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Abstract

© 2017 The Author(s). Today, nanostructure-based contrast agents (CA) are emerging in the
field of magnetic resonance imaging (MRI). Their sensitivity is reported as greatly improved in
comparison to commercially used chelate-based ones. The present work is aimed at revealing
the factors governing the efficiency of longitudinal magnetic relaxivity (r 1 ) in aqueous colloids
of core-shell Gd(III)-based nanoparticles. We report for the first time on hyd ration number (q) of
gadolinium(III)  as  a  substantial  factor  in  controlling  r  1  values  of  polyelectrolyte-stabilized
nanoparticles  built  from water  insoluble  complexes of  Gd(III).  The use of  specific  complex
structure enables to reveal the impact of the inner-sphere hydration number on both r 1 values
for the Gd(III)-based nanoparticles and the photophysical properties of their luminescent Tb(III)
and Eu(III) counterparts. The low hydration of TTA-based Gd(III) complexes (q ≈ 1) agrees well
with the poor relaxivity values (r 1 = 2.82 mM -1 s -1 and r 2 = 3.95 mM -1 s -1 ), while these
values tend to increase substantially (r 1 = 12.41 mM -1 s -1 , r 2 = 14.36 mM -1 s -1 ) for
aqueous Gd(III)-based colloids, when macrocyclic 1,3-diketonate is applied as the ligand (q ≈ 3).
The regularities obtained in this work are fundamental in understanding the efficiency of MRI
probes in the fast growing field of nanoparticulate contrast agents.
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