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Abstract

Diabetes mellitus (DM) is a systemic disease characterized by changes in many organs and
tissues, including the motor system. The aim of this work was a study of the processes of exo-
and endocytosis in the motor nerve ending of mouse diaphragm during high-frequency activity
in experimental alloxan model of DM. Endplate potentials (EPPs) was recorded using intracellular
microelectrodes during single and high-frequency (50 Hz,  1 min)  stimulation.  In mice with
experimental DM the amplitude-temporary parameters of EPPs did not differ from the control;
however, an increase in the EPPs depression and a slower recovery was observed during high
frequency stimulation. Using an endocytosis dye FM 1-43, it was shown that in animals with
experimental DM the intensity of fluorescence of nerve terminals loaded by high-frequency
stimulation  was higher  than in  control.  This  effect  was prevented by an inhibitor  of  slow
dynamin-mediated endocytosis - 1-azakenpaullone (2 μM). In addition, the bleaching of pre-
loaded nerve terminals during high-frequency stimulation was slower in animals with DM. The
obtained results suggest that in experimental DM the recycling of synaptic vesicles via the long
path becomes more pronounced and the mechanisms of the vesicular transport are impaired.
This hypothesis was confirmed by methods of mathematical modeling.
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