MATEC Web of Conferences, 2017, vol.113

Effects of rotation and systematic occlusion on fiducial marker recognition

Sagitov A., Shabalina K., Li H., Magid E. Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2017 The Authors. Fiducial marker systems consist of patterns that are placed in environment for miscellaneous applications and are further automatically detected with cameras. A variety of applications determines the criteria, which characterize qualitative properties of a marker and include such evaluation benchmarks as resilience to occlusion, distance to a marker, false positive and false negative rates, sensitivity to illumination, and others. The paper compares existing ARTag, AprilTag, and CALTag systems utilizing a high fidelity camera, which is a main vision sensor of a full-size Russian humanoid robot AR-601M. In experiments the comparison of the three marker systems reliability and detection rate in occlusions of various types and intensities was verified. Finally, a preferable for AR-601M robot visual applications marker system was selected.

http://dx.doi.org/10.1051/matecconf/201711302006

References

- A. Klimchik, E. Magid, and A. Pashkevich, IFAC Conf. on Manufacturing Modelling, Management and Control, Elsevier Ltd., 49 (12), 967-972 (2016)
- [2] R. Khusainov, I. Shimchik, I. Afanasyev, and E. Magid, Int. Conf. on Informatics in Control, Automation and Robotics, 2, 141-148 (2015)
- [3] A. Buyval, I. Afanasyev, E. Magid, Int. Conf. on Machine Vision, 141-148 (2016)
- [4] E. Magid, T. Tsubouchi, Lecture Notes in Artificial Intelligence, 6472, 423-435 (2010)
- [5] M. Hirzer, Seminar/Project Image Analysis Graz, 1-25 (2008)
- [6] M. Fiala, IEEE Int. Workshop on Haptic Audio Visual Environments and their Applications, 148-153 (2005)
- [7] M. Fiala, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2, 590-596 (2005)
- [8] A. Sagitov, K. Shabalina, E. Magid, Int. Conf. on Mechanical, System and Control Engineering, Saint-Petersburg, Russia, (2017,. to be published)
- [9] K. Shabalina, A. Sagitov, E. Magid, H. Li, 10-th Int. Conf. on Developments in eSystems Engineering, France, (2017, to appear)
- [10] H. Kato, M. Billinghurst. IEEE and ACM Int. Workshop on Augmented Reality, 85-94 (1999)
- [11] M. Fiala, National Research Council Publication, 47419, 1-47 (2004)
- [12] E. Olson, IEEE Int. Conf. on Robotics and Automation, 3400-3407 (2011)
- [13] A. Trachtenbert, Computational methods in coding theory. MS thesis. University of Illinois at Urbana-Champaign, (1996)
- [14] B. Atcheson, F. Heide, W. Heidrich, Vision, Modeling, and Visualization Workshop, 10, 41-48 (2010)
- [15] S. Garrido-Jurado, R. Munõz-Salinas, F.J. Madrid-Cuevas, M.J. Marín-Jiménez, Pattern Recognition, 47 (6), 2280-2292 (2014)