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Despite a fall from grace in recent years, chemometrics has a key role to play in the 
interpretation of mega-variate datasets. Here, I diagnose the problems that the field currently 

faces and propose that developing a theory of chemometrics offers a way forward.  
By Lutgarde Buydens

Towards 
Tsunami-Resistant 

Chemometrics
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	 he ever-increasing volume of information  
	 generated by hyphenated analytical platforms  
	 requires science – and scientists – to adapt or  
	 be drowned by the deluge of data. One 
development, actually a new science paradigm, that puts the 
analytical sciences in the driving seat of scientific research 
is so-called ‘data driven’ research: increasingly, analytical 
measurements are performed to generate hypotheses rather than 
to confirm them. However, to live up to the promise of data-
driven research, powerful chemometric data analysis is essential 
and, at the moment, this is sadly lacking.

In an era where tsunamis of data are flooding the scientific 
world, it is painfully apparent that the development of data 
analysis methods has not kept pace. The standard workhorses 
of chemometrics, such as principal component analysis (PCA), 
which were designed to cope with multivariate data, are cracking at 
the seams under the pressure of mega-variate datasets originating 
from comprehensive molecular profiling, biobank samples, sensor 
technologies and so on. Chemometricians are not coming up with 
sensible answers to questions about these kinds of data.

Another striking shortcoming of chemometric data analysis is 
the lack of underlying generic strategies for workflow. In practice, 
each individual dataset currently requires its own analysis 
research project to cope with its peculiarities, which originate in 
measurement methodologies as well as in sample or data types.

These issues have brought us to an unprecedented state of 
affairs. Chemometrics, which has always been in demand for the 
study of larger and more complex datasets, is now inadequate and 
underappreciated, floundering in the wake of the data tsunamis. 
It is high time that action was taken to keep the field afloat. Here, 
I analyze and diagnose the situation, and then propose a plan  
of action.

Diagnosis 
Let’s first note that chemometricians are not the only ones 
struggling with the data tsunami. Computer scientists, too, 
have ‘big data’ problems and are working furiously on solutions 
for managing and sharing large amounts of scientific data while 
maintaining data integrity. We must follow their efforts closely.

 On analyzing the current state of chemometrics, a few 
immediate conclusions can be drawn.

First, explorative analysis must be upgraded. We have always 
taken for granted the explorative power of PCA, our basic tool, 
but it is just not up to the task of exploring mega-variate datasets.

Second, we cannot assume linearity, the very assumption 
that enabled us to develop the powerful and robust methods 
to analyze moderately complex nonlinear behavior. While the 
assumption remains a valid approach to ‘classical’ multivariate 

datasets, whether it applies to mega-variate data over broad 
scales is, at best, an open question. 

Third, there is an urgent need for new methods and strategies 
that combine data from different sources; an example would be 
the association of images and molecular profiles measured over 
different timescales. Data from a whole host of disparate platforms, 
including unstructured data, such as text, need to be integrated.

Fourth, we need to develop a ‘chemometric theory’. This 
is urgent. Chemometrics evolved, for various reasons, as one 
hundred percent empirical science so, unlike (applied) statistics 
we don’t have an underlying theory to fall back on. However, 
we now need one, or at the very least a general strategy, to make 
chemometrics tsunami-resistant.

Explorative analysis 
The first step of data analysis is explorative analysis. If we can’t 
reveal the essence of the data in a simple plot and access easy tools 
to explore further ideas, we can forget about the generation of 
new hypotheses. PCA is the jack-of-all-trades of chemometrics 
for explorative analysis. Its basic principle is simple and powerful: 
that which causes the largest variation in a dataset is most 
relevant, and identifying it reveals the essence of the data. 

With mega-variate data, however, this principle stumbles. 
Measurements are now often performed to search for the so-
called ‘needle in the hay stack’. In biomarker discovery, for 
instance, the principle of ‘largest variance is most important’ 
has no value; rather, most of the variation is due to uninteresting 
causes and an explorative PCA plot reveals nothing of value, as 
can be seen in Figure 1a. 

To extract the needle in the haystack, projection techniques that 
use alternative criteria, such as independent component analysis 
(ICA), have been explored (for an overview, see Reference 1).  
While sometimes successful, these criteria are artificial and often 
computationally-intensive, and have never truly taken off. A 
recent and interesting approach is sparse PCA (2), in which one 
tries to find a loading vector with many zeros that still explains a 
large part of the variance; this makes interpretation much easier. 
However, it is clear that no general projection method will reveal 
the essential structure of information in all cases. 

A much more sensible approach would be to focus first on 
removing the uninteresting variation. This requires knowledge of 
at least some of the sources that causes the irrelevant variation, 
which brings up a key point that has been recognized for some 
time in chemometrics: incorporating prior knowledge is a key 
issue in exploring huge datasets. The principle is, however, easier 
to advocate for than to apply. Yes, application of constraints 
in analysis is a well-known approach; in curve resolution 
techniques, for constraints of non-negative concentrations, for 
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the shape of chromatographic/kinetic profiles and for many 
other factors, it is well established (3). But for explorative analysis 
hardly anything has been achieved so far.

While explorative analysis implies that not much is known 
about the data, additional knowledge is often available in 
the form of gender, disease state, batches, instrument or 
measurement conditions, and so on.  Recently, a promising 
approach has emerged that exploits this kind of knowledge in 
explorative analysis: the combination of PCA with analysis of 
variance (ANOVA). ANOVA is a basic statistical technique 
that separates variation in data that is caused by different sources 
(called ‘main effects’ in the ANOVA jargon) and their possible 
influence on each other (‘interaction effects’ in ANOVA jargon). 
The basic idea is simple: first, separate the variation in the data 
according to the different known sources, with ANOVA, and 
then analyze the interesting parts,  
using PCA. 

ANOVA models the total variation in 
the dataset:
Total Variation = Mean + 
Variation due to the different main 
effects (sources) + 
Variation due to the different interaction 
effects + 
Residual Variation (not due to any of the 
known sources)

This approach allows separate 
analysis of interesting parts of 
the variation; alternatively, non-
interesting variation can be removed 
before PCA analysis (see Figure 1b). It is especially attractive 
because it combines cornerstone methods from chemometrics 
and statistics. Several variants have been proposed which differ 
mainly in the specific aim of the analysis (4-6).

When more structured information is available this too can 
be used. For example, the critical information for biomarker 
discovery is a change from a basic state, in which there is normal 
but wide variation, to a state in which specific variation is added 
or removed due to a change, such as in metabolic activity.  The 
detection of changes is open to many discriminant methods 
although the large amount of ‘normal’ variation can hamper 
discovery of the sought-for differences. One recent method, 
orthogonal partial least squares (O-PLS) (7) aims to solve this 
problem by removing the uninteresting data on the basis that 
that it is not correlated with, and is thus orthogonal to, class 
membership. This approach is meeting with some success.

Another new and promising idea models the basic state 
variation by means of PCA and subsequently projects the other 
interesting data into this model (8, 9). Part of the variation will 
be explained by the basic state PCA, but it is the residual, non- 
explained part that contains the information on the differences 
from the basic state. This is a powerful approach for detecting 
minor differences in explorative situations. It is actually the 
application of a principle that has been used for a long time in 
the field of industrial process control. Here, the basic, normal 
state of a multivariate industrial process is modeled into the so-
called normal operating conditions (NOC) with PCA. During 
operation, the process is monitored by projecting the actual state 
vector into the NOC-space. When this state vector fits nicely 
into the NOC, everything is okay; when the fit decreases and the 
residuals increase, the process is ‘out of control’ and the residual 

variation provides clues to the possible 
process faults. In the same way, the 
normal operating conditions (NOC) 
of the comprehensive -omic profile 
of healthy (basic state) people, cells 
or any similar thing can be modeled 
by PCA. Analysis of the residuals 
contains clues to the differences in 
the diseased state. This approach has 
been successfully applied to detect 
and diagnose rare metabolic diseases 
in children (8). The idea of analyzing 
residuals from well-described states in 
a focused way is quite new to our field 
and there is ample room to further 
elaborate upon it or to generalize it for 
more complex situations (9). 

The above approaches work best when the data are obtained 
in a well-designed way. While interesting results can be obtained 
in ‘dirtier’ situations, it requires further research. Current 
approaches are far from perfect but they do illustrate that one of 
the keys to breakthroughs in explorative analysis is exploitation 
of prior knowledge. Much research is still required and novel 
methods will be welcomed for data that are not well designed.

Nonlinear behavior
Linear models are attractive because their behavior is well studied 
and understood, and because confidence intervals can easily be 
constructed to validate their performance in different situations. 
They also require relatively few data to construct them robustly. 
Even when the data do not follow linear behavior perfectly, 
the use of linear models is often preferred for these reasons. In 
practice, the domain of interest is often split up into smaller parts, 
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where a linear approximation is valid, allowing the use of safe and 
well understood linear models. Linear regression and PLS are 
therefore used in the majority of chemometric research studies.

However, linear models are simply not sufficient for the 
analysis of large datasets. This has been recognized for some time 
and a good deal of research has been devoted to developing better 
systems (10). At one point, neural methods were considered to 
be the nonlinear method of the future but the realization that 
they behave unstably has made them considerably less attractive.  
Among the most powerful methods today are the so-called 
kernel methods, such as support vector machines (SVM) and 
Kernel PLS. In these methods the data are transformed in a 
‘feature’ space, usually of higher dimension, in which linear 
separation is possible (11). The distance methods, successfully 
applied in social studies and only recently brought to the 
attention of chemometricians (12), can be considered as kernel 
methods too. In these analyses, it is not the data themselves but a 
distance matrix calculated from the data that is analyzed, using a 
linear method such as PLS. Walczak showed that with a simple 
Euclidian distance, noteworthy nonlinear separation problems 
can be solved.  

The major drawback of kernel methods is that they are ‘black 
box’ models in which information on the important variables 
is lost. This makes them useless for projects such as biomarker 
discovery. While samples can be projected into the model and 
classified, and properties accurately calculated, exactly which 
variables contribute to the classification or the value of the 
property under investigation remains unknown. Until this 
problem is resolved these otherwise powerful kernel methods 

will not have the utility that they deserve in chemometrics. 
Recently, an earlier idea from Gower (13) has been exploited 
to disclose variable information from the kernel model (14, 
15). This is the concept of the pseudo-samples or ‘spy samples’, 
which are artificial samples that carry all their weight in one 
variable, with the other variables being set to average. When 
these pseudo-samples are projected in the kernel method they 
reveal the behavior of the variable for which they carry weight. 
This can be visualized in a very intuitive way and, while the 
approach is still its infancy, it has already been applied in complex 
metabolomics studies (see Figure 2) (16). 

Fusion of data
To acquire a comprehensive molecular picture of a complex 
system such as the metabolome, a combination or hyphenation 
of multiple analytical techniques is needed; no single 
measurement principle can capture all of the molecular diversity 
and concentration range of the components. There is therefore 
an urgent need for data analysis approaches that integrate data 
across platforms and modalities (such as images and profiling 
methods) and that can even incorporate text data. Several 
strategies have been proposed for this, which can be divided into 
low-, mid-, and high-level fusion. 

In low-level fusion the different datasets are simply 
concatenated. For high-level fusion, a separate model is 
constructed per dataset and it is the outputs of these models that 
are combined. In mid-level fusion the most interesting features, 
extracted from each dataset separately, are combined to build 
the final model. A further approach to data fusion, focused on 
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Fig 1a: Loading plot of a PCA analysis on a genomics (osteogenesic  time 
series) dataset, investigating a time effect under different treatments of stem 
cells; the four planes represent four different treatments and the arrows 
represent the time points. No differences can be seen in the four treatments 
when analyzing the whole dataset.

Fig 1b: Loading plot of a PCA analysis of an interesting  interaction effect 
obtained by an ANOVA analysis of the Fig 1a dataset. In this analysis, 
clear differences between the treatments can be seen; for more explanation, 
see reference 6.
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regression problems, is the so-called multi-block method. 
The success of data fusion can be quite variable: sometimes 

it outperforms the individual datasets while on other occasions 
the results can be disappointing. This unpredictability in 
outcome is down to two major factors. First, fusion strategies 
are almost always linear and, as noted above, linearity cannot be 
assumed a priori. Some efforts have been made to combine data 
nonlinearly, by combining kernels of the data rather than the full 
datasets themselves. This is a powerful method for prediction 
but the ‘black box’ aspect is a drawback. The concept of pseudo-
samples too is also quite promising, as demonstrated in a recent 
complex study of multiple sclerosis (16). Second, it is apparently 
impossible to predict or foresee which combination of datasets 
will be successful. The obvious criteria – correlation with the 
property under investigation and the amount of mutually 

exclusive information in both datasets – are not always adequate; 
in some cases, a dataset uncorrelated with the property under 
investigation and highly correlated with the first dataset can 
unexpectedly and drastically improve performance. This imparts 
to the whole procedure a sense of trial-and-error, and makes it 
cumbersome and time consuming. Methods to overcome these 
issues are urgently required.

Chemometric Theory
Unlike (applied) statistics, chemometrics has no underlying 
theory: it evolved as a fully empirical science in which each 
dataset is almost considered to be a separate project. There is a 
recognizable workflow for chemometrics, which is illustrated in 
Figure 3. Within each box, however, preprocessing or methods 
of analysis are selected largely based on previous experience and 
their performance for the problem at hand. Ideally, the problem 
at hand should be related to a more general situation and from 
there the strategy or workflow should be streamlined. 

 Sometimes, methods such as preprocessing are specially 
designed for a specific situation. This does not imply, however, 
that they will automatically work optimally in similar situations 
because artifacts, such as base lines, are often instrument- or even 
environment-dependent, turning each dataset into a unique 
problem. This leaves no other choice than an empirical trial and 
error approach for each dataset. But the consequence of the 
myriad methods developed, each solving a specific problem, is 
that inexperienced users are totally confused. Taking the example 
of preprocessing, this chaos is described in work by Engel et al. 
(17): for what is a straightforward classification problem based 
on a simple spectroscopic dataset, there are several thousand 
reasonable preprocessing methods available, all of them 
published for a similar dataset and problem setting. When these 
methods are applied by inexperienced but scientifically-sound 
users, the results are truly astonishing, as shown in Figure 4. Each 
dot represents a specific ‘reasonable’ preprocessing according to 
two performance criteria: the classification performance and 
the model complexity. What might be described as ‘reasonable’ 
or ‘previously successful’ is no guarantee of success with the 
problem at hand. This chaos is, I venture, the main reason that 
chemometrics does not get the consideration that it deserves 
from analytical scientists.

The complexity of the situation does not, however, exempt 
us from trying to find structure in this apparent chaos. If we, as 
chemometricians do not succeed in at least partially solving this 
problem, we cannot expect to survive the data tsunami. The good 
news is that there is already one part of the data workflow in which 
progress has been made, namely validation. We can rightfully be 
proud of our achievements and attitude towards the thorough and 
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Fig 2: Pseudosample trajectories in a metabolomics study to distinguish 
clinically isolated syndrome of demyelination (CIS) from multiple sclerosis 
(MScl). Each pseudosample trajectory reveals the behavior of one metabolite 
in the two diseases; for more explanation, see Reference 15.

Fig 3: Chemometric workflow.
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independent validation of results. We must stay focused on this, 
especially on the validation of explorative methods.

The main reason that chemometrics has ended up in a tricky 
situation is that chemometricians have dared to tackle the difficult 
‘dirty’ problems that don’t fit nice statistical distributions or theories.  
Chemometrics emerged where statistical theory was no longer 
applicable, a fact that has been recognized by statisticians (18).  

This is not a unique situation; I would make the comparison 
with medicine (as with all comparisons it hobbles, but it is 
thought-provoking). Underlying biochemical and physiological 
theories provide the basis of medical sciences. A clinician, however, 
has to treat individual patients whose symptoms are unique. These 
symptoms are probably related to an underlying biochemical 
or physiological problem but are co-influenced by a myriad of 
internal and external factors, making the exact appearance of 
illness specific for every patient. Despite this complexity, medical 
diagnosis and treatment have emerged as medical sciences. 

A similar kind of chemometric theory will allow a much more 
structured and logical approach to the analysis of complex data. 
Better diagnosis and understanding of the underlying issues will 
enable the selection of a more efficient treatment. Moreover, 
better understanding of data and their peculiarities will help in 
one other aspect that is of increasing importance, namely the 
prevention of scientific fraud. The analysis of data is especially 
prone to fraud. I am convinced that with a chemometric theory 
and with our attitude to validation, we can contribute to the 

development of a general strategy for fraud prevention.
The development of a chemometric theory will be an 

important, if not the most important, step towards tsunami-
worthy chemometrics.

Lutgarde Buydens is at Radboud University Nijmegen,  
Institute for Molecules and Materials, Analytical Chemistry,  
in Nijmegen, The Netherlands.
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