Polyhedron 135 (2017) 96-100

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Fist oxidovanadium complexes containing chiral derivatives of dihydrophenanthroline and diazafluorene

POLYHEDRON

Yakov S. Fomenko^a, Artem L. Gushchin^{a,b,*}, Aleksey V. Tkachev^{b,c}, Evgene S. Vasilyev^c, Pavel A. Abramov^a, Vladimir A. Nadolinny^a, Mikhail M. Syrokvashin^a, Maxim N. Sokolov^{a,b,d}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia

^b Novosibirsk State University, 2, Pirogova Str., 630090 Novosibirsk, Russia

^c Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia

^d Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia

ARTICLE INFO

Article history: Received 21 April 2017 Accepted 4 July 2017 Available online 8 July 2017

Keywords: Chiral ligands Oxido complexes Vanadium Crystal structure EPR

ABSTRACT

Reactions of VCl₃ with chiral derivatives of dihydrophenanthroline (2*R*,4*R*,9*R*,11*R*)-3,3,10,10-tetramethyl-1,2,3,4,6,7,9,10,11,12-decahydro-2,4:9,11-dimethanodibenzo[*b*,*j*][1,10]phenanthroline (**L1**) and diazafluorene (1*R*,3*R*,8*R*,10*R*)-2,2,9,9-tetramethyl-2,3,4,7,8,9,10,12-octahydro-1*H*-1,3:8,10-dimethanocyclopenta [1,2-*b*:5,4-*b*']diquinoline (**L2**) in acetonitrile in air yield mixtures of [V^{III}(**L1**/**L2**)(CH₃CN)Cl₂] and [V^{IV}O (**L1**/**L2**)(CH₃CN)Cl₂] (**I**, **II**) which were characterized by elemental analysis, IR spectroscopy and magnetic susceptibility data. The behavior of these mixtures in different solvents was investigated by ⁵¹V NMR and EPR spectroscopies as well as optical rotation. Recrystallization of a [V^{III}(**L1**)(CH₃CN)Cl₃]/[V^{IV}O(**L1**) (CH₃CN)Cl₂] mixture from CH₂Cl₂/Et₂O affords a V(IV) complex, [V^{IV}O(**L1**)(H₂O)Cl₂]·*n*CH₂Cl₂ (**III**). Recrystallization from MeOH/Et₂O leads to complete oxidation to V(V) complex [V^VO(**L1**)(OMe)Cl₂] (**IV**), which was characterized by X-ray crystallography, IR, ⁵¹V and ¹H NMR spectroscopies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Oxido complexes containing the V^{IV}=O and V^V=O moieties are ubiquitous in the coordination chemistry of vanadium [1]. They demonstrate efficient catalytic oxidase reactivity in various transformations such as olefin epoxidation [2], aromatization of α,β unsaturated cyclohexanone derivatives [3], alcohol oxidation [4], C-C bond cleavage of glycols to give the corresponding ketones [5], naphthol coupling [6], and α -oxidation of hydroxyl esters and amides [7]. In addition, they are part of vanadium-dependent haloperoxidases [8,9].

N-donor ligands play an important role in the chemistry of vanadium oxido complexes. In particular, much attention received the complexes with Schiff bases (N- or N, O-donor bi- or tetradentate ligands) that exhibit biological activity and catalytic properties in various oxidation reactions [2,10].

A separate group is vanadium oxido complexes with N-donor heterocyclic diimines (2,2'-bipyridine (bpy), 1,10-phenanthroline

E-mail address: gushchin@niic.nsc.ru (A.L. Gushchin).

(phen) and their derivatives). In particular, binuclear complexes $[(VO)_2(L)_2(bta)(H_2O)_2]$ (L = bpy, phen; H₄bta = 1,2,4,5-benzenetetracarboxylic acid) catalyze the conversion of phenol red to bromophenol blue in the presence of H₂O₂ and Br⁻, which mimics vanadium-dependent haloperoxidases [11]. Among mononuclear complexes, bis-substituted complexes with general formula cis- $[V^{IV}O(X)(L)_2]^+$ (X = OH⁻, Cl⁻, SO₄²⁻, F⁻; L = bpy, phen and their derivatives) are the most common [12,13]. The *cis*-[V^{IV}OF(dbbpy)₂] ClO_4 complex (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) with mainly ionic V-F bond can be used as a fluorinating agent and can convert quantitatively°, for example, (CH₃)₃Si-Cl to (CH₃)₃SiF [13]. Oxido complexes with only one diimine ligand are less common. There are some mixed-ligand complexes, for example, [V^{IV}O (sal-mdtc)(bpy)], [V^{IV}O(sal-mdtc)(phen)] (sal-mdtcH₂ = salicylaldehyde S-methyldithiocarbazone) [14], [V^{IV}O(bpy)(H₂cit)] 2H₂O, [V^{IV}O(Hmal)(bpy)] H₂O and [V^{IV}O(H₂cit)(phen)] $1.5H_2O$ $(H_4cit = citric acid; H_3mal = R,S-malic acid)$ [15]. The oxido complexes of vanadium(V) include oxido-peroxido derivatives such as $[V^VO(O_2)(pca)(bpy)]$ and $[V^VO(O_2)(pca)(phen)]$ (pca = 2-pyrazinecarboxylic acid) [16], dioxido derivatives such as $[V^VO_2(dbbpy)_2](BF_4)~[17]$ and a dinuclear complex $[(V^VO)_2(\mu_2\text{-}O)_2$ $(\mu_2$ -SO₄)(dbbpy)₂ [18]. Vanadium oxido complexes with chiral diimine ligands are still unknown.

^{*} Corresponding author at: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.