Extending Wadge Theory to k-Partitions

Victor L. Selivanov^{1,2} (\boxtimes)

¹ A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia vseliv@iis.nsk.su

> $^{2}\,$ Kazan (Volga Region) Federal University, Kazan, Russia

Abstract. We extend some results about Wadge degrees of Borel subsets of Baire space to finite partitions of Baire space. A typical new result is the characterization up to isomorphism of the Wadge degrees of k-partitions with Δ_3^0 -components.

Keywords: Baire space \cdot Wadge reducibility \cdot Lipschitz reducibility \cdot Backtrack reducibility \cdot *k*-partition \cdot *h*-preorder \cdot Well preorder \cdot Infinite game

1 Introduction

For subsets A, B of the Baire space $\mathcal{N} = \omega^{\omega}$, A is Wadge reducible to B ($A \leq_W B$), if $A = f^{-1}(B)$ for some continuous function f on \mathcal{N} . The quotient-poset of the preorder $(P(\mathcal{N}); \leq_W)$ under the induced equivalence relation \equiv_W on the power-set of \mathcal{N} is called the structure of Wadge degrees in \mathcal{N} . W. Wadge [15,16] characterized the Wadge degrees of Borel sets up to isomorphism, in particular this poset is well-founded and has no 3 pairwise incomparable elements.

Let $2 \leq k < \omega$. By a *k*-partition of \mathcal{N} we mean a function $A : \mathcal{N} \to k = \{0, \ldots, k-1\}$ often identified with the sequence (A_0, \ldots, A_{k-1}) where $A_i = A^{-1}(i)$ are the components of A. Obviously, 2-partitions of \mathcal{N} can be identified with the subsets of \mathcal{N} using the characteristic functions. The set of all *k*-partitions of \mathcal{N} is denoted $k^{\mathcal{N}}$, thus $2^{\mathcal{N}} = P(\mathcal{N})$. The Wadge reducibility on subsets of \mathcal{N} is naturally extended to *k*-partitions: for $A, B \in k^{\mathcal{N}}, A \leq_W B$ means that $A = B \circ f$ for some continuous function f on \mathcal{N} . In this way, we obtain the preorder $(k^{\mathcal{N}}; \leq_W)$. For any pointclass $\Gamma \subseteq P(\mathcal{N})$, let $\Gamma(k^{\mathcal{N}})$ be the set of *k*-partitions of \mathcal{N} with components in Γ .

In contrast with the Wadge degrees of sets, the structure $(\Delta_1^1(k^N); \leq_W)$ for k > 2 has antichains of any finite size. Nevertheless, a basic property of the Wadge degrees of sets may be lifted to k-partitions, as the following very particular case of Theorem 3.2 in [4] shows:

Proposition 1. For any $2 \leq k < \omega$, the structure $(\mathbf{\Delta}_1^1(k^{\mathcal{N}}); \leq_W)$ is a well preorder, i.e. it has neither infinite descending chains nor infinite antichains.

Although this result gives an important information about the Wadge degrees of Borel k-partitions, it is far from a characterization. Our aim is to obtain © Springer International Publishing AG 2017

DOI: 10.1007/978-3-319-58741-7_36

J. Kari et al. (Eds.): CiE 2017, LNCS 10307, pp. 387–399, 2017.