit breast cancer 

cell invasion through nuclear factor of activated T-cell (NFAT) downregulation. 

Another study showed that the enhanced migration observed with AKT1 

downregulation was accompanied by changes in protein expression that are 

consistent with EMT [8]. Metastasis formation not only involves EMT, but also 

detachment from the primary tumour site and escape of single cells into the blood or 

lymph vessels followed by reattachment, transition back to epithelial state and 

angiogenesis to form a secondary tumour [9]. We hypothesized that pAKT can protect 

cells from EMT. Therefore, reducing pAKT in tumour cells should lead to specific up or 

down regulation of proteins involved in EMT. In six laryngeal carcinoma cell lines we 

tested whether reducing pAKT with MK-2206, a pAKT inhibitor, leads to 

downregulation of E-cadherin and upregulation of vimentin. In all cell lines EMT was 

induced to some degree, indicating that inhibition of pAKT in laryngeal tumour cells 

possibly leads to a higher metastatic risk.  

Another explanation why low pAKT can lead to more metastases could be the 

existence of a negative feedback loop. Recently was found that inhibition of mTOR by 

rapamycin relieves a feedback loop, activating IGF signaling leading to activation of 

PI3K and ERK signaling. This was found also in patients thereby decreasing the 

therapeutic efficacy of the drug [18]. Others provided evidence that inhibition of AKT 

induces HER3 expression and other RTKs by a similar feedback loop. By inhibition of 
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AKT the downstream effects will be suppressed but other RTKs-driven signaling 

pathways, like mTOR and MDM2, will be activated, leading to activation of proteins 

and genes involved in migration of tumour cells, explaining the effect of low pAKT 

expression on metastatic potential [19].  

An unexpected finding after pAKT inhibition was the induction of nuclear EGFR. EGFR 

is predominantly present on the cell membrane, however recently nuclear localisation 

of EGFR has been identified.  Nuclear EGFR was found to act as transcriptional 

activator of various oncogenic genes; it is associated with increased G1/S phase 

progression and proliferation of tumour cells. Nuclear EGFR correlates with poor 

outcome in patients with breast, oropharyngeal and ovarian cancer [20]. Also, 

downregulation of pAKT induces RTK activity including EGFR and HER3 in breast 

cancer cells but no distinction was made between nuclear and membranous EGFR 

[19]. In the present study we could clearly see in which subcellular compartment 

EGFR is upregulated. Whether this MK-2206-induced nuclear EGFR is a tumour-

specific effect of laryngeal cancer and how this affects radioresistance requires further 

investigation.  

 

Conclusion 

Several ongoing clinical trials use pAKT inhibitors to modulate treatment response. 

Inhibition of pAKT is expected to lead to a better patient outcome by reducing 

downstream signaling of tumour survival mechanisms. The results from our work and 

studies by others describe a complex picture in which pAKT inhibition should be 

considered in a cancer-type specific manner. We recommend that new pAKT 

inhibitors should be tested for potential stimulation of EMT and be introduced in the 

clinic prudently.  
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Discussion  

Due to a preference for organ preservation, the first choice of treatment of early-stage 

tumours is often radiotherapy. Tumour cell response to radiation depends on 

activation of different receptor proteins and signalling pathways; on differences in 

intrinsic radioresistance, tumour cell proliferation and the amount of hypoxic regions 

within a tumour [1]. All these aspects are, to some extent, under the control of the 

EGFR-PI3-K/AKT signalling pathway. The aim of this thesis was to investigate the 

activation of this pathway, which is often overexpressed in solid tumours including 

head and neck squamous cell carcinomas (HNSCC), the tumour model that was used in 

this thesis. In order to understand the involvement of this pathway in radiation 

responsiveness and in an attempt to disentangle the interactions with the tumour 

microenvironment, we evaluated expression levels of key molecules in relation to 

each other and to microenvironmental factors, like the presence of hypoxia and 

vasculature. In this chapter, the relevance of the EGFR-PI3/K-AKT pathway for 

radiation responsiveness is discussed and future considerations are highlighted. 

 

EGFR and downstream signalling pathways 

EGFR and its downstream signalling pathways have been frequently investigated with 

regard to patient outcome [2-4]. The current knowledge on EGFR-regulated signalling 

pathways provides strong evidence that EGFR activation plays an important role in 

the regulation of tumour cell survival and treatment resistance. EGFR is a 

transmembrane protein with intrinsic tyrosine kinase activity [4] and activation of 

EGFR causes autophosphorylation (pEGFR), subsequent receptor internalisation and 

stimulation of many signalling pathways including the phosphatidylinositol-3-kinase-

AKT (PI3-K/AKT) pathway [1,5,6]. Once activated, these pathways are responsible for 

tumour cell proliferation, DNA-damage repair, migration, angiogenesis, and 

consequently resistance to treatment. Radiotherapy combined with blockage of EGFR 

by cetuximab has resulted in improved locoregional control and survival for patients 

with HNSCC [7] demonstrating that EGFR is a clinically relevant target for molecular 

therapies in addition to radiation.  

 

Tumour microenvironment 

Understanding the regulation of signalling pathways in tumours insensitive to 

particular treatment regimens will give information on tumour behaviour and can 

improve selection of patients for customised treatment options. A malignant tumour 

not only contains cancer cells but also exists of a variety of normal cell types that 

interact with each other and with a microenvironment that is characterised by both 

temporal and spatial heterogeneity. An imbalance between oxygen consumption and 

supply will result in (temporal) hypoxic tumour areas. Within the tumour 

microenvironment, hypoxia is relevant in almost all solid tumours. In our lab, research 



General Discussion 

 

99 

 

regarding EGFR and tumour oxygenation is based on hypoxia measurements by 

pimonidazole staining [3,8,9]. Pimonidazole is a robust exogenous marker of hypoxia 

[10] and it only detects viable, hypoxic tumour cells, because a reduction step and 

binding are necessary for immunohistochemical detection. Several studies have 

proven the relevance and predictive value of pimonidazole [11-14]. Results from 

clinical trials with a treatment that counteracts enhanced tumour cell proliferation as 

well as hypoxia (Accelerated Radiotherapy with CarbOgen and Nicotinamide 

(ARCON)) show high locoregional control rates, in particular for oropharynx and 

larynx carcinoma patients with high pimonidazole binding levels [11,15].  

As described in this thesis, EGFR expression was predominantly found in better-

oxygenated tumour areas. Further, based on in vitro experiments, it is generally 

thought that EGFR and pAKT expression colocalize in the same tumour cells. However, 

it was surprising to find that in hypoxic areas AKT is activated without EGFR 

expression. This is a good example of the important role of the tumour 

microenvironment being responsible for the activation of the AKT protein, 

independent of EGFR. This indicates that the concept of EGFR-induced AKT activation 

is a simplification of a complex interaction between signal transduction pathways and 

the tumour microenvironment.  

Not only EGFR but also other receptors and mechanisms can activate AKT in more 

hypoxic areas. These include activation by other ErbB family members or receptor 

kinases like VEGFR [16], amplifications or mutations of the gene PIK3CA, 

amplifications of AKT itself or decreased expression of PTEN, a tumour suppressor 

[17-20]. On the other hand, (p)EGFR expression without pAKT expression as seen in 

some normoxic areas, indicates that not in all cells EGFR is actually activated or that 

EGFR activation necessarily leads to activation of the downstream PI3-K/AKT 

pathway. Apart from activation of AKT, EGFR can activate other cell survival pathways 

including mTOR and RAS/RAF/MAPK [16]. Therefore, future research should focus on 

these questions; how is AKT activated in hypoxic areas and can we target this 

activation upstream of AKT? And, apart from PI3-K/AKT, which EGFR-dependent 

pathways are mostly activated in normoxic areas and is there a link with radiotherapy 

resistance?  

 

Consequences for radiotherapy 

The amount of EGFR expression in a tumour is relevant for radiation response and is a 

prognostic factor after conventional fractionated radiotherapy [2] and surgery 

[21,22]. In the earlier 90’s two randomised trials showed that acceleration of 

radiotherapy schedules could improve patient outcome of high EGFR expressing 

tumours to the level of low EGFR expressing tumours, presumably by counteracting 

enhanced tumour cell proliferation [23,24]. In chapter 3 of this thesis we demonstrate 

that EGFR is predictive for the response to accelerated radiotherapy as well as for the 

response to hypoxia modification but in reverse ways: high EGFR expression levels 
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predict for good response to accelerated radiotherapy whereas low EGFR expression 

levels predict for good response to hypoxia modification.  

It is known that EGFR signalling is associated with the hypoxia response of tumour 

cells. Blocking EGFR can reduce intratumoural hypoxia by normalization of the 

irregular dysfunctional tumour vasculature, thereby improving perfusion and oxygen 

delivery [25-27] or by improved reoxygenation during fractionated radiotherapy [28]. 

A major pathway in the hypoxia response is the HIF-pathway. Under normoxic 

conditions HIF-1 is rapidly degraded, but under hypoxia it is stabilized [29-31]. 

Tumour cells with high pre-treatment EGFR expression levels might be better able to 

rapidly activate downstream survival pathways, resulting in activation of the HIF-

pathway, thereby thwarting the hypoxia modifying effect of ARCON. Possibly, 

therefore no advantage of this treatment was found for patients with high EGFR 

expressing tumours. In the latter, the role of EGFR inhibition in combination with 

hypoxia modification needs to be explored. By adding cetuximab, a monoclonal 

antibody against the EGF receptor, or erlotinib or gefitinib, EGFR tyrosine kinase 

inhibitors, EGFR signalling can be inhibited before treatment with ARCON. Combining 

these modalities for patients with high EGFR expressing tumours with high amount of 

hypoxic regions might be a next step forward in individualised treatment schedules 

leading to better survival for cancer patients. 

 

Different faces of AKT 

Anti-EGFR targeted therapy in combination with radiation has indeed shown to 

improve survival but only in a minor percentage of the patients (15% at best) [7]. New 

targets are tested for their usefulness as treatment options including AKT. Currently, 

the combination of radiotherapy with inhibitors of pAKT is under clinical 

investigation. Although the main known biological consequences of AKT activation are 

proliferation, growth, and tumour-induced angiogenesis, the prognostic significance of 

AKT activation in cancer is inconclusive. High pAKT expression has been associated 

with poor [32-35] and favourable prognosis [36-39] in different types of tumours. As 

presented in chapters 4 and 6 of this thesis, we found an association of low pAKT 

expression with increased regional metastatic risk in head and neck patients treated 

with radiotherapy. This raises the question if pAKT inhibition in head and neck cancer 

may actually promote a more metastatic phenotype and can lead to a worse clinical 

outcome. Three distinct genes encode for three isoforms of AKT. There are indications 

that these different isoforms have distinct functions in tumour progression depending 

on tumour type. Enhanced AKT1 signalling promotes tumour progression through 

increased cellular survival mechanisms, whereas AKT2 reportedly inhibits cancer 

growth [40-42]. AKT1 reduces while AKT2 enhances cell invasion and migration in 

breast and ovarian cancer [43,44]. Treatment with pAKT inhibitors, aimed at both 

isoforms together, might inhibit growth in some tumours, but could also induce a 

more pronounced metastatic behaviour in others. Unfortunately, we were not able to 



General Discussion 

 

101 

 

perform AKT iso-form specific immunohistochemistry on our head and neck tumours, 

but in subsequent research this will be a major aim. The findings also highlight the 

necessity for isoform specific inhibitors and the importance of testing new molecular 

inhibitors for potential reverse outcome on different endpoints (local control versus 

metastases formation) before being introduced in the clinic. 

 

In this context it is noteworthy that in two independent cohorts of head and neck 

cancer patients, the second being a validation of the first study, we have found that 

low pAKT expression in primary tumours has a reverse correlation with lymph node 

metastases. Patients with negative lymph nodes had a significantly higher expression 

of pAKT compared to patients with positive lymph nodes. We hypothesized that low 

pAKT expression could lead to more migratory tumour cells through the process of 

epithelial to mesenchymal transition (EMT) [45]. In chapter 5 we showed that this 

EMT phenotype, characterized by reduced E-cadherin and upregulation of vimentin 

expression [46], is associated with a higher metastatic risk. In addition, when using a 

pAKT inhibitor laryngeal tumour cells reduced their E-cadherin expression and 

upregulated the expression of vimentin. With new techniques in our laboratory, e.g. 

migration and invasion assays, we now should be able to perform experiments 

thereby answering the question whether low pAKT and subsequently EMT leads to 

more metastases in our head and neck tumour models [47]. 

 

Another issue is whether lymph node metastases have the same expression levels of 

pAKT as the primary tumour. Is AKT only protecting tumour cells to undergo EMT and 

to migrate or does AKT maybe have a different role in tumour progression at the 

secondary sites? These questions are important for further understanding the 

influence of AKT in metastatic risk. Unfortunately, for the patients investigated in this 

thesis no tissue samples of the corresponding lymph nodes were available. In a new 

cohort of patients, biopsies of primary tumours and the corresponding metastatic 

lymph nodes will be collected, making it possible to further investigate these 

questions.  

 

Immunohistochemistry on biopsy material: strengths and limitations 

To demonstrate protein expression levels in biopsies of head and neck cancer 

patients, immunohistochemistry was used in this thesis. A major advantage of this 

method is that the amount of different proteins, their subcellular location and the 

expression relative to each other or to hypoxic areas and vessels with preservation of 

the tissue architecture can be investigated. In chapter 4 the co-expression of activated 

EGFR (pEGFR) and AKT (pAKT) is assessed relative to the vasculature. Although a 

positive correlation between total fraction pEGFR and pAKT was observed, levels of 

co-expression were low. Interestingly, the highest fractions of co-expression was close 

to the vessels, which again indicates that in head and neck tumours EGFR is only 
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partly responsible for activation of the PI3-K/AKT pathway. In more hypoxic areas 

AKT seems to be activated in an EGFR-independent manner. As these hypoxic tumour 

cells are able to activate proteins like AKT under harsh circumstances they may form 

an important subpopulation of the tumour responsible for tumour progression and 

treatment failure. Knowledge about the precise role and interaction of these proteins 

gives more insight in tumour cell behaviour and radioresistance.  

 

A point of concern is that biopsies were used which represents only part of the entire 

tumour. As a tumour is a heterogeneous interaction between cells and their 

environment, it is possible that valuable information is missed when taking a biopsy. 

This tumour heterogeneity was demonstrated in a study measuring proliferation in 

the centre and from the edge of an oesophageal carcinoma. There was a significant 

difference in proliferation index between these sites and this heterogeneity should be 

taken into account when using biopsy material [48]. 

To be able to identity thousands of genes and their expression patterns 

simultaneously, microarrays have been developed. Tumour response to radiotherapy 

might be predicted by identification of genes that are differentially expressed between 

radiosensitive and radioresistant tumours. Although these gene expression profilers 

can provide insights in genes involved in treatment failure, they are relatively 

expensive, difficult to interpret in a clinical setting, and statistics are complex. In 

addition, the microarrays provide no information about the expression pattern of the 

gene in relation to important microenvironmental features such as tumour cell 

hypoxia and vasculature. A combination of gene expression profiling and 

immunohistochemistry would be a valuable tool to gain more insight in which genes 

are involved in radioresistance [49,50] 

Characterisation of the whole tumour is possible with PET/CT or MRI techniques 

prior, during, and after treatment. On one side the tumour microenvironment can be 

imaged, such as tumour cell proliferation using 3’-deoxy-3’-18-F-fluorothymidine 

(18FLT) or tumour cell hypoxia using 18-F-fluoromisonidazole (18FMISO) but also 

signal transduction pathways can been visualised. Radionuclide labelled monoclonal 

antibodies directed against the EGFR might in the future be used to select patients for 

EGFR-targeted therapies, although more clinical trials are necessary to further explore 

this [51,52]. Although these techniques have the great advantage that a tumour can be 

monitored during treatment, they cannot distinguish in which cellular (sub-) 

compartment proteins are being expressed neither can co-expression of different 

markers be investigated. Possibly, early tumour characterisation by 

immunohistochemistry supplemented with PET/CT-imaging during treatment can 

provide an important tool for adaptation and optimisation of treatment plans. 
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Final remark 

The results of this thesis make clear that the tumour microenvironment is of major 

influence on the response of tumours to treatment. Tumour progression is complex 

and difficult to understand. The more factors we unravel that are involved in this 

process the more new questions are raised. The tumour microenvironment is 

involved in activation of EGFR-driven signalling pathways as well as EGFR-

independent activation of proteins such as AKT. The exact mechanisms and elements 

of the microenvironment that drive EGFR toward PI3-K/AKT signalling remain 

unclear. The work presented in this thesis describes only details of a complex picture 

in which EGFR and pAKT are involved not only in a cancer-type specific manner, but 

also in a patient-tumour-specific way. It highlights the complex interaction and 

variation of tumours of the same clinical location or stage and necessity for 

individualised treatment regimes. With the ability to select patients based on tumour 

characteristics such as hypoxia, we are now able to treat only those patients likely to 

benefit from hypoxia modifying treatment modalities. Identification and targeting of 

key molecules of signal transduction pathways in addition to modulation of the 

tumour microenvironment could further improve the possibility of individualised 

treatment regimes for the best quality of care while minimizing toxicity levels. 
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Summary 

The tumour microenvironment plays a key role in the treatment response of 

solid tumours. The central aim of this thesis was to investigate the activation of the 

EGFR-PI3-K/AKT pathway in biopsies of patients with head and neck cancer and its 

implication for radiation resistance. Besides the potential prognostic or predictive 

value, we evaluated expression of key molecules of this pathway in relation to 

microenvironmental factors, such as vasculature and hypoxia.   

In chapter 2 we discussed the interaction of the EGFR-PI3-K/AKT pathway 

with the tumour microenvironment and its implications for radiation treatment. The 

current status of knowledge is reviewed and suggestions for future research are given. 

Treatment failure through radioresistance of various tumour types is associated with 

activation of the epidermal growth factor receptor (EGFR). Tumour cell proliferation, 

DNA-repair, hypoxia, and metastases formation are mechanisms in which EGFR 

signalling is assumed to have an important role. In clinical trials, a correlation has 

been demonstrated between high EGFR expression in tumours and poor outcome 

after radiotherapy. Inhibition of EGFR signalling pathways improves the effectiveness 

of radiotherapy in solid tumours, like head and neck cancers, by overcoming these 

main mechanisms of radioresistance. The fact that only a minority of the patients 

respond to EGFR inhibitors reflects the complexity of interactions between EGFR-

dependent signalling pathways and the tumour microenvironment.  

In chapter 3 the purpose was to investigate if EGFR expression levels are 

associated with response to ARCON in patients with laryngeal carcinoma. Accelerated 

radiotherapy (AR) improves the poor outcome associated with EGFR overexpression 

in head and neck cancers. Combining AR with carbogen and nicotinamide (ARCON) 

counteracts enhanced tumour cell proliferation- and hypoxia-related radioresistance. 

Paraffin-embedded biopsies of 272 patients randomized between AR and ARCON 

were processed for immunohistochemical staining of EGFR. A large variation was 

observed in EGFR fractions between tumours with expression levels ranging from 0-

0.93 (median fraction 0.4). No difference in 5-year locoregional control was found 

between low and high EGFR expressing tumours in the AR arm (69% versus 75%), 

which is in line with the established effect of AR in EGFR overexpressing tumours. 

There was, however,  a significant association in the ARCON arm: patients with low 

EGFR levels had a better 5-year locoregional control (88% versus 72% p=0.02) and 

disease-specific survival (92% versus 77% p=0.01). ARCON improved locoregional 

control relative to AR only in patients with low EGFR expression (HR 0.34 p=0.009). It 

is to conclude that EGFR is a predictive biomarker for the selection of patients that 

will or will not respond to ARCON. 
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In chapter 4 the contribution of activated p(hosphorylated)EGFR and its 

downstream signalling via PI3-K/AKT was investigated. pEGFR, pAKT, hypoxia (by 

means of pimonidazole staining), and vessels were visualised. It was hypothesised 

that hypoxic tumour cells with an activated EGFR-PI3-K/AKT pathway could have a 

survival advantage after treatment with radiotherapy. Both pEGFR (median 0.6%, 

range 0-34%) and pAKT (median 1.8%, range 0-16%) expression differed between 

tumours. A significant correlation between pEGFR and pAKT (rs 0.44, p=0.004) was 

seen, however, image analysis revealed that this was not always based on spatial 

coexpression. The correlation between expression of pEGFR and pAKT is indicative of 

activation of the PI3-K/AKT pathway through phosphorylation of EGFR. Since not all 

tumours show coexpression to the same extent, other membrane receptors must be 

involved in the activation of this pathway as well. Un expected and somewhat 

counterintuitive finding was that low pAKT expression was associated with increased 

risk of regional recurrence (p<0.05) and distant metastasis (p=0.04). This 

phenomenon is further investigated in chapter 6.  

Chapter 5 focused on the expression of markers involved in epithelial-

mesenchymal transition which is required for metastasis formation; E-cadherin and 

vimentin. E-cadherin is a transmembrane glycoprotein involved in cell-cell adhesion 

while vimentin is highly expressed in mesenchymal cells. Vimentin is positively 

correlated with increased metastasis. In this chapter tumour biopsies of 26 head and 

neck cancer patients were immunohistochemically stained for E-cadherin and 

vimentin. We found a large variation in E-cadherin (median 17%, range 0-51%) and 

vimentin (median 0%, range 0-20%) expression between tumours. Tumours with low 

E-cadherin expression showed a significantly higher incidence of metastasis 

formation compared to tumours with high expression (81% versus 19%, p=0.004). 

Enhanced expression of vimentin was associated with a trend towards a higher 

metastatic risk (33% versus 77%) compared to tumours without expression of 

vimentin. All patients with low E-cadherin and high vimentin expression (an EMT-

phenotype) developed distant metastasis versus only 44% of the other patients 

(p=0.008). These data indicate that loss of E-cadherin and gain of vimentin may be 

associated with enhanced migration of tumour cells, leading to higher metastatic risk 

of head and neck cancer patients.  

Chapter 6 aggregated the EGFR-PI3-K/AKT pathway with E-cadherin and 

vimentin expression data. Targeting AKT is considered as a treatment option for 

several solid tumour types. However, in chapter 4 we showed that low pAKT 

expression in the primary tumour was associated with lymph node metastasis. Our 

aim in chapter 6 was to validate this finding in an independent cohort of laryngeal 

cancer patients and to examine the effect of pAKT inhibition on EMT of laryngeal 

cancer cells. We visualised EGFR, pAKT, vimentin, E-cadherin, hypoxia, and blood 
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vessels in biopsy material of 78 patients. In six laryngeal cancer cell lines E-cadherin 

and vimentin mRNA and protein expression was quantified by respectively real-time 

polymerase chain reaction (q-pcr) and by immunohistochemistry before and after 

treatment with the pAKT inhibitor MK-2206. We found a significant correlation 

between low pAKT in the primary tumour and positive lymph node status (p=0.0005). 

Tumours with lymph node metastases had approximately 10-fold lower median pAKT 

values compared to tumours without lymph node metastases, validating our previous 

findings. After inhibition of pAKT in laryngeal cancer cells with MK-2206 upregulation 

of vimentin and a downregulation of E-cadherin occurred, consistent with EMT 

induction predisposing for an increased metastatic risk. These results describe a 

complex picture in which pAKT inhibition should be considered in a cancer-type 

specific manner. We recommend that new pAKT inhibitors should be tested for 

potential stimulation of EMT and be introduced in the clinic prudently.  

Finally, chapter 7 provides a general discussion of findings presented in this 

thesis and future considerations are highlighted. 



Summary 

111 



112 

 



 

 

 

Chapter 
 

 

 

 

 

 

 

 

 

 

 

Samenvatting 



114 

 

Samenvatting  

Het doel van dit proefschrift was om de functie van de EGFR-PI3-K/AKT 

signaleringsroute te onderzoeken in biopten van patiënten met hoofd-halstumoren en 

te testen welke rol deze speelt bij resistentie tegen radiotherapie. Naast het bepalen 

van de mogelijke prognostische en predictieve (voorspellende) waarde van EGFR in 

deze patiënten werd ook de expressie van EGFR en pAKT in te tumor gerelateerd aan 

factoren binnen het tumor-micromilieu, zoals hypoxie (zuurstofgebrek) en de 

verdeling van de bloedvaten.  

 

Hoofdstuk 1 geeft een introductie over hoofd-halstumoren, radioresistentie 

en de EGFR-PI3-K/AKT signaleringsroute. Onderstaande is een korte samenvatting 

van dit hoofdstuk.  

 

Hoofd-halstumoren 

Hoofd-halskanker behoort tot de tien meest voorkomende tumor-soorten met 

een incidentie van ongeveer 2400 patiënten per jaar in Nederland. Hoofd-

halstumoren zijn meestal afkomstig van het slijmvlies van de larynx, farynx en neus- 

en mondholte. De belangrijkste oorzaken van het krijgen van hoofd-halstumoren zijn 

roken en overmatig alcoholgebruik. Een infectie met het humaan papillomavirus 

(HPV) is in toenemende mate verantwoordelijk voor het ontstaan van orofarynx-

tumoren bij relatief jonge, niet rokende patiënten. De initiële klachten zijn meestal 

niet-specifiek zoals keelpijn en daardoor presenteren de meeste patiënten zich met 

vrij grote tumoren die vaak al metastasen (uitzaaiingen) in de lymfeklieren van de 

hals vertonen. Doordat chirurgie in het hoofd-halsgebied vaak tot belangrijk 

functieverlies leidt is de voorkeursbehandeling voor deze tumoren radiotherapie; 

deze therapie is effectief in een vroeg stadium van de ziekte maar minder in 

vergevorderd stadia en slechts palliatief (niet gericht op genezing) bij tumoren met 

metastasen op afstand. In de afgelopen jaren is er veel onderzoek gedaan naar het 

optimaliseren van behandelingsmethoden om de kans op overleving te vergroten. 

Voorbeelden hiervan zijn het versnellen (accelereren) van radiotherapie schema’s of 

het combineren van radiotherapie met chemotherapie of medicijnen die ingrijpen op 

moleculaire doelen in de tumorcel. Een beperkt deel van de patiënten (ongeveer 15%) 

heeft voordeel van deze behandelingen maar helaas ondervindt iedereen de 

bijwerkingen ervan. Het is dus noodzakelijk om patiënten voor de juiste behandeling 

beter te kunnen selecteren. 

 

Mechanismen betrokken bij radioresistentie 

 Het tumor-micromilieu speelt een belangrijke rol bij de uitkomst van 

radiotherapie. Hoe goed tumorcellen reageren op de behandeling hangt af van de 

tumoreigen gevoeligheid voor bestraling (intrinsieke radiosensitiviteit), de snelheid 
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van deling (proliferatie), zuurstofgebrek (hypoxie) en de mogelijkheid tot 

metastasering. Intrinsieke radiosensitiviteit wordt bepaald door de mate waarin 

tumorcellen de bestralingsschade aan het DNA kunnen herstellen. Versnelde 

proliferatie treedt op doordat tumorcellen reageren door naarmate de behandeling 

vordert actiever te gaan delen. Dit kan tegengegaan worden door radiotherapie in een 

kortere periode, geaccelereerd, te geven. Hypoxie komt voor in bijna alle hoofd-

halstumoren. Acute hypoxie ontstaat door een willekeurige en kortdurende sluiting 

van de slecht gevormde tumor bloedvaten terwijl chronische hypoxie het gevolg is van 

een te grote afstand van de tumorcel naar het dichtstbijzijnde bloedvat. Zoals te zien is 

in figuur 1 van hoofdstuk 1 kunnen beide vormen van hypoxie in dezelfde tumor 

voorkomen en is het gevolg dat er een tekort aan zuurstof en voedingsstoffen in de 

tumorcel optreedt. Zuurstof is essentieel voor het effect van bestraling omdat het 

fungeert als intermediair bij het ontstaan van DNA schade. Indirect kan hypoxie leiden 

tot activatie van genen en eiwitten die verantwoordelijk zijn voor tumor progressie of 

metastasering en uiteindelijk tot een slechtere prognose van de patiënt. Bij 

metastasering ondergaan tumorcellen veranderingen waarbij ze los komen van de 

primaire tumor, kunnen gaan zwerven in de bloed- of lymfebaan en opnieuw kunnen 

gaan hechten op een tweede lokalisatie in het lichaam. Voor die eerste stap is een 

proces genaamd epitheliale-mesenchymale transitie (EMT) noodzakelijk. Hierbij 

veranderen de tumorcellen van een hechtende, epitheliale cel in een mesenchymale 

cel. Metastasen hebben een zeer grote impact op de prognose van de patiënt en 

daarom is het erg belangrijk om deze mechanismen te begrijpen. 

 

EGFR-PI3-K/AKT signaleringsroute 

 EGFR is een eiwit dat zich op het membraan van de tumorcel bevindt en in 

hoofd-hals-kanker in grote mate tot expressie komt. Zoals figuur 2 in hoofdstuk 1 laat 

zien, kan activatie van EGFR leiden tot activatie van verschillende signaleringsroutes 

in de tumorcel, waaronder de PI3-K/AKT route. Deze signaleringsroute is belangrijk 

voor de respons op radiotherapie doordat het een groot aantal cellulaire functies 

reguleert, waaronder de mogelijkheid tot proliferatie, DNA-herstel en metastasering. 

Uit eerder onderzoek is al gebleken dat EGFR een voorspellende waarde heeft in 

solide tumoren, waarbij er een sterke correlatie is aangetoond tussen een hoge EGFR 

expressie in de tumor en een slechtere prognose voor de patiënt. Een klinische studie 

heeft laten zien dat toevoeging van een therapie gericht op het remmen van EGFR 

signalering (met behulp van het geneesmiddel cetuximab) aan radiotherapie leidt tot 

een verbeterde locoregionale controle bij patiënten met hoofd-halstumoren 

vergeleken met de patiënten die alleen bestraald werden. Helaas blijkt die niet voor 

alle patiënten te werken, terwijl zij wel allemaal aan deze intensievere behandeling en 

bijwerkingen worden blootgesteld. Het is in de laatste jaren duidelijk geworden dat 

het tumor-micromilieu een grote rol speelt in EGFR signalering en activatie van de 

PI3-K/AKT route. In dezelfde tumor zijn er tumorcellen met actief EGFR terwijl ze 
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geen actief AKT bezitten, maar ook delen waren AKT actief is zonder dat er EGFR 

aanwezig is. Hieruit blijkt dat het erop lijkt dat de activatie van AKT niet altijd door 

EGFR plaatsvindt maar er ook andere factoren een rol spelen. Dit geeft aan dat de 

interactie tussen het tumor-micromilieu en EGFR signaleringsroutes complex is.   

 

In hoofdstuk 2 wordt de interactie tussen de tumor en zijn micromilieu 

besproken en wat dit voor gevolgen heeft voor radiotherapie. Er wordt een overzicht 

gegeven van de huidige stand van zaken en aanbevelingen gegeven voor toekomstig 

onderzoek. Het falen van een behandeling door ongevoeligheid van tumoren voor 

bestraling is geassocieerd met activatie van EGFR. Tumorcelproliferatie, herstellen 

van DNA-schade, hypoxie en metastasering zijn vier mechanismen waarbij 

signaleringsroutes via EGFR een belangrijke rol in spelen. In klinische trials is een 

correlatie aangetoond tussen een hoge expressie van EGFR in tumoren en een slechte 

overleving van de patiënt na radiotherapie. Het blokkeren van deze EGFR 

signaleringsroutes in de tumor verbetert de effectiviteit van radiotherapie in solide 

tumoren, waaronder hoofd-halstumoren. Dat de interactie tussen EGFR afhankelijke 

signaleringsroutes in tumoren en het tumor micromilieu complex is blijkt uit het feit 

maar een klein deel van de patiënten (maximaal 15%) met een hoge EGFR expressie 

baat heeft bij behandeling met deze EGFR-remmers.  

 

Het doel van hoofdstuk 3 was te onderzoeken of expressie van EGFR 

geassocieerd is met de respons van patiënten met larynxtumoren op behandeling met 

ARCON: geaccelereerde radiotherapie (AR) met carbogeen en nicotinamide (CON). AR 

verbetert de slechte prognose die gerelateerd is aan overexpressie van EGFR in hoofd-

halstumoren. Door het geven van ARCON wordt zowel versnelde tumorcelproliferatie 

als hypoxie-gerelateerde radioresistentie tegengegaan. Paraffine coupes van 272 

patiënten die gerandomiseerd waren tussen behandeling met AR of ARCON werden 

immunohistochemisch gekleurd voor EGFR. Door middel van analyses met 

automatische beeldverwerking werden fracties EGFR bepaald: de hoeveelheid EGFR 

positieve tumorcellen gedeeld door het totaal aantal tumorcellen. Een grote variatie 

werd gevonden tussen de verschillende tumoren met EGFR fracties tussen 0 en 0,93 

(mediane fractie 0,4). Er was geen significant verschil tussen hoge en lage EGFR 

expressie in de 5-jaars locoregionale controle in de patiënten behandeld met AR alleen 

(69% versus 75%). Dit komt overeen met eerdere studies die aantonen dat het 

accelereren van radiotherapie schema’s de prognose van tumoren met hoge EGFR 

expressie verbeteren tot dezelfde prognose van tumoren met lage EGFR expressie. 

Wel was er een significante correlatie in de patiënten die behandeld waren met 

ARCON: patiënten met een lage EGFR fractie hadden een betere 5-jaars locoregionale 

controle dan degenen met een hoge EGFR fractie (88% versus 72%, p=0,02) en ook 

ziektevrije overleving (92% versus 77%, p=0,01). Behandeling met ARCON verbeterde 
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de locoregionale controle ten opzichte van behandeling met AR alleen voor patiënten 

met een lage EGFR expressie (HR 0,34 p=0,009). Uit dit onderzoek blijkt dat EGFR 

expressie een predictieve biomarker is om te voorspellen of patiënten wel of geen 

baat zullen hebben bij behandeling met ARCON.  

 

In hoofdstuk 4 wordt de geactiveerde vorm van EGFR, gefosforyleerd 

(p)EGFR, en de signaleringsroute PI3-K/AKT nader onderzocht. Hypoxische tumoren 

die de EGFR-PI3-K/AKT signaleringsroute kunnen activeren hebben mogelijk een 

overlevingsvoordeel na behandeling met radiotherapie. Ingevroren biopten van 

verschillende hoofd-halstumoren werden gekleurd middels immunofluorescentie 

voor pEGFR, pAKT, hypoxie en bloedvaten, en fracties werden bepaald. Zowel pEGFR 

(mediaan 0,6%, min-max 0-34%) en pAKT (mediaan 1,8%, min-max 0-16%) expressie 

varieerde sterk tussen tumoren. Er was een significante correlatie tussen pEGFR en 

pAKT (rs 0.44, p=0.004), maar dit bleek niet altijd gebaseerd op activatie van beide 

eiwitten in dezelfde tumorcel. Een lage expressie van pAKT was geassocieerd met 

lymfeklier metastasen op het moment van diagnose (0.5%  resp. 5.8% p=0.001). Lage 

pAKT expressie lijkt ook  te leiden tot een verhoogd risico op zowel regionale 

terugkeer van de ziekte (p<0.05) als metastasen op afstand (p=0.04). De correlatie 

tussen pEGFR en pAKT expressie in tumoren zou erop kunnen duiden dat activatie 

van de PI3-K/AKT signaleringsroute door middel van activatie van EGFR tot stand 

komt. Echter, aangezien niet altijd pEGFR en pAKT in dezelfde tumorcel tot expressie 

komt moeten er andere factoren, bijvoorbeeld andere signaleringsroutes of mutaties 

in de tumor, een rol spelen bij activering van AKT.  

 

Hoofdstuk 5 richt zich op de expressie van de markers E-cadherine en 

vimentine die een rol spelen bij epitheliale-mesenchymale transitie (EMT), een proces 

dat nodig is voor tumorcellen om te kunnen metastaseren. E-cadherine is een eiwit 

dat zich op het membraan van een cel bevindt en een rol speelt bij cel-cel contact en 

aanhechting. Vimentine komt in mesenchymale cellen tot expressie en correleert in 

eerdere onderzoeken met verhoogde kans op metastasering van tumoren. Voor dit 

onderzoek werden biopten van 26 patiënten gekleurd voor E-cadherine en vimentine 

en werden fracties bepaald. Er bestond een grote variatie tussen de tumoren voor 

zowel de expressie van E-cadherine (mediaan 17%, min-max 0-51%) als van 

vimentine (mediaan 0%, min-max 0-20%). Patiënten met tumoren met een lage 

fractie E-cadherine hadden significant meer metastasen vergeleken met tumoren die 

een hoge E-cadherine fractie hadden (81% versus 19%, p=0.004). Een verhoogde 

expressie van vimentine was geassocieerd met een trend op een hoger risico op 

metastasen (33% versus 77%). Alle patiënten met zowel een lage E-cadherine als een 

hoge vimentine expressie in de tumor (zoals gezien bij het proces van EMT) kregen 

afstandsmetastasen vergeleken met slechts 44% van de overige patiënten. Deze data 

tonen aan dat het verlies van E-cadherine gecombineerd met een verhoogde expressie 
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van vimentine in tumoren geassocieerd is met een versterkte migratie van 

tumorcellen en uiteindelijk tot een verhoogd risico op de vorming van metastasen bij 

hoofd-hals kanker kan leiden.  

  

In hoofdstuk 6 worden de twee voorgaande hoofdstukken samengebracht; 

de EGFR-PI3-K/AKT signaleringsroute en de EMT-markers E-cadherine en vimentine. 

Therapieën die als doel hebben om AKT te verminderen en hierdoor de prognose van 

de patiënt te verbeteren zijn tegenwoordig een behandelingsoptie voor verschillende 

solide tumoren. In hoofdstuk 4 van dit proefschrift werd aangetoond dat een lage 

pAKT expressie in de tumor geassocieerd is met lymfekliermetastasen In dit 

hoofdstuk is het doel om deze bevinding te valideren in een apart cohort van 

patiënten met uitsluitend larynxtumoren. Tevens werd het effect van pAKT remming 

op EMT in cellijnen van larynxkanker bestudeerd. In biopten van 78 patiënten werden 

EGFR, pAKT, E-cadherine, vimentine, hypoxie en bloedvaten gekleurd. Daarnaast werd 

in 6 cellijnen de mRNA expressie van E-cadherine en vimentine bepaald door middel 

van een kwantitatieve polymerase kettingreactie (q-pcr) en de expressie van de 

eiwitten  met immunohistochemische kleuringen voor en na behandeling van deze 

cellen met de pAKT remmer MK-2206. Bevestigd werden onze onverwachte 

resultaten uit hoofdstuk 4, dat een lage expressie van pAKT in tumoren gecorreleerd 

is met lymfeklier metastasen (p=0.005). Tumoren met lymfekliermetastasen hadden 

ongeveer een 10 maal lagere hoeveelheid pAKT vergeleken met tumoren zonder 

lymfekliermetastasen. Na remming van pAKT in larynxkankercelllijnen met MK-2206 

werd een verlaging gezien van E-cadherine expressie en een verhoogde vimentine 

expressie, consistent met inductie van EMT en daardoor duidend op een verhoogd 

risico op metastasevorming. Op basis van deze bevindingen wordt aanbevolen dat, 

voor introductie in de kliniek, nieuwe pAKT remmers getest zouden moeten worden 

op mogelijke stimulatie van EMT in hoofd-halskanker.  

  

Tenslotte wordt in hoofdstuk 7 de resultaten van alle hoofdstukken in een 

breder perspectief besproken en worden er suggesties voor toekomstig onderzoek 

gegeven. De resultaten van dit proefschrift maken duidelijk dat het tumor micromilieu 

een grote invloed heeft op de respons van tumoren op de gekozen behandeling. De 

progressie van tumoren is een complex en moeilijk te doorgronden proces. Bij elke 

nieuwe ontdekking komen nieuwe vragen naar boven. Het tumor micromilieu is zowel 

betrokken bij de activatie van EGFR gestuurde signaleringsroutes als bij de activatie 

van EGFR onafhankelijke eiwitten zoals AKT. Welke mechanismes en elementen van 

dit tumor micromilieu leiden tot activatie van de EGFR-PI3-K/AKT signaleringsroute 

blijft echter onduidelijk. Het werk beschreven in dit proefschrift zijn slechts details 

van een complex geheel waarbij EGFR en pAKT betrokken zijn, zowel in een tumor-

type (namelijk hoofd-halskanker) als patiënt-tumor specifieke manier. De variatie 
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tussen tumoren die tot dezelfde klinische locatie of stadium behoren maken duidelijk 

dat het noodzakelijk is patiënten geïndividualiseerd te kunnen behandelen. Met de 

mogelijkheid om patiënten te selecteren op basis van tumor specifieke kenmerken, 

zoals hypoxie, zijn we in staat om alleen die patiënten te behandelen die baat hebben 

bij zogenoemde hypoxie modificerende therapieën. De identificatie van belangrijke 

signaleringsroutes kan leiden tot de ontwikkeling van therapieën die specifiek op 

gericht zijn op tumor specifieke eigenschappen. Het combineren van deze 

verschillende therapieën kan bijdragen aan de mogelijkheid tot geïndividualiseerde 

behandelingsstrategieën zodat het mogelijk wordt om te kiezen voor de meest 

geschikte behandeling met de laagste toxiciteit en de beste kwaliteit van leven.  
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Dankwoord  

 

Het laatste hoofdstuk…het enige hoofdstuk in mijn proefschrift wat niet geschreven, 

gecorrigeerd, geschrapt, herschreven, gereviseerd en becommentarieerd is. En dat 

terwijl dit waarschijnlijk het meest gelezen hoofdstuk zal zijn. Ik wil iedereen 

bedanken die de afgelopen jaren mij geholpen heeft dit proefschrift voor elkaar te 

krijgen; iedereen die inhoudelijke input gegeven heeft, maar ook zeker diegene die 

een voor luisterend oor zorgden en die er waren om te sporten en ontspannen. Zonder 

deze combinatie had ik het nooit volbracht!  

 

Een aantal mensen wil ik in het bijzonder bedanken: 

 

Professor Kaanders, beste Hans, jij gaf mij de kans en vertrouwen om aan 

mijn promotie te beginnen. In de afgelopen jaren heb ik veel van je geleerd, je ervaring 

als radiotherapeut, onderzoeker én schrijver hebben ervoor gezorgd dat het gelukt is 

om mijn manuscript af te ronden waarvan alle artikelen gepubliceerd zijn. 

 

Professor van de Kogel, beste Bert, jouw kritische blik en vragen maakte dat 

ik nooit meer een presentatie wil geven zonder deze tot in de puntjes voor te 

bereiden. Ik weet zeker dat ik mijn eerste Klaas Breur Reisbeurs zonder jouw 

opmerkingen tijdens de oefenpresentatie nooit had gewonnen. Jouw knik en 

opgestoken duim tijdens ESTRO presentaties gaven mij ontzettend veel vertrouwen, 

grote dank daarvoor.  

 

Dr. Bussink, beste Jan, radiotherapeut, onderzoeker en hoofd van onze lab-

groep, ik vind het bewonderingswaardig! Jouw enthousiasme voor wetenschappelijk 

onderzoek werkt aanstekelijk en tijdens overleggen werden problemen moeiteloos 

door jou in oplossingen en ideeën omgezet. Bedankt dat je deur altijd openstond.  

 

Dr. Span, beste Paul, jouw moleculaire kennis en het nieuwe lab maakte dat 

mijn onderzoek nog veelzijdiger kon worden; van patiënten data terug naar cellen en 

door naar muizen experimenten. Het enthousiasme dat je hebt voor statistische 

uitdagingen en nieuw verworven resultaten zorgde ervoor dat er veel nieuwe ideeën 

ontstonden. Helaas is niet alles bruikbaar geweest voor dit proefschrift maar het heeft 

mijn promotietraject zeker uitdagender gemaakt.  
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Jasper, Hans, Marieke en Wenny, de analisten van het lab. Bedankt voor alle 

uren waarin ik gebruik mocht maken van jullie expertise.  

Jasper, mijn proefschrift had hier niet gelegen zonder jouw hulp. Alle 

‘immunoplaatjes’ die ik zelf creëerde konden eigenlijk niet tippen aan die van jou en 

daar is mijn mooie kaft het bewijs van! Bedankt dat je mijn paranimf bent vandaag en 

ik tot op het allerlaatste moment gebruik mag maken van je hulp! 

 

Anika, Hanneke, Laura, Marloes en Tineke, samen hebben we niet alleen een 

kamer, een lab en experimenten maar ook vele frustraties, spanningen en blije 

momenten gedeeld de afgelopen jaren. Zonder jullie zou het een stuk minder leuk 

geweest zijn op kamer 18. Heel veel succes bij het afronden van jullie promoties en in 

jullie verdere carrières.  

 

Paul, jouw analyses zijn de basis van mijn gehele onderzoek! Bedankt voor je 

rustige uitleg als ik iets niet begreep. Bianca, Esther, Ilse en Saskia, bedankt voor jullie 

hulp wanneer ik moeilijke vragen had of gewoon een praatje wou maken.  

 

Iedereen van de afdeling Radiotherapie bedankt! Nieuwjaarsfeesten, dagjes-

uit, weekendje skiën, praatjes in de koffiekamer, koffie in de klifio-kamer; ik heb er 

van genoten!  

Daan, ondanks dat onze specifieke interesse binnen de radiotherapie nogal 

ver uit elkaar ligt, bleken onze privé interesses meer overeen te komen. Je hebt mij er 

af en toe echt doorheen gesleept, dank je! 

 

Mijn oude collega’s (Bureau GMV) voor het gevoel dat ik hieraan kon 

beginnen. Ad, Loes en Petra; we kunnen het onderwerp afronden promotie nu 

afstrepen en nieuwe onderwerpen aansnijden tijdens onze wandel/fietsmiddagen! 

Mijn nieuwe collega’s (RIVM VSP) voor het vertrouwen dat ik dit tot een goed einde 

zou brengen. Wanneer telkens gevraagd word hoe het ermee staat (lees: feest?) kon ik 

niet anders dan het afmaken!  

 

Vrienden maken de vrouw! Lieve allemaal, ik ben er van overtuigd dat ik hier 

niet had gestaan zonder jullie!  

Anouk, Inge, Linda, Maaike, Miranda, Miranda, Monique, Sandra en Wendy; 

bedankt voor alle ontspanning, leuke weekendjes weg, high tea’s, en borrelavondjes! 

Ondanks de afstand zijn jullie altijd dichtbij gebleven. Er zal zeker goed geproost en 

gefeest worden om dit te vieren.  



Dankwoord 
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Bart, Dinant, Jeanette, Joost, Laura, Martijn, Melissa, Milou, Olaf, Peter, Peter, 

Remco, Rob, Sander en Sandra; zoveel (studie)jaren al vrienden, zoveel mooie 

herinneringen! Ik hoop dat we nog veel meer nieuwe herinneringen zullen creëren. 

Jullie hebben mij door vele momenten heen gesleept! Wat is het gaaf om 

studie/werk/bier/sport-uitdagingen, hoogte- en dieptepunten te mogen delen met 

jullie!  

Sander, je weet niet half hoeveel ik aan jou gehad heb tijdens onze (HLO en 

BMW) studies en ik vind het een onmeunig grote eer dat je vandaag naast mij wilt 

staan als paranimf! Remco, zonder jouw vertrouwen dat mijn studie- en werkkeuzes 

de juiste waren had dit proefschrift hier niet gelegen. Bedankt dat je dat mogelijk 

maakte en mij daarin altijd gesteund hebt!  

 

Pap en Mam, ik ben ontzettend dankbaar voor alle mogelijkheden die jullie 

mij geboden hebben. Vele wegen leiden naar Rome en ik heb daarvan de meeste wel 

bewandeld. Jullie stonden achter mijn keuzes die vast niet altijd even duidelijk waren. 

Bedankt dat ik dit alles waar heb mogen maken.  

Remco, mijn kleine broertje, het zonnetje in huis! Door jou heb ik geleerd dat 

het leven geleefd moet worden en ik alle kansen moet grijpen die er zijn. Het is nu tijd 

voor een feestje! 

 

Hora Est 
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Volksgezondheid en Milieu en een maatschappelijk profiel stage bij de afdeling 
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werd deze studie afgerond. Na twee jaar werkzaam geweest te zijn als 

milieugezondheidskundige bij Bureau Gezondheid, Milieu en Veiligheid van de GGD’en 

Brabant/Zeeland besloot Monique de kans om te promoveren aan te grijpen. In 2009 

werd bij de afdeling Radiotherapie begonnen met het onderzoek waarvan de 

resultaten staan beschreven in dit proefschrift. Gedurende deze periode heeft zij twee 

maal de Klaas Breur Fonds reisbeurs gewonnen en op meerdere congressen haar 
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