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Abstract

This thesis primarily uses submillimetre molecular line data from HARP,

a heterodyne array on the James Clerk Maxwell Telescope (JCMT), to

further investigate star formation in the Ophiuchus L1688 cloud. HARP

was used to observe CO J = 3 ! 2 isotopologues: 12CO, 13CO and

C18O; and the dense gas tracer HCO+ J = 4 ! 3.

A method for calculating molecular line contamination in the SCUBA-2

450 and 850 µm dust continuum data was developed, which can be used

to convert 12CO J = 6 ! 5 and J = 3 ! 2 maps of integrated inten-

sity (K km s�1) to molecular line flux (mJy beam�1) contaminating the

continuum emission. Using HARP maps of 12CO J = 3 ! 2, I quanti-

fied the amount of molecular line contamination found in the SCUBA-2

850 µm maps of three di↵erent regions, including NGC 1333 of Perseus

and NGC 2071 and NGC 2024 of Orion B. Regions with ‘significant’ (i.e.

> 20%) molecular line contamination correspond to molecular outflows.

This method is now being used to remove molecular line contamination

from regions with both SCUBA-2 dust continuum and HARP 12CO map

coverage in the Gould Belt Legacy Survey (GBS).

The Ophiuchus L1688 cloud was observed in all three CO J = 3 ! 2

isotopologues. I carried out a molecular outflow analysis in the region

on a list of 30 sources from the Spitzer ‘c2d’ survey [Evans et al., 2009].

Out of the 30 sources, 8 had confirmed bipolar outflows, 20 sources

had ‘confused’ outflow detections and 2 sources did not have outflow

detections.

The Ophiuchus cloud was found to be gravitationally bound with the

turbulent kinetic energy a factor of 7 lower than the gravitational binding

energy. The high-velocity outflowing gas was found to be only 21% of the



turbulence in the cloud, suggesting outflows are significant but not the

dominant source of turbulence in the region. Other factors were found to

influence the global high-velocity outflowing gas in addition to molecular

outflows, including hot dust from nearby B-type stars, outflow remnants

from less embedded sources and stellar winds from the Upper Scorpius

OB association.

To trace high density gas in the Ophiuchus L1688 cloud, HCO+ J =

4 ! 3 was observed to further investigate the relationship between high

column density and high density in the molecular cloud. Non-LTE codes

RADEX and TORUS were used to develop density models corresponding to

the HCO+ emission. The models involved both constant density and

peaked density profiles. RADEX [van der Tak et al., 2007] models used a

constant density model along the line-of-sight and indicated the HCO+

traced densities that were predominantly subthermally excited with den-

sities ranging from 103–105 cm�3. Line-of-sight estimates ranged from

several parsecs to 90 pc, which was unrealistic for the Ophiuchus cloud.

This lead to the implementation of peaked density profiles using the

TORUS non-LTE radiative transfer code. Initial models used a ‘trian-

gle’ density profile and a more complicated log-normal density prob-

ability density function (PDF) profile was subsequently implemented.

Peaked density models were relatively successful at fitting the HCO+

data. Triangle models had density fits ranging from 0.2–2.0⇥106 cm�3

and 0.1–0.3⇥106 cm�3 for the 0.2 and 0.3 pc cloud length models re-

spectively. Log-normal density models with constant-� had peak density

ranges from 0.2–1.0 ⇥105 cm�3 and 0.6–2.0⇥105 cm�3 for 0.2 and 0.3 pc

models respectively. Similarly, log-normal models with varying-� had

lower and upper density limits corresponding to the range of FWHM

velocities. Densities (lower and upper limits) ranged from 0.1–1.0 ⇥106

and 0.5–3.0 ⇥105 cm3 for the 0.2 and 0.3 pc models respectively.

The result of the HCO+ density modelling indicated the distributions

of starless, prestellar and protostellar cores do not have a preference for

higher densities with respect to the rest of the cloud. This is contrary

RADEX
TORUS
RADEX
TORUS


to past research suggesting the probability of finding a submillimetre

core steeply rises as a function of column density (i.e. density; Belloche

et al. 2011; Hatchell et al. 2005). Since the majority of sources are

less embedded (i.e Class II/III), it is possible the evolutionary state of

Ophiuchus is the main reason the small sample of Class 0/I protostars

do not appear to have a preference for higher densities in the cloud.
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Chapter 1

Introduction

“We are all in the gutter, but some of us are looking at the stars.”

— Oscar Wilde, Lady Windermere’s Fan

Though stars are tranquil in appearance from the clear night sky, their for-

mation is a turbulent process occurring at the centre of cores in the depths of

molecular clouds. Regions of star formation are not easily studied in optical wave-

lengths due to the dust and gas enveloping the young protostars, often obscuring

background starlight and creating ‘dark’ areas that seem to be devoid of stars (see

Figure 1.1). Longer wavelengths (i.e. infrared, submillimetre, millimetre and ra-

dio) can penetrate the obscuring dust in these clouds and reveal the newborn stars.

These early stages of star formation are still not well understood even though our

knowledge has improved since the construction of detectors observing with longer

wavelength ranges. In this thesis, I primarily use submillimetre wavelengths which

detect the dust in the clouds as continuum emission and rotational transitions of

various molecules as spectral lines. I focus on observations of carbon monoxide CO

and the formyl cation HCO+ to investigate nearby star formation in the Gould Belt.

In this introduction, I present a current overview of star formation in our Galaxy.

I then describe the process of submillimetre observing and instruments used in the

detection of dust and molecular gas in star forming regions. Lastly, radiative transfer

theory is used to derive useful quantities for tracing star formation properties in the

cloud (e.g. excitation temperature, column density and gas mass).
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1. INTRODUCTION

Optical Infrared

Figure 1.1: The constellation Orion in visible and infrared light. Left: Optical
image, Akito Fujii. Right: Infrared image composed of 12 µm, 60 µm and 100 µm,
taken by Infrared Astronomical Satellite (IRAS).
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1.1 Star formation

In this section, the current understanding of nearby ‘low mass’ star formation

(< 2 M�) is discussed, including molecular clouds and the formation of cores. Pro-

tostellar evolution and classification are then presented followed by a more detailed

description of molecular outflows.

1.1.1 Molecular clouds: nurseries for star formation

Molecular clouds act as stellar nurseries, rife with the dust and gas used to form stars.

These clouds are cold (T ⇠8–30 K), dense regions forming part of the interstellar

medium (ISM). The ISM is filled with neutral, ionised and molecular hydrogen and

helium as well as other heavier atoms [Tielens, 2009]. In star forming regions, the

density of atomic hydrogen is substantial enough to form molecular hydrogen H2

with number density nH2 � 103 cm�3.

The Gould Belt is a nearby active ring of star formation in the Galaxy, inclined

by roughly 20 deg to the Galactic Plane [Herschel, 1847]. It consists of a ring of O-

type stars with a radius of ⇠350 pc and centred on a distance ⇠200 pc from the Sun.

Most of the local star forming regions are associated with the Gould Belt, shown

in Figure 1.2. Star forming regions in this area range from small clouds to giant

molecular clouds (GMCs) with sizes from ⇠ 1–100 pc and masses from ⇠10–106 M�.

Molecular gas formation in clouds can be primarily explained in two di↵erent

ways. First, shorter distances between atomic gas and dust grains could lead to

more collisions in these dense regions, resulting in the formation of molecules. Ad-

ditionally, ultraviolet (UV) radiation may not be able to easily dissociate already

formed molecules due to higher dust extinction, a process known as self-shielding

[Frerking et al., 1982; Ward-Thompson, 2002]. The most abundant gas in these

clouds is molecular hydrogen H2. H2 is di�cult to observe because it is a homonu-

clear diatomic molecule without a permanent electric dipole [Hildebrand, 1983b].

The lowest observable rotational transition for H2 is J = 2 ! 0, corresponding to

an excitation energy of 500 K [Rohlfs and Wilson, 2000]. Therefore, this transition

is only observable in clouds with regions heated by shocks or UV radiation fields.

The second most abundant molecule 12CO is typically used to trace star formation

in molecular clouds due to its abundance and lower critical density. The main dis-

3



1. INTRODUCTION

Figure 1.2: Diagram of the Gould Belt showing the projection of the ring plotted
on the Galactic Plane. The 20 deg inclination can be seen [Ward-Thompson et al.,
2007b]. Commonly observed molecular clouds are shown.

advantages of this molecule is that it can easily become optically thick at modest

column densities and it has a tendency to freeze onto dust grains at lower tem-

peratures and higher densities which causes depletion. Rarer isotopologues of CO

(i.e. 13CO and C18O) can be used to study denser regions of the cloud due to their

lower optical depth and lower abundances. Similarly, molecules with higher critical

densities (e.g. HCO+, H13CO+ and NH3) can also be used to trace denser regions

of the cloud [Hartmann, 2009b].

1.1.2 Core collapse: the birth of a protostar

Dense concentrations of molecular gas form in areas of decreased turbulence inside

molecular clouds [Goodman et al., 2009]. These denser regions are known as ‘cores’

which are typically detected using dust continuum (N(H2) � 103 cm�2). Cores are

typically categorised as either starless, prestellar or protostellar. ‘Starless’ is a loose

term for all dense cores that may or may not form protostars and prestellar cores are

gravitationally bound and will form protostars in the future. A protostar is thought

to form from the gravitational collapse of a prestellar core. In a simple scenario,

cores will form in areas of low turbulence and low magnetic fields. The cloud or a

portion of a cloud will collapse to form a core when the kinetic energy is overcome

4
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by its gravitational force. The stability of the cloud or core can can be described by

the virial theorem,

⌦G + 2K = 0, (1.1)

where ⌦G is the self-gravitational potential energy of the cloud and K is the kinetic

energy of the cloud due to both thermal motions and turbulence. For a spherical

object of mass Mcl, radius Rcl and three-dimensional velocity dispersion �,

K =
1

2
Mcl�

2 (1.2)

⌦G ⇠ �GM

2
cl

Rcl
. (1.3)

The virial mass is naturally the result of the virial theorem, describing the critical

mass for the cloud to be in equilibrium,

Mvir ⇠ �

2
Rcl

G

. (1.4)

For the cloud to collapse, the potential gravitational energy must satisfy the condi-

tion ⌦G > 2K, or the cloud mass must be greater than the virial mass. Similarly,

the cloud will disperse under internal motions if the cloud mass is less than the virial

mass.

The mass of the smallest clump that is thermodynamically viable to collapse can

be predicted (in the case of no competing processes). This mass is known as the

Jeans Mass MJ, named after Sir James Jeans, who examined gravitational collapse

of spherical nebula (Jeans 1902). Thermal energy causes the cloud to expand. The

critical mass (and radius) of a clump or cloud where the gravitational force is able

to counteract the thermal energy is,

MJ ' 4

3
⇢o⇡R

3
J (1.5)

RJ '
✓

15

4⇡G⇢o

◆1/2

ao, (1.6)

where RJ is the Jeans radius (critical radius corresponding to Jeans mass), ⇢ is the
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density and ao is the isothermal sound speed
⇣
a

2
o =

kT

µmH

⌘
. Regions with higher mass

(i.e. in higher density regions) or longer size scales will collapse under gravity and

cannot support themselves only with thermal pressure.

The collapse lifetime of a core under gravity or the dispersion of a core with

a mass less than the virial mass can be predicted. A collapsing core will have a

free-fall timescale t↵ ,

t↵ =

✓
3⇡

32G⇢

◆1/2

, (1.7)

where ⇢ is the density. Similarly, the dispersion timescale is tdisp is,

tdisp ' Rcore

�

, (1.8)

where Rcore is the core radius and � is the internal velocity dispersion. Timescales

based on the gravitational collapse for GMCs (i.e. the free-fall timescale) are esti-

mated to be 2–4 Myr, where the best estimates of cloud lifetimes are either compa-

rable to or up to five times larger than these free-fall times.

The current estimate of the star formation rate in the Galaxy is ⇠ 1 M� yr�1

[Robitaille and Whitney, 2010]. This is contradictory to the estimate of the free-fall

timescale (2–4 Myr) and H2 mass in the Galaxy (1–3⇥109 M�; see Evans 1999 and

references therein), which estimates a star formation rate of ⇠200 M� yr�1. This

also shows star formation is a surprisingly ine�cient process for our Galaxy using

the predicted free-fall timescales. The star formation e�ciency ✏ (see Elmegreen

and Efremov 1997) is denoted as the ratio of the star formation rate and lifetime

of the region to the mass (i.e. H2 mass). The estimated star formation e�ciency

of the Galaxy is only a few percent [Zuckerman and Evans, 1974] using the free-fall

timescale. The low star formation e�ciency and disagreement between observations

and predictions of the star formation rate suggests it is necessary to investigate

potential cloud support mechanisms (e.g. turbulence and magnetic fields).

1.1.3 Core stability

The details about the cloud collapse and formation of the core are still disputed.

In clustered regions, triggers for stellar formation can including anything from su-

6



pernova explosions, stellar winds, molecular outflows and shock waves. In the more

isolated star forming regions, the potential factors for initiating core collapse are

not always so obvious. Cores can either form in a static or dynamic scenario, where

the two main theories for the physical mechanism of cloud support involve magnetic

fields and turbulence.

The static scenario assumes minimal influence from turbulence. In this scenario,

cores will form in areas with decreased turbulence in the cloud by the influence of

gravitational forces and magnetic fields [Mouschovias and Ciolek, 1999; Myers, 2000;

Myers and Mardones, 1998]. Clouds with a mass to magnetic flux ratio (M/�) that

is subcritical have a magnetic field strong enough to support the core against gravity,

while supercritical clouds have a magnetic field that is too weak to support the cloud

against gravity. Using these two cases, the contraction of the cores in a more static

manner can either be sub or supercritical. For subcritical clouds, star formation can

occur by ambipolar di↵usion, which is the decoupling of molecules from the ions

and electrons in the plasma (where the plasma is the main component behind the

resistive magnetic field). Relatively, the timescale for ambipolar di↵usion is several

factors higher than the dynamical timescales which would make star formation rates

(and thus e�ciencies) low [Shu et al., 1987]. For supercritical clouds, the magnetic

field is too weak to support the clump of material and the material gravitationally

collapses to form a core (most likely in an area with little turbulence). Even if the

magnetic fields do not prevent core collapse, they can still support large portions of

the cloud by becoming the main source of internal pressure [Price and Bate, 2008].

In the dynamic scenario, supersonic turbulence supports the molecular cloud

against gravitational collapse, where turbulence could generate an internal pres-

sure preventing gravitational collapse in the cloud. Turbulence can be described as

the random motions of material on a variety of length scales. Both the kinemat-

ics and structure of molecular clouds can be influenced by supersonic turbulence.

Kolmogorov [1941] characterised a turbulent flow as a cascade of energy across a

hierarchy of scales for high Reynolds numbers. A Reynolds number is defined as

the ratio of internal to viscous forces, where high Reynolds numbers indicate the

presence of turbulent flows (inertial forces dominate) and often produce instabilities

like eddies or vortices. Kolmogorov [1941] indicated the smallest turbulent scales

are universal and depend on the average dissipation rates of turbulent kinetic energy

7



1. INTRODUCTION

per mass and the kinematic viscosity of the fluid. Similarly, Larson [1981] found a

correlation between the internal velocity dispersion of the cloud (i.e. turbulence as

measured from the non thermal molecular line widths) � and the length L or mass

M of star forming regions. The relation between the velocity dispersion and cloud

size was first noted to be � = 1.10L0.38. The clouds also appeared to be gravitation-

ally bound and in approximate virial equilibrium where the velocity dispersion-mass

relation was � = 0.42M0.20. This work argued against a simplistic picture of grav-

itational collapse and fragmentation, where the cloud structures observed were at

least partially influenced by supersonic turbulence.

Simulations have shown that turbulence can support the global cloud while al-

lowing local regions of collapse (see Mac Low and Klessen 2004). However, there

is an issue that hydrodynamic and magneto-hydrodynamic (MHD) turbulence de-

cays quickly [Mac Low, 1999; Stone et al., 1998]. These turbulent motions must be

continually driven if clouds are assumed to be stable and long-lived structures sup-

ported by supersonic turbulence. Possible turbulent driving sources may including

stellar feedback (e.g. protostellar molecular outflows) or external turbulence from

the ISM (e.g. supernova). While the kinetic energy in the supersonic turbulent

motions often compares to the gravitational potential energy [Larson, 1981], it is

still unknown if turbulent motions either impede the formation of stars by creating

a pressure that is able to resist gravitational collapse or assist star formation by

adding mass to less dense areas [Hartmann, 2009a]. For purposes of this thesis, I

focus on better understanding turbulence in molecular clouds. The importance of

molecular outflows is further discussed in Chapter 4, which investigates turbulence

and sources of turbulence in the Ophiuchus molecular cloud.

1.1.4 Protostellar classification and links to evolution

A protostar is a young stellar object (YSO) in the process of collecting the matter

needed for it to reach main-sequence [Andre et al., 1993]. This high density central

object is detectable at both IR and submillimetre wavelengths depending on its

evolutionary stage. The collapsing core begins to rotate due to small amounts

of angular momentum. The rotation assists in the formation of a protoplanetary

(circumstellar) disc around the protostar, where material from the disc accretes

8



onto the central object. Additionally, angular momentum is carried away from the

system by a jet or stellar wind emitted by the protostar, known as a molecular

outflow. Outflows are characteristic of embedded YSOs. As the protostar becomes

less embedded in the surrounding dust and gas of the molecular cloud, the process

of outflow and inflow cease and the disc evolves further into a planetary system.

The protostar eventually evolves into a main-sequence star.

The protostellar lifecycle was initially defined using a classification system, la-

belling observed protostars as Class I–III [Lada, 1987]. Andre et al. [1993] revised

the classification system by adding a category of sources less evolved than the Class I

objects as Class 0. The spectral energy distributions (SEDs) are used to determine

these classifications of protostars [Whitney et al., 2003]. Classifications are based

on the slope of the SEDs, or their spectral index ↵ [Lada, 1987]:

↵ =
d log (�F

�

)

d log (�)
, (1.9)

where � is the wavelength over a range of IR and submillimetre wavelengths and

F

�

is the flux density of the source. The spectral index ↵ is the slope calculated in

the wavelength interval 2.2–20 µm (near to mid-IR range). According to the system

based on SEDs, the classification of the source would be as follows:

YSO Class Range Source

Class 0/I ↵ > 0 Embedded

Class II �2 < ↵ < 0 Disk

Class III ↵ < �2 Optically thin without disk

The ‘flat spectrum’ classification was added between Classes I and II to better

correspond to physical stages of YSO evolution. Flat spectrum sources are defined

as 0.3 > ↵ � �0.3 [Greene, 2004].

The four classes of protostars (shown in Figure 1.3) are further described as:

• Class 0 source: Class 0 protostars correspond to early protostellar collapse

with a lifespan of ⇠0.1 Myr [Evans et al., 2009]. In observations, their SEDs

resemble blackbodies, T  30 K, and more than half of their mass is located in

the infalling envelope [Whitney et al., 2003]. Observations show an IR source
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D’Alessio et al. (1999) include these effects, and their models
show behavior with inclination similar to ours. Dullemond
(2002) calculated the two-dimensional structure of disks
and Herbig Ae/Be stars and found that the inner wall puffs
up and shadows outer regions in these sources. Since we do
not compute the two-dimensional hydrostatic equilibrium
solution, we do not have this effect in our models. A forth-
coming paper will consider this effect in T Tauri disks
(K.Wood et al. 2003, private communication).

The more embedded Class 0 sources have less scattered
flux at optical/near-IR wavelengths because of higher
extinction in the envelope and cavity, so the ‘‘ dip ’’ at 10 lm
is not as striking in these sources. The Class 0 source shows
little variation with inclination except for the pole-on source
and at near-IR wavelengths. The Class III source also shows
little variation with inclination because it is optically thin at
all wavelengths. Examining the variation of SEDs with evo-
lutionary state, we see a tendency for increased shortwave

Fig. 3a

Fig. 3.—SEDS (left) and densities (right) of the six models. For the SEDmodels, the colors indicate inclination, as shown in the top left panel: dark green is
edge-on, and pink is pole-on. The density images are plotted to log scale, with the contours matching the tick marks in the color bar. The size range is noted in
the axes in AU. Note that the Class II and III sources (disks) are much smaller than the envelope sources. (a) Class 0, late Class 0, and Class I. (b) Late Class I,
Class II, and Class III.
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(0–10 lm) flux and decreased longwave (100–1000 lm) flux
with age.

3.1.1. Effect of Aperture Size

As stated previously, the SEDs shown in Figure 3 include
the flux emitted by the entire envelope. Normally, observed
fluxes are integrated within a given aperture size. Figure 4
shows SEDs of the Class 0 and I sources computed in differ-
ent aperture sizes, with 1000 AU radius apertures depicted
by the solid lines and 5000 AU apertures by the dashed lines.
The Class II and III sources are not shown since they are
smaller than either of these apertures and thus do not vary
in these apertures. Three inclinations are shown for each

model (i ¼ 18", 56", 87") in three colors (pink, blue, and
green, respectively). The large-aperture results show much
more scattered flux at wavelengths less than 10 lm. The
Class 0 source has no near-IR flux in the small aperture.
This suggests that care should be taken in comparing differ-
ent sets of observations with either different aperture sizes
or different source distances.

3.1.2. Class I/Class II Confusion

Figure 5 shows that a low-luminosity Class I and a high-
luminosity Class II source at different inclinations can
resemble each other. Our Class II model was scaled up by a
factor of 5 to get the fluxes to agree with the Class I model.
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Class 0
Tbol < 70 K

t~100,000 yr

Class I
Tbol ~ 70-650 K
t~500,000 yr

Class II
Tbol ~ 650-2880 K

t~(1-2)✕106 yr

Class III
Tbol > 2880 K

t~107 yr

Figure 1.3: Classes of protostars. Top: SEDs are models from Whitney et al. [2003].
Bottom: Cartoon illustrating the stags of protostars. Adapted from Curtis (PhD
Thesis, 2009) and originally obtained from Visser (PhD Thesis, 2000).
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and corresponding submillimetre continuum emission. Additionally, outflows

can be seen in molecular line data. The protostar is embedded in a thick

envelope of dust and gas and they are actively undergoing accretion from the

surrounding envelope [Hartmann, 2005].

• Class I source: The lifetime of the Class I protostar is ⇠0.5 Myr [Evans et al.,

2009] and is identified by broad SEDs peaking at around 100 µm. These objects

have formed accretion disks and their envelopes have bipolar cavities excavated

by outflows. IR emission increases at this stage with lower submillimetre

emission because some of the envelope has been cleared by accretion.

• Class II source: The SED emission peak at this stage is falling in the near-IR

and there is an excess IR emission occurring higher than the expectations for

a stellar photosphere. The duration of this stage is ⇠ 106 � 107 yr [Whitney

et al., 2003]. Cloud infall has stopped and the envelope eventually collects

into a flattened disc in revolution around the central protostar due to angular

momentum. This circumstellar disc is both dusty and optically thick, which

are two characteristics used to identify Class II objects [Hartmann, 2009b].

These are typical characteristics of a classical T-Tauri star with an accretion

disc surrounding it [Whitney et al., 2003].

• Class III source: The central star becomes the only observable emission due

to the dispersion (or coagulation into planetary objects) of the dust [Hart-

mann, 2009b]. At this point, the SEDs have the same properties of a stellar

photosphere. Class III sources are also called weak-line T-Tauri stars and be-

come a main-sequence star of zero-age after ⇠ 107 yr. It is still uncertain if

Class III objects are more evolved than Class II sources. It is possible that

Class III sources have simply lost the majority of their circumstellar matter

in a shorter amount of time [Whitney et al., 2003].

According to Robitaille et al. [2006], the spectral index may not always directly

relate to the evolutionary stage of the object. For example, a disc that is being

observed edge-on may be classified as Class I due to a positive spectral index, when

its evolutionary stage is Class II. A more physically based method of identifying the

evolutionary stages of objects instead of the observational characteristics involves

11



1. INTRODUCTION

the following, where M⇤ is a sampled stellar mass, Menv is the envelope accretion

rate, and Mdisk is the disk mass is: Stage 0/I involves significant falling envelopes

and possible disks when Menv/M⇤ > 10�6 yr�1, Stage II involves optically thick

disks and potential remnants of infalling envelopes when Menv/M⇤ < 10�6 yr�1

and Mdisk/M⇤ > 10�6, and Stage III involves optically thin disks when Menv/M⇤ <

10�6 yr�1 and Mdisk/M⇤ < 10�6 [Robitaille et al., 2006].

Many studies have been completed on the stellar initial mass function (IMF),

which is the production frequency of stars with a given mass and helps determine

both the photometric aspects of galaxies and dynamical and chemical aspects of the

galactic ISM [Padoan and Nordlund, 2004; Padoan et al., 2001]. The number of stars

N of mass M seems to follow a collection of power-law shapes when a logarithmic

bin is applied, s = d logN/d logM for di↵erent masses [Hennebelle and Chabrier,

2008, 2009; Kroupa, 2001; Miller and Scalo, 1979; Salpeter, 1955]. Similarly, Motte

et al. [1998] first reported the submillimetre continuum cores had a similar structure

to the IMF, known as the clump mass function (CMF). Past work from Padoan and

Nordlund 2002, Padoan and Nordlund [2004] and Chabrier and Hennebelle [2011]

predicts that turbulence generates overdensities in star forming regions leading to

the formation of low-mass objects. In addition, Chabrier and Hennebelle [2011]

predicts the turbulence in bound overdense regions act as support against collapse

and allow the core to collect more mass, leading to the shape of the prestellar CMF.

1.1.5 Protostellar mass loss: molecular outflows

Molecular outflows are a ubiquitous part of star formation and act as a form of

mass loss for young protostars. As a protostar collapses and accretes matter from

surrounding material in the cloud, the object will also eject mass through a bipolar

outflow. Two recent reviews of outflow processes include Bally et al. [2007] and Arce

et al. [2007]. I further use molecular emission to identify outflows in Chapter 3,

including 12CO J = 3 ! 2 and the near-IR H2 2.122 µm v = 1 ! 0 S(1) ro-

vibrational line. In this section, I focus on outflows from low-mass protostars.

Low-mass protostars with outflows have been extensively studied across wave-

lengths from UV to radio. These outflows typically have 0.1–1 pc length flows with

corresponding velocities 10–100 km s�1 [Arce et al., 2007]. There appears to be a
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power law dependence of the flow mass as a function of velocity as measured by CO,

MCO(v) / v��. The factor � is typically ⇠1.8 and will steepen at velocities greater

than 10 km s�1 from the central velocity of the cloud (see Richer et al. 2000 and

references therein).

The youngest outflows show observational evidence for being driven by a highly

collimated jet, typically seen from Class 0 sources. An example of this is VLA 1623

in the L1668 cloud of Ophiuchus (see Chapter 3 and references: Andre et al. 2000;

Nakamura et al. 2011; Ward-Thompson et al. 2011). The CO jet is lined with H2

knots, or shocks seen in H2 2.122 µm v = 1 ! 0 S(1) ro-vibrational line. Outflows

are expected to evolve over time. Older outflows are found to have wider opening

angles and may be potentially wind driven [Arce et al., 2007]. Some YSOs can be

further complicated by episodic ejection, potentially due to variations in accretion

rates [Dunham et al., 2008]. Additionally, there is evidence for quadrupolar outflows

and precessing outflow directions (see Chapter 3 regarding Ophiuchus protostars

EL 29 and IRS 54).

There are several proposed models to explain the chemistry and physical mecha-

nism driving the outflow. These models can be separated into four main categories

[Arce et al., 2007; Cabrit et al., 1997], and depicted in Figure 1.4:

• Turbulent Jet: This model suggests the outflow is driven by an underlying

jet. Kelvin-Helmholtz instabilities along the boundary between the jet and

surrounding gas generate a turbulent layer that entrains molecular gas (e.g.

Raga and Cabrit 1993; Stahler 1994).

• Jet Bow Shock: This model describes a highly collimated jet that pushes

through the ambient material and entrains gas along a thin outflow shell [Mas-

son and Chernin, 1993; Raga and Cabrit, 1993]. Two shocks are produced

when the jet impacts the ambient material and high pressure gas is expelled

sideways, forming the outflow shell which encircles the jet. This model mainly

di↵ers from the previous model by the manner molecular gas is entrained.

• Wide-angle Wind: In this model, a wide-angle radial wind pushes into the

ambient material. An outflow shell is created when the wind sweeps up a shell

of gas. This model predicts outflows with low collimation and wide opening

angles, more characteristic of older outflows.

13
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“steady-state transit model” assists in the formation of a col-
limated fast moving flow (Combet et al., 2006).

3.2 Comparing Observations and Models

In the past ten years, molecular outflows have been
mapped at high angular resolutions with millimeter interfer-
ometers, allowing us to confront the outflowmodels in great
detail. A schematic of the predicted properties of molecular
outflows produced by the different models discussed above
is presented in Fig. 2. High-resolution molecular outflow
observations can be used to compare the data with the out-
flow characteristics shown in Fig. 2 in order to establish
what model best fits the observed outflow.

Wide-angle
Wind

Jet Bow 
Shock 

Turbulent 
Jet 

Model Wind

Predicted property of molecular outflow along axis

Morphology Velocity Temperature Momentum a

   a Assuming an underlying density distribution of r -1 to r -2.

 Molecular outflow properties predicted by different models

Circulation

v T P

Fig. 2.— Observable molecular outflow properties predicted by the four
leading broad classes of models: 1) turbulent jet (Cantó and Raga, 1991;
Chernin and Masson, 1995; Bence et al., 1996); 2) jet bow shock (Chernin
and Masson, 1995; Cliffe et al.,1996; Hatchell et al., 1999; Lee et al.,
2001); 3) wide-angle wind (Li and Shu, 1996; Lee et al., 2001); and 4)
circulation models (Fiege and Henriksen, 1996b; Lery et al., 1999). In the
jet-driven bow shock model, an episodic variation in jet velocity produces
an internal bow shock driving an internal shell, in addition to the termi-
nal shock. This episodic variation can also be present in the other wind
models, but in this figure the effects of an episodic wind are only shown
for the jet bow shock model. This figure is based on Figure 1 of Arce and
Goodman (2002b).

Here we focus our attention on comparing observations
with the jet-driven bow shock and wide-angle wind-driven
models, as most of the numerical simulations concentrate
on these two models and they are the most promising mod-
els thus far. The predicted mass-velocity relationships in jet
bow shock and wide-angle wind models have a slope (�)
of 1–4, in tune with observations. Each model predicts a
somewhat different position-velocity (PV) relation that can
be used to differentiate between these two leading molecu-
lar outflow driving mechanisms (Cabrit et al., 1997; Lee et
al., 2000, 2001).
3.2.1. Jet-driven bow shock models vs. observations.

Current jet-driven bow shock models can qualitatively ac-
count for the PV spur structure (where the outflow veloc-
ity increases rapidly toward the position of the internal and

leading bow shocks, see Fig. 2), the broad range of CO
velocities near H2 shocks, and the morphological relation
between the CO and H2 emission seen in young and colli-
mated outflows. These models are able to produce the ob-
served outflow width for highly collimated outflows, such
as L 1448, HH211 and HH212 (Bachiller et al., 1995;
Gueth and Guilloteau, 1999; Lee et al., 2001). However,
jet-driven bow shock models have difficulty producing the
observedwidth of poorly collimated outflows, like RNO91,
VLA05487, and L 1221 (Lee et al., 2000, 2001, 2002). Jet
models produce narrow molecular outflows mainly because
the shocked gas in the bow shock working surfaces lim-
its the transverse momentum (perpendicular to the jet-axis)
that can be delivered to the ambient medium. In numerical
simulations of jets, the width of the outflow shell is mainly
determined by the effects of the leading bow shock from the
jet’s first impact into the ambient material (e.g., Suttner et
al., 1997; Downes and Ray, 1999; Lee et al., 2001). While
the jet penetration into the cloud increases roughly linearly
with time, the width only grows as the one-third power of
time (Masson and Chernin, 1993;Wilkin, 1996; Ostriker et
al., 2001).
Jets also have difficulty producing the observed outflow

momenta. The transverse momentum of the outflow shell is
acquired primarily near the jet head where the pressure gra-
dient is large, and the mean transverse velocity of the shell,
v̄R, can be approximated by v̄R ' �cs(R2

j/R2), where R
and Rj are the outflow and jet radius, respectively, and �cs

is the velocity of the gas ejected from the working surface
(Ostriker et al., 2001). For example, in a 10,000 AU-wide
molecular outflow driven by a 150 AU jet, and assuming
�cs = 32 km s�1, the expected mean transverse veloc-
ity of the shell is only 0.03 km s�1. As a result, if out-
flows were driven by a steady jet, the wide portions of out-
flow shells would exhibit extremely low velocities and very
small momenta. This is inconsistent with the observations,
especially in the wider flows where the well-defined cavity
walls have appreciable velocities (e.g., B5-IRS1: Velusamy
and Langer, 1998; RNO91: Lee et al., 2002; L1228: Arce
and Sargent, 2004).
Systematic wandering of the jet flow axis has been ar-

gued to occur in several outflows based on outflow mor-
phology, e.g., IRAS 20126+4104 (Shepherd et al., 2000)
and L 1157 (Bachiller et al., 2001). This may mitigate
the above discrepancies. The width and momentum of the
outflow shell can increase because a wandering jet has a
larger “effective radius” of interaction and can impact the
outflow shell more directly (Raga et al., 1993; Cliffe et al.,
1996). Some simulations show hints of widening by jet
wandering (Völker et al., 1999; Rosen and Smith, 2004a;
Smith and Rosen, 2005), but some show that a wandering
jet could produce a smaller width than a steady jet (Raga et
al., 2004b). Further calculations are needed to ascertain if
motion of the jet axis at realistic levels can improve quanti-
tative agreement with observed outflow features.
3.2.2. Wide-angle wind models vs. observations. Wide-

angle winds can readily produce CO outflows with large

8

Figure 1.4: Outflow models described by Arce et al. 2007.
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• Circulation: This model does not depict gas entrainment by a jet or un-

derlying wind. The flow is instead formed by material that is infalling onto

a protostar and is deflected by high MHD pressure. This model produces a

quadrupolar circulation pattern. Local heating allows material to be acceler-

ated above escape speeds [Fiege and Henriksen, 1996a,b].

There is a possibility these outflows can have an influence on the overall cloud

[Nakamura and Li, 2007]. Even though intermediate and high mass YSOs have

larger and more powerful outflows, multiple outflows from numerous low-mass YSOs

in the cloud can be as equally disruptive. These groups of YSOs may be scattered

throughout the cloud and interact with a sizeable portion of the star forming region.

Turbulence generated from the outflows can additionally be comparable or larger

than the turbulent and gravitational energies of the cloud (e.g. Buckle et al. 2010;

Curtis et al. 2010b; Graves et al. 2010). If the outflows are well coupled to the cloud,

they may be a considerable though not always a dominant source of turbulence in

the cloud and could act as a form of support against gravitational collapse [Mac

Low and Klessen, 2004]. In this thesis, the impact of outflows on turbulence in the

Ophiuchus cloud is further discussed in Chapter 4.

1.2 Submillimetre observing

The physical conditions of the molecular cloud must be observed before and during

the stellar formation process to address the current scientific questions. Near-IR

detection images the results of this process but the sources are too evolved to de-

termine the cloud conditions leading to formation. Additionally, optical data is

problematic due to the high dust extinction found in these clouds. At submillimetre

and millimetre frequencies, this dust emits blackbody radiation corresponding to

the temperatures found in the molecular cloud (i.e. ⇠8–30 K) and many molecu-

lar lines have rotational transitions at these frequencies. Therefore, this particular

wavelength range is useful for tracing the initial conditions leading to star formation.

There are some limitations to observing in the submillimetre wavelength range.

Contraints from water vapour absorption tend to be the most significant. Many

instruments operating in the submillimetre must take advantage of ‘atmospheric
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detectors
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Figure 1.5: Basic diagram of the JCMT. Incoming light is gathered by the dish and
reflected from to the secondary mirror. The light then travels to the tertiary mirror
where it is sent to various detectors.

windows,’ or wavelengths between these absorption bands. To account for potential

absorption and radio interference, submillimetre telescopes tend to be located in

high-altitude and dry environments away from urban populations. There are only

a handful of locations that are suitable for this type of observing, including Mauna

Kea Observatory in Hawaii, USA and the Llano de Chajnantor Observatory on

the Atacama Plateau, Chile. Mauna Kea Observatory is home to the James Clerk

Maxwell Telescope (JCMT)1 at an altitude of 4092 m. With a 15 m dish, this sub-

millimetre telescope has been observing regions of the solar system, the interstellar

medium and distant galaxies for the past 26 years. All of the maps presented in

this thesis have been observed with the JCMT. A basic diagram of how the JCMT

gathers light is shown in Figure 1.5.

1I was pleased to find out the JCMT and I share birthdays; the telescope took its first light on
the same week and year in April 1987 on which I was born.
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1.2.1 Submillimetre Common User Bolometer Array - 2

(SCUBA-2)

Primarily Chapter 2 of this thesis involves the use of the instrument SCUBA-2, a

new 10,000 bolometer submillimetre camera on the JCMT that began operations in

2010 and is expected to improve submillimetre astronomy by carrying out wide-field

surveys to unmatched depths. The telescope beams are ⇠ 8.5 and ⇠ 14.5 arcsec for

the 450 and 850 µm wavelengths respectively. I primarily focus on the details of the

instrument filters, specifically understanding how molecular lines can contaminate

dust continuum emission maps produced by the instrument.

For detailed explanations of the SCUBA-2 instrument, see Holland et al. [2013]

and Dempsey et al. [2013]. Light gathered by the JCMT passes from the tertiary

mirror to a beam splitter and through bandpass filters, which illuminate and define

the filter ranges for the 450 and 850 µm focal planes. Each focal plane is made

up of four subarrays consisting of bolometers in 32 columns and 42 rows (i.e. 1280

bolometers in each array). These bolometers act as thermal absorbers that are

coupled to transition edge sensors (TESs). TESs detect temperature changes as

a varying current which also cause the magnetic field to vary. These currents are

both detected and amplified using superconducting quantum interference devices

(SQUIDs) and output currents are then digitised. Flat field observations are used

to establish the relationship between the digitised current and the input power. The

emission is corrected for atmospheric extinctions and can be converted from power

to astronomical flux units using a flux conversion factor (FCF) calculated from

standard calibrators [Chapin et al., 2013]. FCFs are calculated from astronomical

sources of known flux in a range of atmospheric conditions. Variations in FCFs tend

to be dominated by optical e↵ects from thermal distortions of the dish (primarily in

early evening; Dempsey et al. 2013). See Chapter 2 for more details of FCFs.

SCUBA-2 uses a routine scanning mode with scanning patterns that depend on

the field size observed. For small-field observations, the ‘DAISY’ scan is preferred

for sources within a 3 arcmin or less diameter. This observing pattern is created by

moving the telescope in a pseudo-circular pattern with the target kept on the arrays

during integration. For the astronomical signal to be kept at a constant frequency,

the telescope moves at a constant speed. For larger field observations, the ‘PONG’
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pattern is used in the scan model. The map area is initially defined as a square

and the telescope begins to fill the square within the defined sky area. The map is

rotated once a single pattern is complete and a new pattern begins. The result is a

map with rounded corners. PONG patterns are available for a range of larger fields,

including 15 arcmin, 30 arcmin, 1 deg and 2 degree maps [Holland et al., 2013].

1.2.2 Heterodyne Array Receiver Programme for B-band

(HARP)

HARP is a heterodyne focal plane array used for mapping spectral lines with a

higher sensitivity at the 325–375 GHz atmospheric window and uses 16 heterodyne

receivers in a 4⇥4 array. The 16 pixels have receiver temperatures ranging from 94–

165 K and an angular resolution of ⇠14 arcsec, which matches the 850 µm SCUBA-2

resolution. Each receiver has an on-sky beam separation of ⇠3000 and therefore an

under sampled field of view of 104⇥10400 [Buckle et al., 2009; Ward-Thompson et al.,

2007a].

For a detailed explanation of HARP, see Buckle et al. [2009]. Incoming light from

the JCMT is reflected by the tertiary mirror (like SCUBA-2) to the K mirror where

it is rotated, refocused and sent to the calibration system. The light passes through

a Mach Zehnder interferometer in the cryogenically cooled optics section, where it is

cooled to ⇠60 K for sideband separation. The local oscillator produces a reference

frequency that is mixed with the signal and is sent to the imaging array which

operates at ⇠4 K. Once the signal is amplified, it is passed to the Auto-Correlation

Spectral Imaging System (ACSIS) which digitises the signal into a specific resolution

and waveband (resulting in a spectrum). Output files are produced in a 3D format

(two spatial dimensions and a velocity dimension). Used with HARP, ACSIS o↵ers

either wide bandwidth (up to 1.9 GHz or 0.8 km s�1 at 345 GHz) or high spectral

resolution with channel spacing as small as 31 kHz or 0.03 km s�1 at 345 GHz.

There are three main observing modes for HARP, including ‘Scan,’ ‘Jiggle’ and

‘Stare.’ The scan (raster) mode generates rectangular maps of large regions that have

been fully sampled (i.e. Nyquist sampled). Co-adding multiple maps of the regions

is the common method used to increase the signal-to-noise ratio. The telescope scans

back and forth along rows and observes a reference position at the end of a row. The
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jiggle mode is used for mapping regions that are smaller than the field-of-view (FOV)

of the array. This mode fills in the gaps by either ‘jiggling’ the secondary mirror

(jiggle-chop) or by moving the entire telescope (grid position-switch) by observing

di↵erent o↵sets around the source. Lastly, the stare mode (also known as a ‘sample

observation’) is a fairly sparse map spanning the footprint of HARP. This mode

does not provide a Nyquist sampled map.

It is particularly important to calibrate the measurements and remove unwanted

atmospheric attenuation from the maps (i.e. from water vapour aborption in the

atmosphere). A warm or a cold load is used for calibration. The warm load is

heated to ⇠40 K above ambient temperatures. Similarly, the cold load is cooled to

⇠10 K below ambient temperatures to approximately the same temperature as water

vapour in the atmosphere. There are two- or three-load calibration measurements

that can then be taken. The two-load calibration measures the power from the

sky and the cold load, which should accurately remove the attenuation from the

atmosphere. Additionally, the three-load calibration measures the power from the

warm load and provides measurements of the receiver temperature [Buckle et al.,

2009].

The output from the instrument is a standard Rayleigh-Jeans brightness tem-

perature scale, known as the corrected antenna temperature T

⇤
A

which has been

corrected for absorption by Earth’s atmosphere. The Rayleigh-Jeans brightness

temperature describes the power emission (per area, frequency interval and solid

angle) of an object following the Rayleigh-Jeans law (in low frequencies or large

wavelengths). The Rayleigh-Jeans approximation is not necessarily applicable to

the frequencies and physical temperatures being measured in observations at sub-

millimetre wavelengths. However, it is useful to use the law as a temperature scale

because it is directly proportional to intensity. The brightness temperature is then

related to the physical temperature of a blackbody by,

TB =
h⌫

k

✓
exp


h⌫

kTphys

�
� 1

◆�1

, (1.10)

where Tphys is the physical temperature of the blackbody and T

B

is the Rayleigh-

Jeans brightness temperature.

The temperature scale of the telescope T ⇤
A

(corrected antenna temperature) must
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be corrected for telescope and instrumental ine�ciencies. These e�ciencies are typ-

ically the main-beam e�ciency ⌘MB and forward spillover and scattering e�ciency

⌘fss. The spectrum of a planet (of known intensity and comparable size to the beam

FWHM) is used to determine the main-beam telescope e�ciency ⌘MB. The main-

beam e�ciency primarily measures the extent to which the beam is non-Gaussian

(i.e. fraction of power contained within the main lobe of the beam pattern). The

intensity of the planet measured by the instrument is calibrated to its known in-

tensity. The forward spillover and scattering e�ciency ⌘fss is the correction for

radiation scattered from large angles by spillover (some radiation will not reflect o↵

the subreflector into the detector) and scattering (by support legs; see Figure 1.5).

This e�ciency is typically measured from the Moon, which is a much larger source

than the beam (⇠ 0.5o diameter) and comparing the intensity to the known inten-

sity. The telescope beam is dependent on its wavelength and the telescope aperture,

✓

beam

= 1.22�/D, where ✓

beam

is the telescope beam width, � is the wavelength of

observation and D is the diameter of the telescope aperture [Rohlfs and Wilson,

2004]. Therefore to increase the angular resolution for the observation wavelength,

it is necessary to increase the size of the telescope aperture.

In this study, I apply the commonly used main-beam e�ciency ⌘MB to cali-

brate my HARP maps in main-beam brightness temperature TMB, which has been

the standard in other Gould Belt Survey papers. Typically, ⌘fss would be used when

studying extended sources where the source is much larger than the beam size. Con-

versely, ⌘MB is used for more point-like sources or sources that are comparable or

smaller than the beam size. If ⌘fss was used instead of ⌘MB, then brightness tempera-

tures in the HARP data cubes would increase by a factor of 1.26 (average e�ciencies

across HARP detectors from Buckle et al. 2009). E�ciencies are further discussed in

Chapter 2 (relating molecular line intensities to SCUBA-2 dust continuum). Since

my maps are calibrated as a main-beam temperature, for extended sources where

the size of the source is larger than the beam size (⌦
s

> ⌦
beam

), TMB = T

B

(opti-

cally thin conditions). For less extended sources where ⌦
s

< ⌦
beam

, the main-beam

temperature is related to the brightness temperature by TMB = T

B

⇣
⌦

s

⌦
beam

⌘
.
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Figure 1.6: Diagram of the Gould Belt showing the centre of the Belt in relation to
the Sun. Well-known molecular clouds are shown [Ward-Thompson et al., 2007b].

1.2.3 Gould Belt Legacy Survey (GBS)

The SCUBA-2 continuum data (Chapter 2) and the CO data (Chapter 3) for this

thesis have been taken as a part of the Gould Belt Legacy Survey (GBS). The GBS

aims to use the JCMT to take ⇠500 hours of observations of Gould Belt clouds

within 500 pc of the Sun, including regions like Taurus, Orion, Ophiuchus, Scorpius,

Serpens and Perseus (see Figure 1.6). This survey is expected to lead to a better

understanding of turbulence and emission from dust and molecular lines in these

clouds.

The JCMT instruments used for the GBS include SCUBA-2 and HARP. SCUBA-

2 is being used to map dust continuum emission at 450 and 850 µm. SCUBA-2 began

full operations in late 2011 and has successfully started mapping the majority of the

target regions. Additionally, HARP observations have been taken for a select number

of regions in molecular clouds, including Ophiuchus, Taurus, Serpens, Orion A,

Orion B and Perseus (see Chapter 4; Buckle et al. 2010; Davis et al. 2010a; Graves
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1. INTRODUCTION

et al. 2010).

This survey is important in our ability to understand a variety of star forming

environments in the Galaxy and investigate many issues in star formation today. In

particular, a large range of sources will be defined, including cores, protostars, disc

sources (i.e. less embedded protostars) and molecular outflow candidates. These

sources can be analysed and compared between their di↵erent environments and

further observed by more powerful telescopes (e.g. the new interferometer ALMA -

Atacama Large Millimeter Array).

1.3 Radiative transfer for a two-level system

Molecular line emission is useful for tracing the underlying properties of star forma-

tion, including the cloud excitation temperature, column density and mass. In this

section, I introduce radiative transfer theory and the methods used to determine

cloud properties using molecular line emission. Full derivations can be found in

Stahler and Palla [2005] and Rohlfs and Wilson [2004].

1.3.1 Rotational emission: Carbon Monoxide (CO)

In this work, I mainly refer to the carbon monoxide (CO) molecule used to study star

formation in molecular clouds. Carbon monoxide is a simple linear rotor molecule,

where the kinetic energy is approximated by a dumbbell with a rotational axis

through the centre of mass is given by,

Erot =
L

2

2I
, (1.11)

where I is the moment of inertia and L is the angular momentum. Using quantum

mechanics, this is rewritten as

E

J

=
~2
2I

J(J + 1) =
h⌫

o

J(J + 1)

2
, (1.12)

where the above angular momentum L is now L

2 = J(J + 1)~2, J is the level of

transition and ⌫

o

is the frequency of the lowest transition (i.e. from J = 1 ! 0). I
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note that T
o

is sometimes used to symbolise h⌫

o

/k.

For this thesis, rotational transition J = 3 ! 2 are analysed for 12CO, 13CO and

C18O isotopologues. These are further discussed in Chapter 3.

1.3.2 Radiative transfer

Radiative transfer is the interaction of radiation through a medium as it travels

along the line-of-sight to an observer. A simplified model describing the variation

in the specific intensity of radiation I

⌫

as it passes through a medium along the line

of sight (path length ds) is
dI

⌫

ds

= �↵

⌫

I

⌫

+ j

⌫

, (1.13)

where ↵

⌫

is the absorption coe�cient in cm�1 and j

⌫

is the emission coe�cient in

energy per volume per time per frequency per solid angle (J cm�3 s�1 Hz�1 sr�1).

The absorption coe�cient ↵
⌫

= ⇢

⌫

where ⇢ is the total mass density (g/cm3) and



⌫

is the opacity of the medium (cm2/g). The emission coe�cient is denoted by

j

⌫

= ✏

⌫

⇢/4⇡ where ✏
⌫

is the emissivity or the energy spontaneously emitted per unit

frequency per time per mass (J Hz�1 s�1 g�1), ⇢ is the mass density of the emitting

medium (g/cm3) and 4⇡ is the solid angle (sr). A change in radiation intensity is

only detected if the radiation is absorbed or emitted as it passes through a medium.

The first term on the right side of the equation represents the e↵ective absorption,

which will include both true absorption and stimulated emission because both are

proportional to the intensity of the incoming beam. The net absorption may be

positive or negative depending on whether stimulated emission or true absorption

dominates. The second term represents the increase in intensity (emission) by spon-

taneous emission in the medium.

The optical depth describes the transparency of the medium, or how much ab-

sorption occurs when radiation travels through the medium. The optical depth is

defined by

d⌧
⌫

(s) = ↵

⌫

ds (1.14)

⌧

⌫

(s) =

Z
s

s

o

↵

⌫

(s0)ds0 (1.15)

where an optically thick medium will be ⌧
⌫

>> 1 and an optically thin medium will
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be ⌧

⌫

<< 1. The equation for radiative transfer (Equation 1.13) can be rewritten

with the optical depth and source function S

⌫

⌘ j

⌫

↵

⌫

,

dI
⌫

d⌧
⌫

= �I

⌫

+ S

⌫

. (1.16)

Solved as a di↵erential equation, the radiative transfer equation becomes

I

⌫

(⌧
⌫

) = I

⌫

(0) exp (�⌧

⌫

) +

Z
⌧

⌫

0

S

⌫

(⌧ 0
⌫

) exp [�(⌧
⌫

� ⌧

0
⌫

)] d⌧ 0
⌫

, (1.17)

where the first term on the right side of the equation is the fraction of the background

radiation that is able to get through the medium and the second term is the radiation

emitted by the medium that manages to escape. The background radiation I

⌫

(0) is

typically assumed to be the cosmic microwave background (CMB).

1.3.3 Limiting case: LTE

According to Kirchho↵’s law, the source function S

⌫

is simply the Planck function

S

⌫

= B

⌫

= j

⌫

↵

⌫

in local thermodynamic equilibrium (LTE). The source function

is a function of optical depth and temperature. Assuming an isothermal medium

(constant temperature) with constant optical depth, Equation 1.17 becomes

�I

⌫

(s) = I

⌫

(s) � I

⌫

(0) = (B
⌫

� I

⌫

(0))(1 � exp(�⌧)), (1.18)

where the background emission I

⌫

(0) is subtracted from the spectral line measure-

ment (typically in the form of baseline subtraction to remove continuum from the

CMB). It is more convenient to replace the incident intensity and source function

with their corresponding temperatures using the blackbody spectrum discussed in

Section 1.2.2. Temperature of the background radiation is derived from the CMB

as TCMB and the source function S

⌫

= B

⌫

is denoted as the excitation tempera-

ture where the excitation temperature is equal to the kinetic (physical) temperature

under LTE assumptions (Tkin = Tex). The equation of the brightness temperature
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(sometimes referred to as the radiation temperature or T ⇤
R) is then

TB =
h⌫

k

2

4 1

exp
⇣

h⌫

kTex

⌘
� 1

� 1

exp
⇣

h⌫

kTCMB

⌘
� 1

3

5 (1 � exp (�⌧

⌫

)). (1.19)

Using the Rayleigh-Jeans approximation, the equation becomes

T

B

= (Tex � TCMB)(1 � exp(�⌧

⌫

)). (1.20)

Neglecting the CMB background radiation in the case of optically thin emission

(⌧
⌫

<< 1), the brightness temperature becomes T

B

= ⌧

⌫

Tex (continuing to assume

the Rayleigh-Jeans approximation under LTE conditions). In the optically thick

limit (⌧
⌫

>> 1) neglecting the CMB radiation, the brightness temperature is roughly

equivalent to the excitation temperature TB = Tex. LTE is further discussed in

Section 1.3.5.

1.3.4 Molecular line radiation

Until this point, I have expressed radiative transfer as a function of the macroscopic

emission and absorption coe�cients. However, I will now consider a species of atom,

ion or molecule that has two energy levels separated by �E. This species will have

number density n (cm�3) distributed through a gas of total number density ntot and

homogeneous composition (g/cm�3).

Upward transitions (excitation) take place under numerous processes. Collisional

excitation transfers populations at a total rate per unit volume (cm�3 s�1) equal to

�luntotnl, where �lu is the collisional excitational coe�cient. Radiative excitation

transfers populations at a rate per unit volume equal to BluJnl which is the proba-

bility per unit time of a species being excited radiatively, which must be proportional

to the radiation intensity J and Blu is the Einstein coe�cient for absorption.

Similarly, downward transitions (de-excitation) between energy levels take place

under collisional and radiative processes. Collisional de-excitation transfers pop-

ulations downward at a rate per unit volume given by �ulntotnu where �ul is the

collisional de-excitation coe�cient. There are two types of radiative downward

transitions, including spontaneous and stimulated emission. Spontaneous emission
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or spontaneous radiative de-excitation transfers population downward at a rate per

unit volume equal to Aulnu where Aul is the Einstein coe�cient for spontaneous

emission. Stimulated emission or induced radiative de-excitation has a volumetric

rate of transition given by BulJnu where Bul is the Einstein coe�cient for stimulated

emission.

In order for the populations of upper and lower levels to remain constant, the

excitation and de-excitation rates must be equal,

�luntotnl +BluJnl = �ulntotnu +BulJnu + Aulnu. (1.21)

Expressions can be derived for the collisional and Einstein A and B coe�cients

assuming either collisional or radiative transitions dominate (see Stahler and Palla

2005 full details). When collisional transitions dominate over radiative ones, the two

level system achieves local thermodynamic equilibrium (LTE) where the Boltzmann

relation can be used to describe the level populations using the kinetic temperature

Tkin,
nu

nl
=

�lu

�ul
=

gu

gl
exp

✓
��E

kTkin

◆
, (1.22)

where gu and gl are the degeneracies of the upper and lower levels respectively.

Similarly, assuming radiative transitions dominate (ntot is negligible), the system

reaches thermodynamic equilibrium. The level populations can also be described

with the Boltzmann relation using a radiation temperature Trad and the radiation

J obeys Planck’s law, yielding the relation between the Einstein coe�cients:

Aul =
2h⌫3

c

2
Bul (1.23)

glBlu = guBul, (1.24)

where ⌫ is the frequency of of the transition from the upper state J +1 to the lower

state J and g is the degeneracy of the transition level. I note the Einstein A and B co-

e�cients have been calculated using the mean intensity J [erg cm�2 s�1 Hz�1 sterad�1].

These coe�cients can also be calculated using the energy density u

⌫

instead of the

mean intensity which would cause the A coe�cient to di↵er by a factor of 4⇡/c.
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The Einstein A coe�cient (s�1) can be expressed more formally for a linear, rigid

rotor model with rotation transition J + 1 ! J ,

Aul =
64⇡4

3hc3
⌫

3
ulµ

2 J + 1

2J + 3
, (1.25)

where µ is the permanent electric dipole moment (e.g. CO). Additionally, the ab-

sorption coe�cient from Equation 1.13 can now be defined using the Einstein coef-

ficients,

↵

⌫

=
h⌫ul

4⇡
(nlBlu � nuBul)�(⌫), (1.26)

where Blu is the Einstein coe�cient for absorption, Bul is the Einstein coe�cient for

stimulated emission and �(⌫) is the normalised intrinsic linewidth with
R1
0 �(⌫)d⌫ =

1. The coe�cient for stimulated emission is included in the absorption coe�cient

and can be viewed as ‘negative absorption’ because it is proportional to the ambient

radiation intensity.

These parameters can now be incorporated into Equation 1.21. Using the excita-

tion temperature Tex which describes the level populations in terms of Tex assuming

Boltzmann’s law:
nu

nl
=

gu

gl
exp

✓
��E

kTex

◆
, (1.27)

the relationship between Tex, Tkin, and Trad becomes

exp

✓
��E

kTex

◆
= ful exp

✓
��E

kTkin

◆
+ (1 � ful) exp

✓
��E

kTrad

◆
, (1.28)

where ful denote the fraction of collisional downward transitions or ful = ntot/[ntot+

ncrit(1 + c

2
J/2h⌫3)] and ncrit is the critical density ncrit = Aul/�ul. The critical den-

sity denotes the density needed for collisions to depopulate the upper state instead

of radiation. The excitation temperature Tex or the level populations are always

determined by the collisional and radiative processes, where Tex is constrained by

Tkin and Trad in the equation above. When collisions are negligible and radiation

dominates (ntot is small so that ful << 1), Tex ! Trad or the level populations ap-

proach equilibrium with the radiation field. Similarly when collisions dominate so

that ntot >> ncrit (ful ! 1), Tex ! Tkin or the system is in LTE.

In the optically thick regime, each individual collision does not necessarily result
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in detectable emission, i.e. a photon escaping the cloud. Photons may become

reabsorbed and enhance the upper level populations, leading to a higher excitation

temperature. This is a process known as ‘radiative trapping.’ The critical density

decreases with the increasing optical depth by a factor of 1/⌧ . Therefore, the density

needed to thermalise the line decreases for optically thick transitions.

1.3.5 Derivation of cloud properties (LTE)

For my analysis of the Ophiuchus molecular cloud, I assume the molecular line

excitation is dominated by collisions and in a local thermodynamic equilibrium

(LTE) state. LTE requires the environment to change slowly enough to essentially

sustain its local Boltzmann distribution of molecular velocities. I will continue to

assume LTE conditions for the derivation of various properties of the molecular

cloud, including excitation temperature, column density and mass. This section

does not include non-LTE modelling techniques used in Chapter 5, where more

complex radiative transfer models can be used to numerically solve the temperature

and density variations along the line-of-sight.

1.3.5.1 Excitation temperature

Under LTE conditions, the excitation temperature of the molecule is equivalent to

the kinetic temperature. Using Equation 1.19 and assuming the sources observed are

larger than the beam size (i.e. TMB = TB), the following relation can be calculated

for the excitation temperature:

Tex =
Tul

ln


Tul

⇣
Tpeak +

⇣
Tul

exp (Tul/TCMB)�1

⌘⌘�1

+ 1

� (1.29)

where ⌫ is the frequency corresponding to the rotational transition, Tul denotes

h⌫/k, Tpeak is the peak main-beam temperature of the molecule, and TCMB is the

background temperature corresponding to the CMB (2.73 K). This equation also

assumes a high optical depth (⌧ >> 1) so that [1 � exp�(⌧
⌫

)] ! 1 in Equation 1.19.

I further discuss the excitation temperatures in Chapter 4 where I use optically thick

isotopologues 12CO and 13CO to further investigate this parameter in the Ophiuchus
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molecular cloud.

1.3.5.2 Column density

Molecular line intensities can be further used to calculate the total column density

of regions in the molecular cloud using only the rotational transitions. Using the

relations between the Einstein coe�cients (Equations 1.23, 1.24 and 1.25), the ex-

citation temperature definition (assuming LTE) and ↵

⌫

= �d⌧
ds , Equation 1.26 can

be rewritten to show a definition for the upper-level density nu:

nu�(⌫) =
3hc

8⇡3
⌫ulµ

2

✓
2J + 3

J + 1

◆
1

exp (h⌫/kTex) � 1

✓
�d⌧

ds

◆
. (1.30)

Using the Rayleigh-Jeans approximation, the excitation (physical) temperature can

be approximated as a brightness temperature as in Equation 1.10, denoted as T 0
ex.

The column density of the upper-limit is calculated by integrating the density nu over

the line of sight ds and the frequency ⌫. To make this calculation more relatable to

molecular line observations, the frequency dependence can be changed to a velocity

dependence by d⌫ = �⌫ul/c dv. The upper-level column density therefore becomes,

Nu =
3k

8⇡⌫2
ulµ

2

✓
2J + 3

J + 1

◆
T

0
ex

Z
⌧dv. (1.31)

To obtain the total column density, it is necessary to sum over all the energy

levels of the molecule. This is done using a fractional population that has been

defined by the Boltzmann distribution and Partition function, assuming all levels

have the same excitation temperature (i.e. LTE),

Nu

N(total)
=

g

u

Q

exp


�h⌫

o

(u)(u+ 1)

2kTex

�
, (1.32)

where u is the level, g
u

is the degeneracy (2J + 3) and Q is the Partition function.

The Partition function is defined as

Q =
all statesX

u=0

g

x

exp


�T

o

(u)(u+ 1)

2Tex

�
, (1.33)

where T
o

= h⌫

o

/k. This function can be approximated using the assumption Tex �
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T

o

. The Partition function becomes Q ⇡ 2Tex/To

. Solving Equation 1.32 for the

total column density N(total) is then

N(total) =
3k2

4⇡h⌫2
o

(J + 1)2µ2

Tex

exp
h
� (J+1)(J+2)h⌫

o

2kTex

i
T

0
ex

Z
⌧dv. (1.34)

The column density is derived from observations using the main-beam temperature

using Equation 1.20. The Rayleigh-Jeans excitation temperature T

0
ex is described

as TMB/ (1 � exp(�⌧

⌫

))�1, where I assume TB = TMB. The full column density

equation becomes

N(total) =
3k2

4⇡h⌫2
o

(J + 1)2µ2

Tex

exp
h
� (J+1)(J+2)h⌫

o

2kTex

i ⌧

o

1 � exp�⌧

o

Z
T

0
exdv, (1.35)

where I assume a constant optical depth. In the case of optically thin emission

(⌧ << 1), ⌧

o

1�exp�⌧

o

! 1. In this thesis I primarily use CO J = 3 ! 2 isotopologues.

Assuming optically thin emission, the corresponding total column densities are:

N(C18O) = 5.82 ⇥ 1012
Tex

exp (�31.6 [K]/Tex)

R
TMBdv

[K km s�1]

⇥
cm�2

⇤
, (1.36)

N(13CO) = 5.77 ⇥ 1012
Tex

exp (�31.7 [K]/Tex)

R
TMBdv

[K km s�1]

⇥
cm�2

⇤
, (1.37)

N(12CO) = 5.27 ⇥ 1012
Tex

exp (�33.2 [K]/Tex)

R
TMBdv

[K km s�1]

⇥
cm�2

⇤
. (1.38)

1.3.5.3 Mass

The column density calculation is particularly important in calculating the mass of

a molecular cloud. The mass of the total cloud can be inferred from the sum of

the column densities in a cross-sectional area (i.e. pixel area), correcting for the

relative abundance of the observed molecule in reference to H2 and accounting for

the average mass of a particle. The relation for mass is therefore,

M = µmolmpX
�1
molApixel

X

j

N

j

, (1.39)
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where µmol is the relative molecular mass (accounting for He and H2 is 2.72), mp

is the mass of a proton (1.67⇥10�24 g), Apixel is the cross-sectional area of a pixel

(i.e. the area of a pixel in square-radians multiplied by the square-distance to the

cloud) and Xmol is the relative abundance of the molecule to H2. This calculation

is applied in Chapter 4 of the Ophiuchus molecular cloud using the CO J = 3 ! 2

isotopologues.

1.4 Thesis outline

The work of this thesis uses both early SCUBA-2 850 µm and HARP CO J = 3 ! 2

and HCO+ J = 4 ! 3 observations from the JCMT:

• Chapter 2 introduces a method for calculating molecular line contamination

in the SCUBA-2 data. Using HARP maps of 12CO J = 3 ! 2, I quantify the

amount of molecular line contamination found in SCUBA-2 maps of three dif-

ferent regions, including NGC 1333 of Perseus and NGC 2071 and NGC 2024

of Orion B. This method is now being used to remove molecular line contami-

nation for regions with both SCUBA-2 dust continuum and HARP 12CO map

coverage in the Gould Belt Survey.

The remaining chapters focus on HARP observations of the Ophiuchus molecular

cloud:

• Chapter 3 introduces CO J = 3 ! 2 data of the Ophiuchus L1668 cloud,

which is a part of the Gould Belt Survey. I examine protostellar sources for

the presence of molecular outflows in this region and attempt to shed light on

some confused sources.

• Chapter 4 looks at the physical conditions of the gas in the Ophiuchus cloud,

including the excitation and optical depths of the region. The mass and ener-

getics of the cloud are calculated to investigate if the cloud is gravitationally

bound. The mass and energetics of the global outflows are also calculated to

investigate the driving source of turbulence in the region.
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• Chapter 5 presents HCO+ J = 4 ! 3 observations of the Ophiuchus L1668

cloud. A comparison between HCO+ and various column density tracers is

made to further investigate the relationship between column density and den-

sity in the cloud. Non-LTE models are developed to model the densities HCO+

is tracing in the cloud. The density profiles included: constant density, a ‘tri-

angle’ density (densities increased at a constant gradient to a maximum peak

and then decreased at a constant gradient) and a ‘lognormal PDF’ density

model (based on the lognormal probability density function).

• Chapter 6 summarises the conclusions of this thesis and how this work could

lead to future research.
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Chapter 2

Line contamination in the

SCUBA-2 dust continuum

This chapter is based on work initially published as Drabek et al. [2012], Molecular

line contamination in the SCUBA-2 450 and 850 µm continuum data. Using the

SCUBA-2 filter profiles, I calculated ‘conversion’ factors used to convert maps of

molecular line integrated intensity (K km s�1) to molecular line flux (mJy beam�1)

contaminating the dust continuum emission. These conversion factors were calcu-

lated for 12CO J = 3 ! 2 contributions to the 850 µm SCUBA-2 dust continuum

emission and for 12CO J = 6 ! 5 contributions to the 450 µm SCUBA-2 continuum.

Conversion factors were then applied to HARP 12CO maps of NGC 1333, a region

in the Perseus molecular cloud complex, and NGC 2071 and NGC 2024, regions in

the Orion B molecular cloud complex, to calculate the line contamination directly

by measuring fluxes and masses of a list of sources. Once the 12CO contamination to

the source fluxes were calculated, the sources with the highest contamination were

analysed in more detail to determine the cause of the molecular flux contribution,

e.g. molecular outflows or hot molecular gas from nearby stars.

This work has since been applied in SCUBA-2 studies of Perseus NGC 1333

(Hatchell et al. 2013, including Drabek, E) and B1 (Sadavoy et al. 2013, including

Drabek, E). I detail improvements to the conversion factors and their applications

in these works.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

2.1 Molecular line contamination

As discussed in Chapter 1, dust emission detected in the submillimetre range is

a useful tracer of star formation, identifying filamentary structure, Class 0 proto-

stars, prestellar cores and disks in molecular clouds as well as tracing the mass of

dust and gas in galaxies. To quantify the flux from the submillimetre dust contin-

uum, the heat generated by this radiation is measured using bolometers with the

detected wavelength range defined by wide-band filters [Holland et al., 2002]. These

observations of broadband continuum emission from the dust can be contaminated

by molecular line flux, particularly from 12CO, which is the second most abundant

molecule in the interstellar medium (after H2) with strong emission lines in the

submillimetre [Hatchell and Dunham, 2009; Johnstone et al., 2003; Seaquist et al.,

2004; Zhu et al., 2003]. Since the molecular line contamination depends explicitly

on the bandwidth and wavelength of the bolometer, it is important to quantify

the contribution from molecular lines to make accurate flux measurements of the

submillimetre dust emission used in mass calculations.

The CO line contribution can be quantified by comparing observations of the dust

continuum emission and the CO line emission [Gordon, 1995]. Past research [Davis

et al., 2000; Johnstone and Bally, 1999; Papadopoulos and Allen, 2000; Tothill et al.,

2002] has focused on the Submillimetre Common User Bolometer Array (SCUBA)

at the James Clerk Maxwell Telescope (JCMT), where line contribution from the
12CO J = 3 ! 2 line was found to range from little to tens of per cent in the

850 µm band. Other studies have examined contamination in various bolometer

instruments, including MAMBO-II, Bolocam, and SHARC-II. The Submillimetre

High Angular Resolution Camera II (SHARC-II) operates at the same wavelength

range as SCUBA (450 µm and 850 µm), but also includes a 350 µm filter (780 to

910 GHz). The 350 µm SHARC-II continuum could be potentially contaminated by

the 12CO J = 7 ! 6 line (806 GHz) up to ⇠20%, similar to the 12CO J = 3 ! 2 con-

tamination to the SCUBA 850 µm continuum [Hatchell and Dunham, 2009]. While

Bolocam (operated at Caltech at 1.1 mm with a 250 to 300 GHz filter) has been de-

signed to exclude 12CO line contamination, the Max Planck Millimetre Bolometer II

(MAMBO-II; operated by the Max Planck Institut für Radioastronomie at 1.2 mm

with a ⇠210 to 290 GHz filter) includes 12CO J = 2 ! 1 (230 GHz) molecular line
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emission which could potentially increase flux at most a few per cent [Aguirre et al.,

2011]. Other possible contamination for Bolocam and MAMBO-II could result from

other known molecular lines in clouds, including SiO J = 6 ! 5 (⇠260 GHz) and

HCN J = 3 ! 2 (⇠258 GHz).

The successor to SCUBA is SCUBA-2, which can be as susceptible to significant

molecular line contamination as the above bolometers. In regards to 12CO, both

SCUBA-2 bandpass filters have a central transmission peak near a 12CO line: the

850 µm bandpass filter centre is at 347 GHz near the 12CO J = 3 ! 2 line at 345.796

GHz and the 450 µm bandpass filter centre is 664 GHz near the 12CO J = 6 ! 5 line

at 691.473 GHz. The proximity of the 12CO line frequencies to the centres of the

transmission peaks makes significant CO contamination in SCUBA-2 maps likely.

2.2 Method for calculating the 12CO line contam-

ination

As detailed in Section 1.2.2, molecular line emission is typically measured as an

intensity or surface brightness in terms of the Rayleigh-Jeans (R-J) brightness tem-

perature (in Kelvin) while the dust continuum fluxes are given in Janskys measured

over the telescope beam area (Jy beam�1). In order to convert 12CO line intensities

to pseudo-continuum fluxes, the intensity of a molecular line must be converted into

the flux of the line using the following relation

F =

Z
I d⌦ ⇡ I⌦, (2.1)

where I is the intensity and ⌦ is the telescope beam area. The intensity is measured

as a main-beam brightness temperature TMB in Kelvin and converted to intensity

using

I

⌫

=
2⌫2

c

2
kTMB =

2k

�

2
TMB, (2.2)

where ⌫ is the frequency, � is the wavelength, and k is the Boltzmann constant.

A narrow molecular line within a filter contributes flux over a smaller frequency

range (⌫line) than continuum emission across the filter. To obtain the flux from the
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Figure 2.1: Diagram of the dust continuum filter profile. The frequency of a molecu-
lar line is shown that could potentially cause contamination. The parameter g

⌫

(line)
corresponds to the filter transmission at the molecular line frequency.

molecular line, the average intensity hIi must be calculated over the full filter band,

i.e.

hIi =
R
I

⌫

(line) g
⌫

(line) d⌫R
g

⌫

d⌫

, (2.3)

where I

⌫

(line) is the intensity of the molecular line, g
⌫

(line) is the filter passband

(transmission) at the frequency of the molecular line, and
R
g

⌫

d⌫ is the integrated

filter passband (transmission) across the full range of filter frequencies. An example

of the continuum profile with the frequency of the molecular line is shown in Fig-

ure 2.1. Using Equation 2.2 and the Doppler shift, �⌫/⌫ = �v/c, Equation 2.3 can

be converted to TMB:

hIi =
⌫

c

R
I

⌫

(v) g
⌫

(v) dvR
g

⌫

d⌫

=
2k⌫3

c

3

g

⌫

(line)R
g

⌫

d⌫

Z
TMB dv, (2.4)

where
R
TMB dv is the velocity integrated main-beam brightness temperature, or in-

tegrated intensity. Using these calculations of intensity, it follows from Equation 2.1
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that
F

⌫

mJy beam�1 =
2k⌫3

c

3

g

⌫

(line)R
g

⌫

d⌫

⌦
B

Z
TMB dv (2.5)

A similar calculation was used in Seaquist et al. [2004].

The main-beam brightness temperature TMB is used rather than the antenna

temperature T ⇤
A for analysing small-scale emission as long as the continuum calibra-

tion accounts for the same beam e�ciencies as the molecular line emission. This is

true for the SCUBA-2 and HARP pairing at the JCMT. The beam e�ciencies are

discussed further in Section 2.4. T ⇤
A is related to TMB by the following:

T

⇤
A

= ⌘MBTMB, (2.6)

where ⌘MB is the main-beam e�ciency factor. The e�ciency factor that takes into

account emission at larger scales is discussed in Section 2.2.2. At ⇠345 GHz with

HARP on JCMT, ⌘MB is 0.61 [Buckle et al., 2009]. The telescope beam area, also

discussed further in Section 2.2.2, is measured in steradians (sterad) and obtained

from the full-width-half-maximum (FWHM) ✓

B

of a Gaussian beam using ⌦
B

=

2⇡�2 where the FWHM ✓

B

= 2
p
2 ln 2�:

⌦
B

sterad
=

⇡

4 ln 2

✓
✓

B

00

◆2✓
⇡

180 ⇥ 3600

◆2

(2.7)

Using Equation 2.5, a molecular line conversion factor, C, can be calculated to

convert molecular line maps, measured in the velocity integrated main-beam tem-

perature
R
TMB dv (K km s�1), into maps of line flux (mJy beam�1) that contributes

to the observed continuum emission,

C

mJy beam�1 per K km s�1 =
F

⌫R
T

MB

dv
(2.8)

=
2k⌫3

c

3

g

⌫

(line)R
g

⌫

d⌫

⌦
B

where frequencies are measured in GHz and 1 Jy = 10�26 W m�2 Hz�1 = 10�23

erg s�1 cm�2 Hz�1. Note that the beam size is wavelength dependent, where ⌦
B

/
�

2. The di↵erence in beam size between the 12CO and the SCUBA-2 measurements

is not taken into account.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

2.2.1 Line conversion factors

To calculate the conversion factor C from Equation 2.9, the SCUBA-2 filter profiles

and the added atmospheric transmission were used to find
R
g

⌫

d⌫ and g

⌫

(line).

The SCUBA-2 850 µm and 450 µm filter profiles are shown in the bottom plot

of Figures 2.2 and 2.3 (obtained from Per Friberg, private communication in June

2011). The SCUBA-2 filter profiles are a result of stacking all of the filters (thermal

and bandpass filters as well as the cryostat window and dichroic) that form the

continuum bandpasses when combined with the atmosphere. The bandpasses are

the main filters defining the transmission window, where passbands are the range of

frequencies with a signal passing through the filter and stopbands define frequency

ranges with a signal attenuated by the filter. The main infrared (IR; thermal)

blocking filters are designed to block transmission at higher frequencies (IR and

optical). For this study, a constant value for these filters has been assumed due

to the high transmission in the frequency range. For further information, see the

JCMT website regarding the cryostat window, filter and dichroic specification and

measurements1.

The JCMT has a system that describes the atmospheric conditions ranging from

weather grades 1-5. The atmospheric conditions are based on precipitable water

vapour (PWV) levels (in mm) that correspond to di↵erent sky opacities at 225

GHz, or ⌧225. The relation between PWV and ⌧225 is the following (JCMT Telescope

Overview website)2:

⌧225 ⇡ 0.01 + (0.04 ⇥ PWV) (2.9)

The JCMT weather grades are defined as:

• Grade 1: PWV: < 1 mm, ⌧225: < 0.05

• Grade 2: PWV: 1 to 1.75 mm, ⌧225: 0.05 to 0.08

• Grade 3: PWV: 1.75 to 2.75 mm, ⌧225: 0.08 to 0.12

• Grade 4: PWV: 2.75 to 4.75 mm, ⌧225: 0.12 to 0.20

1
http://www.jach.hawaii.edu/JCMT/continuum/scuba2/filter/

2
www.jach.hawaii.edu/JCMT/overview/tel_overview
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• Grade 5: PWV: > 4.75 mm, ⌧225: > 0.20

The continuum bandpass transmission of the filter profile and atmosphere com-

bined varies depending on atmospheric conditions. Therefore, the CO contamination

was calculated based on these five weather grades. Plots of atmospheric transmission

corresponding to these conditions can be found in the top half of Figures 2.2 and

2.3 and are labelled according to the respective water vapour levels (for more detail,

see CSO Atmospheric Transmission Interactive Plotter website).1 The SCUBA-2

850 µm and 450 µm filter profiles were multiplied by each individual atmospheric

transmission profile to produce continuum bandpass profiles at each weather grade,

shown in the bottom of Figures 2.2 and 2.3.

In Equation 2.5,
R
g

⌫

d⌫ is the integrated SCUBA-2 continuum bandpass and is

calculated as the the sum of g
⌫

⇥ �⌫ (where �⌫ is 0.01 GHz) at each corresponding

frequency with units in GHz. The transmission of 12CO, g
⌫

(line), is the transmission

of the SCUBA-2 850 µm continuum bandpass at 345.7960 GHz (the rest frequency of

the 12CO J = 3 ! 2 line) and the transmission of the SCUBA-2 450 µm continuum

bandpass at 691.4731 GHz (the rest frequency of the 12CO J = 6 ! 5 line). To

calculate conversion factors for redshifted lines, the frequency ⌫ and transmission

g

⌫

(line) (from Figures 2.2 & 2.3) in Equation 2.9 must be changed appropriately.

The SCUBA-2 beam size is calculated using Equation 2.7 assuming the main-beam

FWHM ✓

B

is 13.800 at 850 µm and 8.300 at 450 µm, measured 2012 January (Per

Friberg, private communication). The possibility of an associated secondary beam

is discussed in Section 2.2.2.

2.2.2 Telescope beam area

The beam profile of the original SCUBA instrument diverged from a single Gaussian

and displayed a beam profile of two combined Gaussians: a primary beam roughly

corresponding to the assumed FWHM and a secondary beam of 4000 FWHM [Di

Francesco et al., 2008]. For the 450 µm maps, the primary beam had a 8.500 FWHM

with a 0.90 relative amplitude and the secondary beam had a 0.10 relative amplitude.

For the 850 µm maps, the primary beam had a 13.500 FWHM with a 0.96 relative

amplitude and the secondary beam had a 0.04 relative amplitude.

1
http://www.submm.caltech.edu/cso/weather/atplot.shtml
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Figure 2.2: Upper: Plots of the atmospheric transmission at 300 to 400 GHz, given
0.5 to 4.75 mm of precipitable water vapour. Lower: The upper line is the profile
of the SCUBA-2 850 µm filter, and the lines beneath represent the SCUBA-2 filter
with the addition of the atmospheric transmission at varying water vapour levels.
The 12CO J = 3 ! 2 line is plotted at 345.7960 GHz. As shown in Table 2.1,
the atmospheric transmission corresponds to di↵erent bands of weather used for
observations.
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Figure 2.3: Upper: Plots of the atmospheric transmission at 550 to 750 GHz, given
0.5 to 4.75 mm of precipitable water vapour. Lower: The upper line is the profile of
the SCUBA-2 450 µm filter, and the lower lines represent the SCUBA-2 filter with
the addition of the atmospheric transmission at varying water vapour levels. The
12CO J = 6 ! 5 line is plotted at 691.4731 GHz.
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The total SCUBA-2 beam also includes a broader secondary component [Dempsey

et al., 2013]. As explained in Section 2.2.1, the telescope beam areas for this study

were calculated assuming FWHMs of 8.300 and 13.800 for the 450 µm and 850 µm

SCUBA-2 beams respectively. The primary beam is appropriate for studying the

CO contamination in compact sources (small-scale emission), e.g. protostars and

small outflows. However, if the CO emission is both bright and extended, then it

may be necessary to include the secondary beam in the calculation (i.e. on scales

much larger than the beam size). By fitting a two component Gaussian to coad-

ded SCUBA-2 maps of Uranus (Per Friberg, private communication), the 450 µm

primary FWHM is 8.700 (relative amplitude 0.83) and secondary FWHM is 20.400

(relative amplitude 0.17) and the 850 µm primary FWHM is 13.900 (relative am-

plitude 0.97) and secondary beam FWHM is 39.100 (relative amplitude 0.03).1 The

e↵ective FWHM is described using

✓E =
q

↵prim(✓prim)2 + ↵sec(✓sec)2, (2.10)

where ✓E is the e↵ective FWHM, ↵prim is the relative amplitude of the primary

beam, ↵sec is the relative amplitude of the secondary beam, ✓prim is the FWHM

of the primary beam and ✓sec is the FWHM of the secondary beam. The e↵ective

FWHM becomes 11.600 and 15.300 for 450 µm and 850 µm beams respectively. This

would cause the total beam area for 450 µm to be higher by a factor of 2.0 and the

850 µm total beam area to be higher by a factor or 1.2.

If it is necessary to incorporate the secondary beam into the beam area cal-

culation, then a new conversion factor can be calculated using Equation 2.9. The

conversion factors are directly proportional to the telescope beam area. Assuming C 0

is the the conversion factor with the inclusion of both a primary and secondary beam

(⌦0
B

) and C is the relation shown in Equation 2.9, then it follows from Equation 2.9:

C

0 = C

⌦0
B

⌦
B

= C

✓
FWHM0

FWHM

◆2

, (2.11)

where FWHM0 is the e↵ective FWHM. For large-scale and extended emission on

scales significantly larger than the size of the telescope beam (greater than 13.800,

1Measured primary beam sizes are slightly larger than the sizes quoted in Section 2.2.1. This
is potentially due to small pointing shifts between coadded maps (Per Friberg, private communi-
cation).
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

the 850 µm FWHM), it is also more appropriate to use ⌘fss, the forward spillover

and scattering e�ciency, to calibrate the CO emission instead of the main-beam

e�ciency ⌘MB. The forward spillover and scattering e�ciency measures the amount

of coupling to an extended source up to a 300 diameter (measured by observing the

Moon). Equation 2.11 becomes

C

0 = C

✓
FWHM0

FWHM

◆2
⌘MB

⌘fss
(2.12)

The increase of telescope beam area caused from the inclusion of the secondary beam

is somewhat counterbalanced by the use of T ⇤
R = T

⇤
A/⌘fss rather than TMB, accounting

for the more e�cient telescope coupling to large-scale emission (⌘fss = 0.71 compared

to ⌘MB = 0.61).

The secondary beam and potential changes in conversion factors for large-scale

emission are further discussed in Section 2.5.

2.3 Results

The 12CO conversion factors, C, for SCUBA-2 are listed in Table 2.1. The 12CO J =

3 ! 2 conversion factors (in mJy beam�1 per K km s�1) range from 0.63 (Grade 1)

to 0.77 (Grade 5) with a mid value of 0.70 (Grade 3). The conversion factors change

depending on the atmospheric conditions that a↵ect the continuum bandpass profile.

Since each increase in ⌧225 causes the 850 µm continuum bandpass profile to become

narrower with less overall transmission,
R
g

⌫

d⌫ in Equation 2.5 shrinks faster than

the transmission of 12CO, g
⌫

(line). Therefore, the 12CO J = 3 ! 2 line contribution

to the flux is lowest in Grade 1 weather and steadily increases with each step to

Grade 5 weather.

For the 450 µm continuum bandpass profile, the opposite trend is seen. The 12CO

line contribution to the 450 µm flux is highest in Grade 1 but steadily decreases with

each step to Grade 5 weather. In most cases, observations using SCUBA-2 450 µm

would only be taken in Grade 1 to 3 weather due to the decreased transmission in

higher weather grades. The 12CO J = 6 ! 5 conversion factors range from 0.64

(Grade 1) to 0.35 (Grade 5) with a mid value of 0.51 (Grade 3).

I note that the contamination is expected to have di↵erent behaviour between
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the 450 µm and 850 µm filters. The 12CO J = 3 ! 2 line is in the centre of the

850 µm filter with the bulk of the transmission while the 12CO J = 6 ! 5 line

is close to the edge of the 450 µm filter with lower transmission. The molecular

line contribution to the 450 µm band decreases with weather grade because of the

increasing attenuation of the 12CO J = 6 ! 5 line.

2.4 Applications to observations

The conversion factors calculated in Section 2.3 were applied to HARP 12CO J =

3 ! 2 maps and compared to SCUBA-2 850 µm dust emission maps to measure

the 12CO contamination directly. Three di↵erent regions were used for this study:

NGC 1333, NGC 2071, and NGC 2024. By quantifying the percentage of contam-

ination to the dust continuum flux, the regions more likely to be contaminated by

CO can be determined (i.e. regions with molecular outflows or nearby stars).

2.4.1 Flux calculations

The continuum observations were taken with SCUBA-2 at 450 µm and 850 µm in

each region in 2010 during the SCUBA-2 Shared Risk Observing (S2SRO) campaign

when SCUBA-2 had two science grade arrays (one at 450 µm and one at 850 µm)

installed. Observations were taken in Grade 2 weather conditions. The S2SRO

observations were the best dust continuum data from SCUBA-2 that was available

at the time. See Section 2.6 to see more recent applications of the understanding
12CO contamination in the dust continuum.

I initially tested the above 12CO contamination technique on 12CO J = 3 ! 2

data from HARP for NGC 1333 was observed in January 2007 using raster mapping

techniques. The 12CO J = 3 ! 2 data cubes for NGC 2071 and NGC 2024 were

observed in November 2007 using raster mapping techniques as well (see Buckle

et al. 2010). Both datacubes were rebinned to 0.42 km s�1 velocity channels and

converted to TMB using a main-beam e�ciency ⌘MB of 0.61.

Similar to other ground-based bolometer arrays, the limited, single-subarray ver-

sion of SCUBA-2 available for S2SRO reproduced maps that are not sensitive to

large-scale emission, in this case on scales larger than the single subarray field-of-
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

view (⇠40). However, the HARP 12CO maps still contain this large-scale flux. A

simple application of the CO conversion factors from Table 2.1 to the HARP maps

would retain the large-scale structure and overestimate the CO contamination. In

order to account for the spatial filtering inherent in bolometer array reconstruc-

tion in a simple way and subtract the large-scale flux from the maps, a Gaussian

smoothing mask (GSM) filter was applied to both the 12CO HARP integrated in-

tensity maps (in K km s�1) and the 850 µm maps (mJy beam�1) of the regions.

The GSM filter was designed to minimise emission from structure on scales inacces-

sible to SCUBA-2 at this time. For the HARP maps, GSM filters were created by

convolving a HARP 12CO contamination map directly with a Gaussian a few arc

minutes FWHM in size and subtracting the resulting smoothed map from the origi-

nal map. For the SCUBA-2 maps, it was necessary to first create a thresholded map

for masking bright protostars and convolve the thresholded map with a Gaussian

the same FWHM in size. The resulting smoothed map was then subtracted from

the original map.

A 10 FWHM Gaussian was chosen for generating GSM maps after analysing 10 to

30 GSM filter sizes, further discussed in Section 2.4.1.4. Figure 2.4 shows examples of

the SCUBA-2 GSM processed maps for protostellar cores LBS-MM18 (NGC 2071-

IRS) in NGC 2071 (see Motte et al. 2001), FIR 1-7 in NGC 2024(see Buckle et al.

2010; Richer et al. 1989), and SVS13 in NGC 1333 (see Hatchell et al. 2007b). The

brightest CO features in the maps are the result of molecular outflows driven by the

dense cores in the regions. Dust emission contours in the outflows of these regions

clearly follow the 12CO J = 3 ! 2 emission, indicating the CO contamination is

strong enough to be directly detected in the dust continuum.

To study the CO contamination quantitatively, aperture photometry with a 1500

radius was applied to lists of known submillimetre sources, listed in Table 2.4 and

further discussed in Sections 2.4.1.1, 2.4.1.2, and 2.4.1.3. A 1500 aperture radius

was chosen based on source proximity and the possibility of the aperture diameter

extending to a neighbouring source. Integrated flux densities are calculated by

assuming a sky background of zero with flux uncertainties based on the sky RMS

and include a correction for the Gaussian beam [Enoch et al., 2006]. Therefore, a

point-source has the same integrated flux density in any size aperture.
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Figure 2.4: Regions in the SCUBA-2 850 µm GSM-filtered maps of NGC 2071,
NGC 2024, and NGC 1333 where 12CO emission contributes strongly to the 850 µm
flux. Black contours correspond to the SCUBA-2 850 µm dust continuum maps and
white contours correspond to HARP 12CO J = 3 ! 2 contamination maps. Top
Left: Close-up of LBS-MM18 (NGC2071-IRS) and corresponding outflow. Both
sets of contours correspond to flux at 20 and 45 mJy beam�1. Noticeable 12CO flux
contribution in the lower right lobe of the molecular outflow. Top Right: Close-up
of FIR 1-7 and corresponding outflow. Both contours correspond to flux at 10, 20,
and 45 mJy beam�1. Noticeable 12CO flux contribution in the lower lobe of the
molecular outflow. Bottom: Close-up of SVS13 and corresponding outflow. Both
sets of contours correspond to flux at 10, 20, and 35 mJy beam�1. Noticeable 12CO
flux contribution in the right lobe of the molecular outflow.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

2.4.1.1 Application to NGC 1333

NGC 1333 is a reflection nebula in the Perseus molecular cloud and is characterised

by early stage star formation of age less than 1 Myr [Lada et al., 1996; Wilking et al.,

2004]. The flux calibration for the S2SRO maps of this region was the CRL618

nebula and pointing checks were from the active galactic nucleus 3C84. A flux

conversion factor (FCF) of 500 Jy beam�1 pW�1 was used for NGC 1333 to convert

the maps into mJy beam�1. Sources were chosen from a list of cores in NGC 1333

[Hatchell et al., 2007b] that had been previously identified in the submillimetre

using SCUBA [Hatchell et al., 2005] and Bolocam [Enoch et al., 2006] with a total

of 35 sources in the area covered by the SCUBA-2 map. These sources include a

mixture of protostellar and starless cores. For further information regarding HARP

observations, see Curtis et al. [2010b].

Figure 2.5 shows the source fluxes from the SCUBA-2 850 µm and 12CO J = 3 !
2 Grade 2 contamination maps and the percentage contribution of 12CO J = 3 ! 2

flux to 850 µm SCUBA-2 flux. I note that all of the sources have 12CO contributions

less than 20% and every source except one (source 21) has a contribution less than

10%. Source 21 is further discussed in Section 2.4.3.

2.4.1.2 Application to NGC 2071

NGC 2071 is a region in the Orion B molecular cloud. Sources were chosen from

a list of young stellar objects that had been previously identified using SCUBA

[Nutter and Ward-Thompson, 2007] with a total of 50 sources in the area covered

by the SCUBA-2 map. A flux conversion factor of 685 Jy beam�1 pW�1 was used

for NGC 2071 as well as NGC 2024 (FCF value valid for October 2010 reduction,

equivalent to Nutter et al, in prep.). For further information on HARP observations

of NGC 2071, see Buckle et al. [2010].

Figure 2.6 shows the source fluxes from the SCUBA-2 850 µm and 12CO J = 3 !
2 Grade 2 contamination maps and the percentage contribution of 12CO J = 3 ! 2

flux to SCUBA-2 850 µm flux. I note that the majority of sources have 12CO

contributions of less than 20% in Grade 2 weather. Four sources (sources 70, 74,

88, and 91) have 12CO contributions greater than 20% (ranging from 34 to 79%).

Sources with a higher 12CO contamination are further discussed in Section 2.4.3.
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Figure 2.5: Top: The SCUBA-2 source fluxes calculated from the 850 µm contin-
uum and 12CO J = 3 ! 2 contamination maps (Grade 2 weather) of NGC 1333.
Note several sources (26, 42, and 66) have 12CO flux contributions of 0 mJy beam�1.
Bottom: The percentage contribution to the SCUBA-2 fluxes from the 12CO con-
tamination maps. Numbers are given arbitrarily to the sources and were based on
the original list of SCUBA and Bolocam cores [Hatchell et al., 2007b].
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Figure 2.6: Top: The SCUBA-2 source fluxes calculated from the 850 µm continuum
and 12CO J = 3 ! 2 contamination maps (Grade 2 weather) of NGC 2071. Note
source 67 has a 12CO flux contribution of 0 mJy beam�1. Bottom: The percentage
contribution to the SCUBA-2 fluxes from the 12CO contamination maps. Numbers
are given arbitrarily to the sources and were based on the original list of cores from
Nutter and Ward-Thompson [2007].
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Figure 2.7: Top: The SCUBA-2 source fluxes calculated from the 850 µm continuum
and 12CO J = 3 ! 2 contamination maps (Grade 2 weather) of NGC 2024. Bottom:
The percentage contribution to the SCUBA-2 fluxes from the 12CO contamination
maps. Numbers are given arbitrarily to the sources and were based on the original
list of cores from Nutter and Ward-Thompson [2007].

2.4.1.3 Application to NGC 2024

NGC 2024 is another emission nebula in the Orion B molecular cloud. Sources were

chosen from a list of young stellar objects in NGC 2024 that had been previously ob-

served using SCUBA [Nutter and Ward-Thompson, 2007] with a total of 24 sources

in the area covered by the SCUBA-2 map. As stated in Section 2.4.1.2, a FCF of

685 Jy beam�1 pW�1 was used to correspond with current studies of Orion B (FCF

value valid for October 2010 reduction, equivalent to Nutter et al, in prep.). For

further information on HARP observations of NGC 2024, see Buckle et al. [2010].

Figure 2.7 shows the source fluxes from the SCUBA-2 850 µm and 12CO J = 3 !
2 Grade 2 contamination maps and the percentage contribution of 12CO J = 3 ! 2

flux to SCUBA-2 850 µm flux. I note that the majority of sources have 12CO
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

contributions of less than 20%. One source (source 48) has a 12CO contribution

more than 20% (34% contamination), further discussed in Section 2.4.3.

2.4.1.4 GSM analysis

For SCUBA-2, GSM filters were created by applying upper thresholds to the origi-

nal SCUBA-2 maps which acted as a mask for source emission and convolving the

thresholded maps with a Gaussian a few arcminutes in FWHM size (similar to Kirk

et al. 2006; Reid and Wilson 2005); this is a standard technique for the SCUBA-2

data. Negative regions of flux, known as negative ‘bowls,’ surround very strong

sources in the SCUBA-2 maps and are produced in the map reconstruction process

(see Johnstone et al. 2000). SCUBA-2 thresholding was necessary to prevent in-

troducing new negative bowls in the image caused by smoothing and subtracting

bright continuum sources. Without thresholding, artificial negative bowling would

have been further added to the map, causing negative flux to lower source fluxes and

increase the calculated 12CO 3-2 contamination. To test the e↵ects of changing the

filter size, S2SRO maps were analysed with an upper threshold of 15 mJy beam�1

for NGC 1333 and 30 mJy beam�1for NGC 2071 and NGC 2024 (used to mask out

bright sources) and 10 to 30 FWHM Gaussian smoothing. Aperture fluxes from each

of the GSM maps (10, 20, and 30) and the original, unsmoothed S2SRO maps were

found to agree within uncertainties, indicating that the emission on scales which

would have been a↵ected by the GSM filter had been filtered out by the SCUBA-2

map reconstruction. The 10 and 20 GSM filters were further analysed with applica-

tion to the HARP 12CO maps based on the similarity between S2SRO and SCUBA

maps, for which scales greater than 20 are known to be poorly reproduced [Hatchell

et al., 2007b].

For the HARP 12CO maps, thresholding was not required because 12CO mainly

traces molecular outflows which have bright, extended structures on scales not fully

reproduced by SCUBA-2. To generate the 12CO GSM maps, GSM filters with 10 and

20 FWHM Gaussians were directly applied and subtracted from the original maps.

Negative flux regions in the final HARP maps resulting from the oversubtraction of

background flux estimated by the GSM filter was set to 0 mJy beam�1 to prevent

biasing the source fluxes in the aperture photometry process. The S2SRO 10 and
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20 GSM maps were subtracted from the corresponding 12CO GSM maps (Grade 2

contamination) to analyse the GSM filter e↵ectiveness in matching the spatial fil-

tering of the SCUBA-2 maps. Positive flux in the residuals indicates higher 12CO

flux than 850 µm dust continuum flux, suggesting that the GSM filter size should

be scaled down to subtract smaller scale emission. In each of the regions, the 20

GSM residuals were found to overestimate the 12CO flux contribution to the dust

continuum. On average, the 20 GSM map residuals were 1.4 to 1.5 times greater

than the 10 GSM. The 10 GSM filters were applied to both the S2SRO and HARP

maps for consistency in eliminating flux on scales of 10 and above.

With the full complement of subarrays, SCUBA-2 is likely to recover more large-

scale structure and continuum fluxes may increase further. A comparison of 12CO

contamination on scales of 10 or greater will have to wait for full SCUBA-2 opera-

tions.

2.4.2 Mass calculations

The calculation of the dust continuum flux from pre- and protostellar sources in a

molecular cloud can be used to obtain source masses [Hildebrand, 1983a]. Depending

on the molecular cloud environment surrounding the sources, contamination from

the 12CO line emission may a↵ect low- and high-mass sources, leading to a varying

level of source contamination. Therefore, the masses of sources were calculated using

the relation between the dust and gas mass and the total source dust continuum

flux (e.g. Enoch et al. 2006; Seaquist et al. 2004),

M =
S850D

2

850B850(Td)
, (2.13)

where S850 is the flux from 1500 radius aperture photometry at 850 µm, D is the

distance to the source, 850 is the dust opacity at 850 µm and B850(Td) is the Planck

function at 850 µm for the dust temperature Td.

2.4.2.1 Mass calculations for NGC 1333

For NGC1333, a distance of 250 pc was assumed for the mass calculations. Hatchell

et al. [2007b] used a distance of 320 pc, which would increase masses by a factor of
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

1.6. A temperature of 10 K was used as an estimate of the dust temperature, where

dense regions that do not have internal heating are colder on the inside and warmer

on the outside [Evans et al., 2001]. Cores with internal heating are warmer in the

inner regions. For example, Class 0 and Class I protostars are found from models

to have ⇠ Td = 15 K [Shirley et al., 2002; Young et al., 2003], but most of the

dust mass is found in areas of lower temperatures. To cover pre- and protostellar

sources, Td = 10 K is a commonly used average. It should be noted that this

value can overestimate the masses of protostellar sources by a factor of 2 to 3 if the

temperature is warmer [Enoch et al., 2006].

The dust opacity 850 is also uncertain for individual regions. Hatchell et al.

[2007b] assumed a dust opacity of 0.012 cm2g�1 for the 850 µm SCUBA dust emission

maps of NGC 1333 based on a gas/dust ratio of 161 (see Ossenkopf and Henning

1994). This dust opacity is at the low end of the assumed values and a dust opacity

of 0.02 cm2g�1 at 850 µm could have been used [Kirk et al., 2006]. Here, I choose

a dust opacity of 0.012 cm2g�1. If 0.02 cm2g�1 was used, then our masses would

decrease by a factor of 1.7.

Masses were calculated from source fluxes obtained from continuum emission

with and without 12CO contamination taken into account. The bottom portion of

Figure 2.8 shows the ratio between these masses. Due to the CO flux contamination,

the calculated source masses are being overestimated by up to a factor of 1.2.

2.4.2.2 Mass calculations for NGC 2071 and NGC 2024

For NGC 2071 and NGC 2024, parameters from past mass estimates [Nutter and

Ward-Thompson, 2007] were used to calculate source masses. A distance of 400 pc

was assumed for both regions [Brown et al., 1994] and a temperature of 20 K was

assumed as an estimate of the dust temperature [Johnstone and Bally, 2006; Laun-

hardt et al., 1996; Mitchell et al., 2001]. An 850 µm dust opacity of 0.01 cm2 g�1 was

used [Andre et al., 1996; André et al., 2003; Ward-Thompson et al., 1999], similar

to the dust opacity used for NGC 1333. As in NGC 1333, the assumption of a single

temperature for each source does introduce a potential bias in the masses. If 10 K

was assumed, as for NGC 1333, then masses for NGC 2071 and NGC 2024 sources

would be larger by a factor of 2.
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Figure 2.8: Top: Mass calculations (in solar masses) of the di↵erent sources in
NGC 1333. The masses were calculated using the SCUBA-2 850 µm map and
then recalculated excluding the flux contribution from 12CO in di↵erent atmospheric
conditions. Bottom: Ratio of the masses calculated from the flux without to with
the 12CO contribution. In both plots, uncertainties are calculated only from the
source fluxes and do not include absolute calibration uncertainties.
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Figure 2.9: Top: Mass calculations (in solar masses) of the di↵erent sources in
NGC 2071. The masses were calculated using the SCUBA-2 850 µm map and
then recalculated excluding the flux contribution from 12CO in di↵erent atmospheric
conditions. Bottom: Ratio of the masses calculated from the flux without to with
the 12CO contribution. In both plots, uncertainties are calculated only from the
source fluxes and do not include absolute calibration uncertainties.
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Figure 2.10: Top: Mass calculations (in solar masses) of the di↵erent sources in
NGC 2024. The masses were calculated using the SCUBA-2 850 µm map and
then recalculated excluding the flux contribution from 12CO in di↵erent atmospheric
conditions. Bottom: Ratio of the masses calculated from the flux without to with
the 12CO contribution. In both plots, uncertainties are calculated only from the
source fluxes and do not include absolute calibration uncertainties.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Masses were calculated from the source fluxes of the 850 µm continuum emission

(see Section 2.4) with and without 12CO J = 3 ! 2 contribution taken into account.

The bottom portion of Figures 2.9 and 2.10 show the ratio between these masses

for NGC 2071 and NGC 2024 respectively. Due to the CO flux contamination, the

calculated source masses are being overestimated by a factor up to 4.8 for NGC 2071

and 1.5 for NGC 2024.

2.4.3 Molecular outflow analysis

The location of protostellar sources can help identify the potential causes of 12CO

contamination. The presence of protostellar molecular outflows and hot ambient

gas from nearby stars results in bright 12CO emission, making regions with these

characteristics rife with contamination.

Sources with high 12CO contamination were examined in further detail using

the HARP data cubes. In each of the three regions, sources with greater than 20%

contamination were defined as ‘sources with high contamination.’ For NGC 1333,

there were no sources with greater than 20% contamination, excluding it from this

portion of the high contamination study. In NGC 2071, four sources fulfilled the

high contamination criterion and one source in NGC 2024 fulfilled the criterion. In

order to identify the cause of high contamination, the 12CO spectra were extracted

and analysed for molecular outflows.

For NGC 2071 and NGC 2024, the linewing criterion used to identify a molecular

outflow candidate was a linewing above 1.5 K (T ⇤
A

) at ± 4 km s�1 from the core

velocity, vLSR. This linewing criterion method follows the method in Hatchell et al.

[2007a]. A core velocity of 10 km s�1 was used for all of the sources in NGC 2024

and NGC 2071 based on C18O J = 3 ! 2 data [Buckle et al., 2010]. Linewing

criteria were based on T

⇤
A

RMS values for the regions (5�).

The linewing criterion identifies not only protostars driving molecular outflows,

but also sources which are contaminated by outflows along the line of sight. Outflow

candidates were identified using the above criteria and examined further to deter-

mine if the source or another protostar was the outflow driving source. Sources with

high contamination that were not outflow candidates were further analysed to de-

termine if there were other causes behind the 12CO contamination, such as a nearby
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star heating the gas.

Highly contaminated sources are listed in Table 2.2. Table 2.2 includes the

region, source number, RA and Dec, flux calculated from aperture photometry in

mJy, 12CO flux contamination in Grade 2 weather in mJy, percentage contamination

from 12CO, core velocity vLSR in km s�1, and the final molecular outflow candidate

result. The outflow naming convention follows Hatchell and Dunham [2009], where

a ‘y’ is given when an outflow is present and ‘n’ is given when an outflow is not

present. Sources are marked ‘?’ when there is confusion as to the source of the

outflow. In this case, the potential source causing the outflow detection is listed in

a footnote.

2.4.3.1 Sources in NGC 1333

Figure 2.11 shows the 850 µm SCUBA-2 map with blue contours tracing the blueshifted
12CO HARP intensity

R
T

⇤
A

dv (integrated from -2.5 to 4.5 km s�1) and red con-

tours tracing the redshifted 12CO intensity (integrated from 10.5 to 16.5 km s�1).

Sources in NGC 1333 are denoted by the percentage contamination, where ‘⇥’ de-

notes sources with 0 to 10% contamination and ‘+’ denotes sources with 10 to

20% contamination. Source 21 had the highest percentage contamination at 12%.

According to the linewing criteria used to identify a molecular outflow candidate

(linewing above 1.5 K for T

⇤
A

at ± 3 km s�1 from the core velocity 7.9 km s�1,

following the criterion for NGC 1333 used in Hatchell et al. 2007a), source 21 is

a molecular outflow candidate that could potentially be the result of a source at

(J2000) 03:29:03.2, 31:15:59.0 (SVS13) or source at (J2000) 03:29:08.8, 31:15:18.1

(SK-16) [Hatchell and Dunham, 2009]. A 12CO spectrum for this source is included

in Figure 2.14.

2.4.3.2 Sources in NGC 2071

Figure 2.12 shows 850 µm SCUBA-2 map with blue contours tracing the blueshifted
12CO HARP intensity

R
T

⇤
A

dv (integrated from -2.0 to 6.0 km s�1) and red con-

tours tracing the redshifted 12CO intensity (integrated from 14.0 to 22.0 km s�1).

Sources in NGC 2071 are denoted by the percentage contamination, where ‘⇥’ de-

notes sources with 0 to 10% contamination, ‘+’ denotes sources with 10 to 20%
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Figure 2.11: SCUBA-2 850 µm map of NGC 1333. The colour bar represents flux
in mJy beam�1. Blue contours correspond to blueshifted 12CO J = 3 ! 2 HARP
intensity

R
T

⇤
A

dv (integrated from -2.5 to 4.5 km s�1). Red contours correspond to
redshifted intensity (integrated from 10.5 to 16.5 km s�1). Contour levels are 5, 10,
15, 25, 45, 65, and 85 K km s�1. Sources in NGC 1333 are denoted by percentage
contamination, where ‘⇥’ denotes sources with 0 to 10% contamination and ‘+’
denotes sources with 10 to 20% contamination.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

contamination, and ‘O’ denotes sources with greater than 20% contamination. Ac-

cording to the linewing criteria used, all four sources with high contamination are

molecular outflow candidates. Even though sources 70 and 74 have clear blue- and

redshifted spectral linewings, all four sources appear to trace a large central out-

flow that could be driven by a source at (J2000) 05:47:06.9, 00:22:39 (source 84;

LBS-MM19) or a source at (J2000) 05:47:04.1, 00:21:58 (source 79; LBS-MM18;

NGC2071-IRS), where LBS-MM18 was found to be responsible for driving the out-

flow in Motte et al. [2001] and both sources are confirmed Class 1 protostars detected

using IRAC [Nutter and Ward-Thompson, 2007]. Note that sources 84 (LBS-MM19)

and 90, both with 18% contamination, also correlate with the central outflow. The
12CO spectra for these sources are displayed in Figure 2.14.

2.4.3.3 Sources in NGC 2024

Figure 2.13 shows 850 µm SCUBA-2 map with blue contours tracing the blueshifted
12CO HARP intensity

R
T

⇤
A

dv (integrated from -2.0 to 6.0 km s�1) and red con-

tours tracing the redshifted 12CO intensity (integrated from 14.0 to 22.0 km s�1).

Sources in NGC 2024 are denoted by the percentage contamination, where ‘⇥’ de-

notes sources with 0 to 10% contamination, ‘+’ denotes sources with 10 to 20%

contamination, and ‘O’ denotes sources with greater than 20% contamination. Ac-

cording to the linewing criteria used, the single source with a high contamination

is a molecular outflow candidate. The 12CO spectrum for this source is listed in

Figure 2.14.

2.5 Discussion

Typical 12CO contamination levels in the observed SCUBA-2 850 µm emission from

NGC 1333, NGC 2071, and NGC 2024 are under 20% (this includes 95% of sources,

and 88% of all sources have under 10% contamination). Similar results were found

for SCUBA, where Johnstone et al. [2003] suggested that 12CO line contamination

is typically under 10% for submillimetre sources in Orion and Davis et al. [2000]

suggested contamination was ⇠10% near the source V380 Orion NE.

In locations where molecular outflows are present, 12CO contamination can rise
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Figure 2.12: SCUBA-2 850 µm map of NGC 2071. The colour bar represents flux
in mJy beam�1. Blue contours correspond to blueshifted 12CO J = 3 ! 2 HARP
intensity

R
T

⇤
A

dv (integrated from -2.0 to 6.0 km s�1). Red contours correspond to
redshifted intensity (integrated from 14.0 to 22.0 km s�1). Contour levels are 5, 10,
15, 25, 45, 65, 85, 105, 125, and 145 K km s�1. Sources in NGC 2071 are denoted by
percentage contamination, where ‘⇥’ denotes sources with 0 to 10% contamination,
‘+’ denotes sources with 10 to 20% contamination, and ‘O’ denotes sources with
greater than 20% contamination.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Figure 2.13: SCUBA-2 850 µm map of NGC 2024. The colour bar represents flux
in mJy beam�1. Blue contours correspond to blueshifted 12CO J = 3 ! 2 HARP
intensity

R
T

⇤
A

dv (integrated from -2.0 to 6.0 km s�1). Red contours correspond to
redshifted intensity (integrated from 14.0 to 22.0 km s�1). Contour levels are 5, 10,
15, 25, 45, 65, 85, 105, 125, and 145 K km s�1. Sources in NGC 2024 are denoted by
percentage contamination, where ‘⇥’ denotes sources with 0 to 10% contamination,
‘+’ denotes sources with 10 to 20% contamination, and ‘O’ denotes sources with
greater than 20% contamination.
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above 20 per cent and dominate the dust continuum (up to 79 per cent contam-

ination), corresponding to a CO contribution ranging from 16 to 68 mJy beam�1

for the sources analysed in this study. Peak 12CO fluxes found in the molecular

outflows of NGC 1333, NGC 2071, and NGC 2024 maps reach even higher fluxes of

84 mJy beam�1, 154 mJy beam�1, and 94 mJy beam�1 respectively. Our study sug-

gests that molecular outflows can influence line contamination in sources with both

low and high continuum fluxes (⇠ 100 to 500 mJy). This result agrees with that of

Johnstone et al. [2003], where they concluded that the areas with warmer molecular

gas temperatures and higher velocities (i.e. shocks and molecular outflows) were the

only locations where 12CO emission dominated the dust continuum flux due to the

higher molecular line integrated intensities associated with such regions. In addition,

Gueth et al. [2003] found a 20 per cent contamination for the well-known outflow

source L1157. Hatchell and Dunham [2009] similarly found a 20 to 30 per cent 12CO

contamination level in the IRAS 03282+3035 outflow in Perseus.

The 12CO contamination combined with contamination from other molecular

lines allows outflows to potentially be seen in continuum maps with a similar ap-

pearance as protostellar cores or filamentary structure, which may be the case for

SVS13 in NGC 1333 and the large, central outflows in NGC 2071 and NGC 2024

that have strong evidence of molecular outflow lobes detected in the dust continuum

emission maps (see Figure 2.4). Other studies have suggested that regions involving

molecular outflows can reach 50% 12CO contamination, e.g. in the extended outflow

lobes of V380 Orion NE [Davis et al., 2000], and even up to 100% contamination,

e.g. the central blue outflow region in NGC 2071 driven by source LBS-MM18

(NGC2071-IRS; Motte et al. 2001).

The FCF uncertainty from calibrator observations for the 850 µm S2SRO maps is

18% (SMURF SCUBA-2 Data Reduction Cookbook)1. The calibration uncertainty

of HARP observations at JCMT is estimated to be 20% by Buckle et al. [2009].

With contamination levels to SCUBA-2 850 µm less than or equal to 20% for the

majority of the sources, the typical contamination is less than or equivalent to the

calibration uncertainty. Problems arise when the contamination is greater than than

calibration uncertainties, contributing a significant portion of flux and potentially

dominating the dust continuum. For bright sources, it should be possible to use the

1
http://star-www.rl.ac.uk/star/docs/sc19.htx/node40.html
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

subtracted 12CO background to estimate the column density and hence the potential

CO contamination to the 850 µm SCUBA-2 dust emission, as suggested by Tothill

et al. [2002].

For faint sources, the insensitivity of SCUBA-2 to the large-scale dust emission

introduces additional uncertainties. The spatially filtered maps created here do not

appear to entirely subtract the total large-scale flux detected by HARP. Excess
12CO flux seen as positive flux in residuals (Section 2.4.1.4) point to the need for a

more detailed model of SCUBA-2 structure response. The large-scale reconstruction

issues limit analysing contamination where the SCUBA-2 flux is faint. This analysis

is something that has been considered for the full SCUBA-2 array, but not for the

limited S2SRO data. See Section 2.6 for more details. If the SCUBA-2 and HARP

maps were subtracted in order to account for the molecular line contamination, there

is a possibility that an overcompensation for the molecular line flux would occur,

creating regions of negative flux in the dust continuum map.

An additional uncertainty in the contamination due to large-scale CO emission is

the inclusion of the secondary beam in the calculation of the telescope beam area in

Equation 2.9, which increases the beam area by a factor of 1.2 at 850 µm (determined

from a new FWHM calculated in Section 2.2.2). Large-scale emission couples to the

telescope beam as the e�ciency factor ⌘fss instead of ⌘MB (as in Equation 2.12).

Therefore, the conversion factor for 12CO J = 3 ! 2 would increase by a factor of

1.1, which is insignificant compared to other uncertainties. The scales of large-scale

emission that could cause significant signal without being taken out by the S2SRO

common-mode subtraction range from 13.800 (the FWHM of the 850 µm beam) to

10 (the Gaussian FWHM used in the GSM masking process). For the full SCUBA-2

array, CO emission on scales up to 80 in size could contribute.

CO is not the only possible contributor in the 850 and 450 µm bands. Studies of

other molecular lines found SCUBA 850 µm line contamination from HCN, HNC,

CN and methanol add together to form roughly 40% of the total line contamination

when observing other more energetic sources, like the shocked region SK1-OMC3

[Johnstone et al., 2003] . Similar contamination was found in the Kleinmann-Low

nebula, from SO and SO2 emission that was 28 to 50% of the total line contamination

at 850 µm [Groesbeck et al., 1994; Serabyn and Weisstein, 1995]. Other studies have

found the total line contamination by other molecular lines to be a factor of 2 to
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3 times that from CO in outflows [Gueth et al., 2003; Tothill et al., 2002]. Since

molecular line contamination from other molecules is also likely, some features with

low flux in the dust continuum may entirely be the result of line emission.

2.5.1 12CO J = 6 ! 5 contamination

For the 450 µm band, there are no 12CO J = 6 ! 5 maps with which to estimate

the CO contamination directly. Using the line intensities from the 12CO J = 3 ! 2

HARP maps, I can instead predict the potential line contamination from 12CO J =

6 ! 5 to the SCUBA-2 450 µm dust continuum signal.

Assuming local thermodynamic equilibrium, the ratio of the main-beam bright-

ness temperatures TMB for 12CO J = 6 ! 5 and 12CO J = 3 ! 2 can be estimated.

I assume the excitation temperature, Tex, is equal to the kinetic temperature of the

region, and is therefore the same for both 12CO J = 3 ! 2 and 12CO J = 6 ! 5.

I also assume the partition function Z ⇡ 2Tex/T0 and the Gaussian line shape

✓(peak) = 2c
p
2 ln 2 / ⌫ �v

p
2⇡, yielding the relation (in CGS units):

TMB =
8⇡3

3h
µ

2(J + 1)2
T

2
0

2Tex
exp

✓
�(J + 1)(J + 2)T0

2Tex

◆

⇥ 2
p
2 ln 2

�v
p
2⇡

Ntot (2.14)

where h is Planck’s constant, µ is the permanent electric dipole moment of the

molecule, J is the lower rotational level of a linear molecule, and T0 is the ground-

state temperature (h⌫0/k) at 5.5 K. Using Equation 2.14, the ratio 12CO J = 6 !
5/12CO J = 3 ! 2 is:

TMB(6 ! 5)

TMB(3 ! 2)
=

(6)2

(3)2

exp
⇣

�21 T0
Tex

⌘

exp
⇣

�6 T0
Tex

⌘

= 4 exp

✓
�15

T0

Tex

◆
(2.15)

where J(6 ! 5) = 5 for TMB(6 ! 5) and J(3 ! 2) = 2 for TMB(3 ! 2).
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Assuming the source dust temperatures of 10 K, as in Section 2.4.2, are equal to

the excitation temperature in the protostellar envelope, it follows from Equation 2.15

the ratio 12CO J = 6 ! 5/12CO J = 3 ! 2 is ⇠0.001 in the optically thin case.

The ratio between the two lines is low due to the low temperature of the region,

indicating there is less likelihood of detecting 12CO J = 6 ! 5 in cooler regions of

the cloud. The sources analysed in NGC 1333, NGC 2071, and NGC 2024 with high
12CO J = 3 ! 2 contamination correspond to molecular clouds at temperatures of

20 to 25 K. At 25 K, the ratio of 12CO J = 6 ! 5/12CO J = 3 ! 2 is 0.147 in

the optically thin case. However, outflows can contain even higher temperatures,

ranging from 50 to 150 K [Hatchell et al., 1999a; van Kempen et al., 2009]. At 50 K,

the ratio is 0.769, indicating 12CO J = 6 ! 5 is much more likely to be detected

from outflows. If, on the other hand, both lines are optically thick, then the ratio

tends to 1 as is known to be the case for 12CO J = 3 ! 2 [Buckle et al., 2010; Curtis

et al., 2010b].

Using the ratio 12CO J = 6 ! 5/12CO J = 3 ! 2, typical peak fluxes for
12CO J = 6 ! 5 can be estimated: an excitation temperature of 25 K and a source

with a typical 12CO J = 3 ! 2 integrated intensity of 100 K km s�1 will produce

a corresponding 12CO J = 6 ! 5 flux contribution of 8 mJy beam�1 for Grade 2

weather in the 450 µm SCUBA-2 map. With the SCUBA-2 450 µm sensitivity for

the Gould Belt Survey at an average RMS of ⇠70 mJy beam�1 for the observed

clouds in Grade 2 weather (Jane Buckle, private communication in July 2013), the
12CO J = 6 ! 5 flux contribution would not be detected. Even in the case of

optically thick emission where the ratio 12CO J = 6 ! 5/12CO J = 3 ! 2 is 1, the
12CO J = 6 ! 5 is estimated to be 57 mJy beam�1, which is under the noise level.

Using published observations, 12CO J = 6 ! 5 contamination can be stud-

ied in further detail. 12CO J = 6 ! 5 data were taken for IRAS 2A, 4A, and

4B in NGC 1333 by Yıldız et al. [2010]. These sources are particularly bright

and possibly intermediate-mass protostars. 12CO J = 6 ! 5 integrated inten-

sities at the positions of the protostars were 57 K km s�1, 122 K km s�1, and

43 K km s�1 respectively. Using the 12CO J = 6 ! 5 conversion factors cal-

culated in this study for Grade 2 weather, the corresponding CO contamination

to the SCUBA-2 450 µm dust continuum would be 32 mJy beam�1 (IRAS 2A),

70 mJy beam�1 (IRAS 4A), and 25 mJy beam�1 (IRAS 4B) for the CO contam-
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ination to the SCUBA-2 450 µm dust continuum. Peak fluxes from SCUBA were

2355 mJy beam�1, 7000 mJy beam�1, and 3025 mJy beam�1 respectively [Hatchell

et al., 2005]. The SCUBA-2 450 µm dust emission peaks are a factor of several

hundred times larger than the 12CO J = 6 ! 5 contribution. For these bright

protostars, the CO contamination is insignificant at 450 µm.

Dust continuum fluxes in the 450 µm SCUBA-2 band are estimated to be a

factor of 6 to 12 higher than fluxes in the 850 µm band. In the Rayleigh-Jeans

approximation, the dust optical depth increases as �

�� with � between 1 and 2

and the corresponding flux density increases as �

�3 to �

�4 [Wilson, 2009]. The

increase in continuum flux at 450 µm clearly outweighs the expected contribution

from 12CO J = 6 ! 5. At most the 12CO J = 6 ! 5 integrated main-beam emission

is the same as the 12CO J = 3 ! 2 emission assuming optically thick emission. This

situation corresponds to a molecular line ratio of 1 and a contamination flux ratio

of 0.84 (assuming Grade 2 weather). Since 450 µm continuum fluxes increase with

respect to the 850 µm continuum, 450 µm continuum measurements would more

likely be contaminated by strong molecular outflows instead of other means, i.e.

nearby stars or ambient cloud emission. Nonetheless, potential contamination could

occur in particularly low flux sources with nearby molecular outflows, such as the

sources in NGC 2071 that were near to confirmed outflow candidates (see Section

2.4.3).

In the case of large-scale 12CO J = 6 ! 5 emission, it is also necessary to include

the secondary beam in the calculation of the 450 µm telescope beam (Equation 2.9).

The total beam area for 450 µm increases by a factor of 2.0 (determined from an

e↵ective FWHM calculated in Section 2.2.2). Using Equation 2.12 with the the

e�ciency factor ⌘fss, the 12CO J = 6 ! 5 conversion factor would increase by a

factor of 1.7. The increase in the expected 450 µm dust continuum flux still exceeds

any change in the 12CO line conversion factors. Therefore, my conclusion that there

is little CO contamination in the 450 µm maps, as discussed above, still holds.

2.6 Improvements and other work

Some improvements have been made to beam size estimates [Dempsey et al., 2013]

and the CO contamination spatial filtering since the publication of Drabek et al.
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Weather Grade Cold C

0
prim C

0
sec

(13.800 FWHM) (1300 FWHM) (14.600 FWHM)
1 0.63 0.56 0.71
2 0.68 0.60 0.76
3 0.70 0.62 0.78
4 0.74 0.66 0.83
5 0.77 0.68 0.86

Table 2.3: Line contribution factors for the old primary FWHM 13.800 from Sec-
tion 2.2.1 and new FWHM values from Dempsey et al. [2013] for the 12CO J = 3 ! 2
line in the SCUBA-2 850 µm continuum band. C 0

prim is the line contribution factor
calculated using the new primary beam FWHM only. C

0
sec is the line contribution

factor calculated using the new e↵ective beam FWHM (i.e. the primary and the
secondary beam).

[2012]. Corrections to the spatial filtering are incorporated in Hatchell et al. [2013]

and Sadavoy et al. [2013]. Additionally, Sadavoy et al. [2013] includes updated beam

size estimates. In this section, I discuss the improvements to the CO contamination

factors and applications to these recent studies.

2.6.1 Beam measurements

Beam sizes from Section 2.2.1 were initially measured in January 2012 (Per Friberg,

private communication). These beam measurements were finalised in Dempsey et al.

[2013], who found a 13.000 (relative amplitude 0.98) primary beam for the 850 µm

maps with a secondary beam 4800 (relative amplitude 0.02), yielding an e↵ective

FWHM 14.600. The old primary beam used in the initial calculation of the line

conversion factor was a FWHM 13.800. The old e↵ective beam size from Section 2.2.2

had a FWHM 15.300. These new beam sizes alter the conversion factors according

to Equation 2.11. New conversion factors using the primary beam FWHM only and

the e↵ective beam FWHM are shown in Table 2.3. Using the new FWHM beam

sizes, conversion factors decrease by a factor of 1.06 using the primary beam only

and increase by a factor of 1.06 using the new e↵ective beam sizes (i.e. the combined

primary and secondary beams) from the listed conversion factors in Section 2.2.1.

Using the primary beam, the new conversion factors do not significantly change

the results from Section 2.5. For example, the four sources in NGC 2071 with the
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highest amounts of line contamination continue to have contamination values greater

than 20%: source 70 (40%), source 74 (65%), source 88 (30%), and source 91 (70%).

Additionally, source 48 in NGC 2024 has a contamination of 30%. The results

still indicate that high contamination regions correspond primarily to regions with

molecular outflows.

Similarly, the larger e↵ective beam FWHM does cause conversion factors to in-

crease but these also do not significantly change the results in Section 2.5. For

example, the two sources in NGC 2071 (84 and 90) with ‘moderate’ line contami-

nation (corresponding to ⇠18%) will have 20% contamination using the increased

e↵ective beam sizes. Since these sources are located in the blueshifted outflow lobe

of the central NGC 2071 outflow driven by LBS-MM18 (Motte et al. 2001; further

discussed in Section 2.4.3.2), the results still suggest the high contamination regions

correspond to regions with molecular outflows.

2.6.2 Related work

Subsequent publications have built upon and incorporated my work from Drabek

et al. [2012]. My direct contribution to Hatchell et al. [2013] involves supplying the
12CO J = 3 ! 2 ‘contamination’ maps to be subtracted from the 850 µm SCUBA-2

data. In Sadavoy et al. [2013], I supplied new line conversion factors to account for

the di↵erent beam FWHM used and the 12CO J = 3 ! 2 ‘contamination’ maps.

The filtering process used to match the HARP CO contamination maps to the

SCUBA-2 continuum maps (discussed in Section 2.4.1.4) is improved by the use of

the the data reduction package SMURF (Jenness et al. 2011, version from 2012 May

2) in Hatchell et al. [2013] for NGC 1333. The S2SRO data was re-reduced in 2012

June for NGC 1333. Using this method, the CO contamination map was converted

from mJy beam�1 to pW using a negative multiplying factor -1/FCF during the

reduction process of the 850 µmmap (where FCF has units mJy beam�1 pW�1). The

contamination was then input as a fake source which is subtracted from the 850 µm

times series fluxes. This eliminates the potential issue with spatial filtering and

matching the structure from the CO contamination map and continuum maps. The

result is a 850 µm continuum map without the inclusion of the CO contamination.

This process is also used by Sadavoy et al. [2013] in the reduction of the Science

71

SMURF


2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

Verification data (S2SV) observation of B1 from 2011 October.

As discussed in the above section, Hatchell et al. [2013] used the 450 and line

contamination subtracted 850 µm continuum maps to trace dust temperatures in the

NGC 1333 using the new CO subtraction technique. The same Grade 2 conversion

factors are used (Section 2.2.1; 0.66 mJy beam�1 per K km s�1) on the HARP

data as described in Section 2.4.1.1. The dust temperatures were calculated from

the ratio of 450 and 850 µm dust continuum flux (where line contamination was

first subtracted from the 850 µm emission). An increased 850 µm flux from line

contamination will result in smaller dust temperatures (or lower dust emissivity �).

In NGC 1333, molecular line contamination for analysed sources was found to be

primarily under 12% from Section 2.4.1.1 (this is lowered to 10% when the smaller

primary beams are used from Section 2.6.1). Estimating the systematic uncertainty

in the ratio maps from calibration to be ⇠15%, the molecular line contamination

is within the uncertainties for the calculation of dust temperature in the region.

However, it was necessary to remove line contamination primarily due to outflows

that could appear to be starless cores or filaments in the map (as evidenced in

Figure 2.4 for source SVS13 driving an outflow in NGC 1333 with corresponding

line contamination).

The new beam sizes, contamination factors and CO contamination subtraction

process are incorporated in Sadavoy et al. [2013] for the B1 region of Perseus. The

B1 data was taken as a part of the Science Verification (S2SV). Unlike S2SRO, the

S2SV data has all eight science grade arrays (four arrays for 450 and 850 µm). This

study focuses on constraining the dust emissivity � by fitting SEDs using Herschel

PACS+SPIRE (70, 160, 250, 350 and 500 µm) and SCUBA-2 (450 and 850 µm).

Herschel is widely free of molecular line contamination with the possible exception

of 12CO J = 7 ! 6 (806.652 GHz) contaminating the 350 µm dust continuum.

However, this line contamination is ruled out for similar reasons as 12CO J = 6 ! 5

in Section 2.5.1. To constrain � with the inclusion of 850 µm emission, it is therefore

important to correct for the 12CO J = 3 ! 2 line contamination in the continuum.

Sadavoy et al. [2013] applied the Grade 1 CO conversion factors to HARP maps

of B1 using an e↵ective beam size 14.200 (C = 0.67 mJy beam�1). This beam size

is similar to the e↵ective beam size in Table 2.3. Dempsey et al. [2013] gives two

possible e↵ective FWHM beams, 14.100 and 14.600. The lower FWHM is determined
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by fitting a linear relation between peak FCF and integrated FCF values at each

wavelength and the higher FWHM is determined using the two-component model.

The results from the Sadavoy et al. [2013] study on the B1 region indicate there

is significant 12CO molecular line contamination in the 850 µm SCUBA-2 data. The

contamination is primarily located along the northern bipolar outflow, contributing

up to 90% of the flux (see Figure 3 of Sadavoy et al. [2013] for comparison of the dust

continuum with and without molecular line flux subtraction). In the central region,

contamination reaches 15% and the remainder of B1 has 1%, similar to results

from NGC 1333, NGC 2071 and NGC 2024 in Section 2.5. It is therefore necessary

to subtract line contamination from the continuum data for accurate calculations of

�.

2.7 Conclusions

In this study, the 12CO line contamination factors for the 450 µm and 850 µm

SCUBA-2 continuum bands were calculated under di↵erent atmospheric conditions

(weather grades 1 to 5). These contamination factors were then applied to three

di↵erent regions, NGC 1333, NGC 2071, and NGC 2024, in order to study the HARP
12CO J = 3 ! 2 flux contribution to the SCUBA-2 850 µm measurements using a

list of sources for each region. Sources with high 12CO contamination (greater than

20%) were analysed in further detail to determine the cause of the contamination.

The following can be concluded from this study:

1. For the 850 µm SCUBA-2 filter profile, the 12CO J = 3 ! 2 contamination

factors increase as the sky opacity ⌧225 increases. The contamination factors

(mJy beam�1 per K km s�1) of 12CO to the 850 µm dust emission are, by

weather grade, (Grade 1) 0.63; (Grade 2) 0.68; (Grade 3) 0.70; (Grade 4) 0.74;

(Grade 5) 0.77.

2. For the 450 µm SCUBA-2 filter profile, the 12CO J = 6 ! 5 contamination

factors decrease as the sky opacity ⌧225 increases due to the atmosphere trans-

mission steeply declining at higher opacity grades. The contamination factors

(mJy beam�1 per K km s�1) of 12CO to the 450 µm dust emission are, by
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2. LINE CONTAMINATION IN THE SCUBA-2 DUST CONTINUUM

weather grade, (Grade 1) 0.64; (Grade 2) 0.57; (Grade 3) 0.51; (Grade 4) 0.41;

(Grade 5) 0.35.

3. The 12CO J = 3 ! 2 contribution to the 850 µm SCUBA-2 dust continuum is

typically under 20% for all of the regions studied. However, in regions of molec-

ular outflows, the 12CO can reach a flux contribution of ⇠ 68 mJy beam�1 for

the sources studied, dominating the dust continuum in sources with both high

and low continuum flux densities (up to 500 mJy beam�1) with a contribu-

tion up to 79% contamination. Peak 12CO fluxes in molecular outflows in the

regions reached even higher levels, up to 154 mJy beam�1. There is strong

evidence that 12CO J = 3 ! 2 contamination, while mostly minimal, is a ma-

jor potential source of confusion that can be observed directly in the 850 µm

dust continuum maps resembling protostellar cores or filamentary structure

(as may be the case in NGC 1333, NGC 2071, and NGC 2024).

4. Even though there are no 12CO J = 6 ! 5 molecular line maps to study

in further detail, in hot (50 K) regions, e.g. molecular outflows, the ratio of

main-beam temperature TMB for 12CO J = 6 ! 5/12CO J = 3 ! 2 is ⇠0.769.

However, CO contamination to the 450 µm source fluxes is not expected to be

as much of an issue because of the expectation for the 450 µm dust emission

to be a factor of 6 to 12 times brighter than the 850 µm fluxes.

5. From Dempsey et al. [2013], the beam FWHM has been finalised at 1300 primary

beam and 14.600 e↵ective beam at 850 µm. Using the primary beam FWHM

there is a decrease in conversion factors by 1.06 and using the e↵ective beam

FWHM there is an increase in conversion factors by 1.06. For the 850 µm

SCUBA-2 filter profile using the new primary beam only, the line conversion

factors become: (Grade 1) 0.56; (Grade 2) 0.60; (Grade 3) 0.62; (Grade 4) 0.66;

(Grade 5) 0.68. Using the e↵ective beam size, the line conversion factors

become: (Grade 1) 0.71; (Grade 2) 0.76; (Grade 3) 0.78; (Grade 4) 0.83;

(Grade 5) 0.86. These changes to the conversion factors do not significantly

e↵ect the results of this study and the most significant regions with molecular

line contamination appear to correspond to molecular outflows.

6. The CO conversion factors from this study have been applied to recent work
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using SCUBA-2 by Hatchell et al. [2013] for re-reduced 850 µm maps of

NGC 1333 and Sadavoy et al. [2013] for 850µm maps of B1 in Perseus. Re-

sults from Sadavoy et al. [2013] show similar line contamination as NGC 1333,

NGC 2071 and NGC 2024 reaching 90% in regions directly corresponding to

a molecular outflow in B1. The remainder of the region has contamination

under 15%, similar to regions NGC 2071 and NGC 2024.

2.8 Appendix: Source list and molecular outflow

analysis

Region Source RA Dec Other Source ID

(J2000) (J2000)

NGC 1333 1 03:29:10.4 31:13:30 HRF41

2 03:29:12.0 31:13:10 HRF42

3 03:29:03.2 31:15:59 HRF43

6 03:28:55.3 31:14:36 HRF44

13 03:29:01.4 31:20:29 HRF45

14 03:29:11.0 31:18:27 HRF46

17 03:28:59.7 31:21:34 HRF47

18 03:29:13.6 31:13:55 HRF48

20 03:28:36.7 31:13:30 HRF49

21 03:29:06.5 31:15:39 HRF50

22 03:29:08.8 31:15:18 HRF51

24 03:29:03.7 31:14:53 HRF52

26 03:29:04.5 31:20:59 HRF53

29 03:29:10.7 31:21:45 HRF54

30 03:28:40.4 31:17:51 HRF55

32 03:29:07.7 31:21:57 HRF56

33 03:29:18.2 31:25:11 HRF57

35 03:29:16.5 31:12:35 HRF59

38 03:28:39.4 31:18:27 HRF60

39 03:29:17.3 31:27:50 HRF61
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Table 2.4: continued from previous page.

Region Source RA Dec Other Source ID

(J2000) (J2000)

42 03:29:07.1 31:17:24 HRF62

43 03:29:18.8 31:23:17 HRF63

46 03:29:25.5 31:28:18 HRF64

47 03:29:00.4 31:12:02 HRF65

53 03:29:05.3 31:22:11 HRF66

55 03:29:19.7 31:23:56 HRF67

62 03:28:56.2 31:19:13 HRF68

63 03:28:34.4 31:06:59 HRF69

66 03:29:15.3 31:20:31 HRF70

73 03:28:38.7 31:05:57 HRF71

77 03:29:19.1 31:11:38 HRF72

81 03:28:32.5 31:11:08 HRF74

83 03:28:42.6 31:06:10 HRF75

89 03:29:04.9 31:18:41 Bolo44

94 03:28:32.7 31:04:56 Bolo26

NGC 2071 51 05:47:23.7 00:11:02 BN-547237+01102

52 05:47:06.8 00:12:30 BN-547068+01230

53 05:47:10.6 00:13:18 BN-547106+01318

54 05:47:05.1 00:13:21 BN-547051+01321

55 05:47:05.0 00:14:49 BN-547050+01449

56 05:47:23.9 00:15:07 BN-547239+01507

57 05:47:12.4 00:15:37 BN-547124+01537

58 05:47:10.4 00:15:53 BN-547104+01553

59 05:47:19.9 00:16:03 BN-547199+01603

60 05:47:04.8 00:17:07 BN-547048+01707

61 05:47:01.5 00:17:55 BN-547015+01755

62 05:47:08.7 00:18:17 BN-547087+01817

63 05:47:15.2 00:18:30 BN-547152+01830

64 05:47:25.3 00:18:48 BN-547253+01848
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Table 2.4: continued from previous page.

Region Source RA Dec Other Source ID

(J2000) (J2000)

65 05:47:33.6 00:19:02 BN-547336+01902

66 05:46:28.3 00:19:28 BN-546283+01928

67 05:47:03.4 00:19:50 BN-547034+01950

68 05:47:26.7 00:19:53 BN-547267+01953

69 05:47:37.7 00:20:01 BN-547377+02001

70 05:46:57.6 00:20:09 BN-546576+02009

71 05:46:29.4 00:20:10 BN-546294+02010

72 05:47:34.9 00:20:20 BN-547349+02020

73 05:47:32.5 00:20:26 BN-547325+02026

74 05:47:01.0 00:20:42 BN-547010+02042

75 05:47:25.2 00:20:59 BN-547252+02059

76 05:47:10.3 00:21:12 BN-547103+02112

77 05:46:28.7 00:21:14 BN-546287+02114

78 05:47:16.0 00:21:23 BN-547160+02123

79 05:47:04.1 00:21:58 BN-547041+02158

80 05:46:25.3 00:22:20 BN-546253+02220

81 05:46:52.8 00:22:23 BN-546528+02223

82 05:47:11.9 00:22:23 BN-547119+02223

83 05:47:19.7 00:22:31 BN-547197+02231

84 05:47:06.9 00:22:39 BN-547069+02239

85 05:47:17.5 00:22:40 BN-547175+02240

86 05:46:59.1 00:22:59 BN-546591+02259

87 05:47:12.4 00:23:11 BN-547124+02311

88 05:47:06.7 00:23:14 BN-547067+02314

89 05:46:54.7 00:23:24 BN-546547+02324

90 05:47:10.4 00:23:27 BN-547104+02327

91 05:47:08.9 00:23:56 BN-547089+02356

92 05:46:57.2 00:23:56 BN-546572+02356

93 05:46:34.7 00:23:59 BN-546347+02359
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Table 2.4: continued from previous page.

Region Source RA Dec Other Source ID

(J2000) (J2000)

94 05:46:58.0 00:24:26 BN-546580+02426

95 05:47:01.7 00:24:52 BN-547017+02452

96 05:46:25.7 00:24:56 BN-546257+02456

97 05:47:08.0 00:25:05 BN-547080+02505

98 05:46:45.9 00:25:07 BN-546459+02507

99 05:47:01.4 00:26:14 BN-547014+02614

100 05:46:38.0 00:26:53 BN-546380+02653

NGC 2024 33 05 42 03.0 -02 04 23 BS-542030-20423

34 05 42 10.3 -02 04 20 BS-542103-20420

35 05 42 03.5 -02 02 24 BS-542035-20224

36 05 41 57.1 -02 01 00 BS-541571-20100

37 05 41 52.9 -02 00 21 BS-541529-20021

38 05 41 49.3 -01 59 38 BS-541493-15938

40 05 42 00.0 -01 58 01 BS-542000-15801

41 05 41 49.1 -01 58 03 BS-541491-15803

42 05 41 45.2 -01 56 31 BS-541452-15631

43 05 41 35.4 -01 56 29 BS-541354-15629

45 05 41 44.5 -01 55 39 BS-541445-15539

46 05 41 44.2 -01 54 43 BS-541442-15443

47 05 41 32.1 -01 54 26 BS-541321-15426

48 05 41 19.9 -01 54 16 BS-541199-15416

49 05 41 42.0 -01 53 59 BS-541420-15359

51 05 41 44.2 -01 52 41 BS-541442-15241

52 05 41 16.6 -01 51 19 BS-541166-15119

53 05 41 36.7 -01 51 06 BS-541367-15106

54 05 41 23.4 -01 50 27 BS-541234-15027

55 05 41 32.9 -01 49 53 BS-541329-14953

56 05 41 36.4 -01 49 24 BS-541364-14924

57 05 41 27.6 -01 48 13 BS-541276-14813
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Table 2.4: continued from previous page.

Region Source RA Dec Other Source ID

(J2000) (J2000)

58 05 41 11.3 -01 48 12 BS-541113-14812

59 05 41 13.3 -01 47 35 BS-541133-14735

Table 2.4: List of sources used for the study of 12CO

contamination to the SCUBA-2 850 µm dust continuum.

Source numbers correspond to the arbitrary number as-

signed to sources for this study. Source numbers corre-

sponding to original studies (NGC 1333 sources obtained

from Hatchell et al. 2007b and NGC 2071 and NGC 2024

sources obtained from Nutter and Ward-Thompson 2007)

are listed under ‘Other Source ID’.
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Figure 2.14: 12CO J = 3 ! 2 spectra for sources further analysed in Section 2.4.3
regarding the molecular outflow analysis. The core velocities are listed in Sec-
tion 2.4.3.1 for NGC 1333 and in Table 2.2 for NGC 2071 and NGC 2024. Param-
eters ±3 km s�1 for NGC 1333 and ±4 km s�1 for NGC 2071 and NGC 2024 at
1.5 K were used to classify the presence of outflows.
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Chapter 3

Ophiuchus: molecular outflow

detection

“...tenues volat illa per auras,

dumque volat, gemmae nitidos vertuntur in ignes

consistuntque loco, specie remanente coronae,

qui medius Nixique genu est Anguemque tenentis.”

“...her crown flies through the unresisting breezes,

and while it flies the jewels are turned into shining fires,

yet the crown remains the same and they stop in a spot,

between Hercules on his knees and the Snake Handler, Ophiuchus.”

— Ovid, Metamorphoses

As discussed in Section 1.1.5, the process of mass-loss through means of a molec-

ular outflow appears to be an integral part of star formation. Molecular outflows are

expected to have various roles and consequences in the star formation process, where

the individual outflow lobes provide a record of the protostellar mass-loss history

and potentially drive turbulence in the molecular cloud. Additionally, outflows may

provide an explanation for problems with angular momentum. The outflow would

need to carry away excess angular momentum in order for mass from the surround-

ing envelope to accrete onto the central protostar, indicating the possibility of a

rotating jet (e.g. Bacciotti et al. 2002).

This chapter presents 12CO, 13CO and C18O J = 3 ! 2 observations of the
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

Ophiuchus molecular cloud, which is a part of the Gould Belt Legacy Survey (GBS).

Using the Spitzer ’s c2d survey (Evans et al. 2009), I have identified 30 Class 0/I/II

and flat spectrum sources that are analysed for molecular outflows. Outflow lobes are

identified using the 12CO J = 3 ! 2 data and suggestions for outflow orientations

are further discussed using the 2.122 µm H2 v = 1 ! 0 S(1) ro-vibrational line.

Understanding the locations and velocities associated with the outflow emission is

fundamental for Chapter 4, where I investigate their contributions to turbulence in

the Ophiuchus molecular cloud.

3.1 Ophiuchus molecular cloud

The ⇢ Ophiuchus molecular cloud complex is one of the closest star forming regions

in the Gould Belt with a distance estimated to be 120–160 pc [Knude and Hog, 1998;

Loinard et al., 2008; Lombardi et al., 2008; Mamajek, 2008; Rebull et al., 2004; Snow

et al., 2008; Torres, 2010]. Recent observations by Lombardi et al. [2008] suggest

the cloud is at the closer distance of 120.0+4.5
�4.2 pc and this distance was confirmed

by Torres [2010]. From these studies, I adopt the distance of 120 pc to Ophiuchus

for this thesis. The cloud has been a heavily studied region in millimetre, infrared,

and optical wavelengths and provides an excellent example of intermediate mass

star formation which links the study of low mass and isolated star forming regions

(e.g. Taurus-Auriga) and high mass and clustered star formation (e.g. the Orion

molecular cloud complex).

The Ophiuchus cloud complex is broken up into several dense clouds: L1729,

L1712, L1689 (North and South), L1709, L1704, and L1688 [Lynds, 1962]. The

focus of this study will be the main cloud in the complex, L1688. This cloud is split

into six dense clumps: Oph A, Oph B, Oph C, Oph D, Oph E, and Oph F (shown in

Figure 3.1 using 1.3 mm observations from Motte et al. 2001). Both prestellar cores

and young stellar objects (YSOs) are found in the cores of L1688. The YSOs found

in the region are at various evolutionary stages where the majority are more evolved

T Tauri stars (Class II) and some Class 0/I protostars. This includes the well-known

Class 0 source VLA 1623 [Andre et al., 1990]. On the western border of the L1688

cloud, near Oph A, lies an edge-on photodissociation region (photon dominated

region - PDR) driven by the B2V star HD 147889. Large-scale dust heating is also
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Figure 3.1: Observations of the 1.3 mm dust continuum for the L1688 Ophiuchus
cloud (figure reproduced from Motte et al. 2001). Dense clumps Oph A, B, C, D, E,
and F are shown. Contours range from 5 to 40 MJy str�1 in increments of 5 MJy
str�1, from 50 to 80 MJy str�1 in increments of 10 MJy str�1, at 100 MJy str�1 and
from 120 to 280 MJy str�1 in increments of 40 MJy str�1.
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

dominated in this region of the cloud by B stars SR 3 and Oph Source 1 [Abergel

et al., 1996; Casassus et al., 2008; Kulesa et al., 2005; Liseau et al., 1999].

Past studies indicate several prominent outflows, including Class 0 source VLA

1623, IRS 45/47, IRS 54, EL 29, WL 10, IRS 43, and IRS 44 [Andre et al., 1990;

Bontemps et al., 1996; Jørgensen et al., 2009; Kamazaki et al., 2003; Nakamura

et al., 2011; Sekimoto et al., 1997]. Additionally, recent work from van der Marel

et al. [2013] provides a survey of 16 Class I sources in the region and indicates 13 of

these sources drive outflows with 5 of these new outflow drivers.

3.2 Data reduction

The observations presented in this chapter primarily consist of the HARP 12CO,
13CO and C18O J = 3 ! 2 maps from the Gould Belt Legacy Survey (GBS) and

ancillary data of the H2 2.122 µm v = 1 ! 0 S(1) ro-vibrational line from the near-

IR wide-field camera (WFCAM) on UK Infrared Telescope (UKIRT). In this section,

I describe the data reduction process carried out for the HARP CO observations and

the continuum-subtracted H2 map.

3.2.1 CO J = 3 ! 2

Data reduction of the CO J = 3 ! 2 maps was completed by Malcolm Currie at the

Joint Astronomy Centre and further cosmetic destriping algorithms were developed

and implemented by Jon Gregson at Open University. In this section, I briefly

describe techniques used to reduce the HARP maps of Ophiuchus. A more detailed

description of reducing HARP data can be found in Section 5.1, where I describe

my own reduction of HCO+ molecular line data of the Ophiuchus region.

The 12CO J = 3 !2 emission maps (rest frequency of 345.796 GHz) were ob-

served in February and March 2008 for 3.2 hours using a raster scan mode. Basket-

weaving was used to even out noise variations due to missing receptors or poor

performance from the receptors. This involved two independent maps scanned per-

pendicular to one another. The resulting velocity resolution of the observations

was 0.050 km s�1 and e↵ective FWHM beam size of 16.600 after using a 900Gaussian

gridding kernel on 600 pixels. 13CO and C18O maps were observed simultaneously
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for 16.6 hours in March, July and August 2008 using the raster scan mode and

basket-weaving. The resulting velocity resolution was 0.055 km s�1 and an e↵ective

FWHM beam size of 17.200 after using a 900 Gaussian gridding kernel on 600 pixels for

both maps. Main-beam e�ciencies of ⌘MB = 0.61 were used (345 GHz; Buckle et al.

2009).

The resulting maps showed noticeable striping e↵ects, indicating that some de-

tectors were systematically higher or lower relative to others. Similar issues were

found in past HARP maps (e.g. Curtis et al. 2010a) and the cause of these sys-

tematic di↵erences is unknown. To remove the cosmetic striping e↵ects, the map

was first binned to 0.1 km s�1 velocity channels. A 3� clipped image mask in each

velocity channel was used to search for striping by using a Hough transform to

automatically search for straight ridges in the data. Striping was typically found

to follow the array scan direction. A Fourier destriping technique was then imple-

mented on the raw data cubes using the least squares di↵erence between the original

data and the array of stripes. The resulting map visibly had fewer stripes in the

data without quantitatively altering the map (the correction in striping was ⇠2%

of the peak brightness level).

3.2.2 H2 v = 1 ! 0 S(1)

The narrow-band H2 maps consisted of the 2.122 µm v = 1 ! 0 S(1) ro-vibrational

line that traces weaker and lower velocity shocks ranging from ⇠100-1000 K tem-

peratures. Maps were taken in June 2010 with e↵ective pixel sizes ⇠0.400. Data

reduction and K-band continuum emission subtraction were carried out by Glenn

White at Open University. Reduced maps can be seen in Section 3.6. Some stars

appear negative (white) in the images which is due to the imperfect continuum

subtraction. However, H2 emission clumps from the Ophiuchus Molecular Hydro-

gen Emission Line Objects (MHOs) detailed by Davis et al. [2010b] are visible and

Herbig-Haro (HH) objects can also be seen [Davis and Eisloe↵el, 1995; Dent et al.,

1995; Gómez et al., 2003; Grosso et al., 2001; Wilking et al., 1997].
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

3.3 HARP CO J = 3 ! 2 observations

Figure 3.2 shows the integrated 12CO J = 3 !2 emission from the JCMT Gould Belt

Legacy Survey (GBS). The region covered by the map is centred at 16h27m32.0s -

24o33000.000 in L1688. HD 147889, Oph S1, and SR3 which drive the PDR can

be seen in the Oph A region (respectively at [J2000] 16h25m24.32s, -24o27056.600;

16h26m34.17s, -24o23028.300; and 16h26m09.31s, -24o34012.100). The noise (RMS) of

the map is found in Figure 3.3 on 1 km s�1 velocity channels. Even though the edges

of the map have higher noise levels, the majority of protostellar sources and emission

fall within a region of average noise value of 0.33 K. The 12CO J = 3 !2 molecule

traces densities of 104–105 cm�3. These densities are found to correspond to star

forming regions, including high velocity emission driven by molecular outflows from

Class 0/I protostars. With an upper state energy equivalent to a temperature of

33 K, the J = 3 !2 transition also traces temperatures found in molecular outflows

(⇠50 K).

Figure 3.2 shows the integrated 13CO and C18O J = 3 !2 emission at 330.588

and 329.331 GHz respectively taken by the JCMT GBS. The regions covered by the

maps are centred at the same position in the L1688 cloud as the 12CO map. Noise

maps of the main-beam temperature are shown in Figure 3.3 where average noise

levels are 0.45 K on 0.1 km s�1 for both 13CO and C18O. Both 13CO and C18O are

less abundant than the 12CO molecule and therefore trace higher column density

regions in the molecular cloud and are useful for determining bulk properties of the

cloud (e.g. mass, gravitational energy, and turbulent kinetic energy). Section 4.1

discusses the Ophiuchus cloud properties in more detail, including the abundance

ratios in the cloud, [12CO]/[13CO]= 77 [Wilson and Rood, 1994] and 13CO/C18O= 8

(8.4; Frerking et al. 1982).

3.4 CO J = 3 ! 2 spectral information

The averaged spectra for the cloud can be seen in Figure 3.4 for 12CO, 13CO, and

C18O J = 3 ! 2. Both 12CO and 13CO appear o↵ centre in velocity compared to

the C18O spectrum. This asymmetry may be due to the noticeable self absorption

in the 12CO and 13CO spectra. In addition, less dense blue and redshifted high
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Figure 3.2: Integrated main-beam intensity maps of 12CO (top), 13CO (centre) , and
C18O (bottom) in K km s�1. Contours trace 20, 30, 50, 70, 100, and 130 K km s�2

for 12CO; 10, 20, 30, 50, 70 K km s�1 for 13CO; 5, 10, 15, and 20 K km s�1 for C18O.
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

Figure 3.3: Noise maps of 12CO (top) , 13CO (bottom left) , and C18O (bottom
right). Values are in Kelvin where 12CO is measured using 1.0 km s�1 channels and
13CO and C18O is measured using 0.1 km s�1 channels.
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Figure 3.4: 12CO (solid), 13CO (dashed), and C18O (dotted) spectra from the aver-
aged spectra.

Spectrum RA range Dec range
Oph A 16h26m00.1s to 16h26m52.8s -24o30045.000 to -24o17

0
46.3

00

Oph B 16h26m42.7s to 16h27m16.3s -24o30
0
37.86

00
to -24o36

0
09.1

00

Oph C 16h26m42.7s to 16h27m16.3s -24o30
0
37.86

00
to -24o36

0
09.1

00

Oph E 16h26m41.5s to 16h27m22.2s -24o36
0
11.2

00
to -24o41

0
40.5

00

Oph F 16h27m25.5s to 16h27m45.6s -24o37
0
33.3

00
to -24o44

0
32.3

00

Table 3.1: Coordinates for regions used to average spectra in Figure 3.5.

velocity gas (i.e. due to outflows or winds from nearby B stars) can dominate the
12CO emission and cause asymmetry.

Figure 3.5 shows the spatially averaged spectra of all three isotopologues for each

of the cores as defined by Motte et al. [1998], coordinates listed in Table 3.1. Due to

the prominent PDR and heating from nearby B stars, a mask was created from the

ISOCAM 12 µm dust continuum data with at least a 45 MJy str�1 detection to define

the region directly corresponding to hot dust (see Figure 4.2 for ISOCAM 12 µm

data). The Oph A spectra are shown for the entire region, the region corresponding

to hot dust emission from the B stars, and for Oph A region with the hot dust

regions fully masked (labelled as ‘Oph A, Hot Dust’ and ‘Oph A, without Hot
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

Oph A Region Oph A, Hot Dust

Oph A, without Hot Dust Oph B Region

Oph C Region Oph E Region

Oph F Region

Figure 3.5: 12CO (solid), 13CO (dashed), and C18 (dotted) spectra from the individ-
ual Ophiuchus cores as defined by Motte et al. [1998].
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Dust’). Comparison of these spectra indicate a strong redshifted emission that is

caused by turbulence from the dust heating or emission from material at the front

side of the cloud and a C18O peak that is o↵set from the other isotopologues.

The majority of the line shapes for both 12CO and 13CO are double-peaked or

asymmetric Gaussians with dips in emission ⇠2–3 km s�1 between peaks. Without

corresponding C18O double-peaked emission, it is more likely these features are due

to self absorption and not multiple velocity components. Using C18O emission, I

calculate the central velocity of the averaged spectrum to be 3.3 km s�1 using a

Gaussian fit. Over the cloud, averaged ambient velocities range from 3.1 km s�1

(Oph A) to 4.0 km s�1 (Oph E).

Both Figures 3.4 and 3.5 show evidence of linewing emission indicating the pres-

ence of bipolar outflows in the region. Linewing emission appears to reach velocities

around 7 km s�1 from ambient velocities. Past studies indicate several prominent

outflows, including Class 0 source VLA 1623, IRS 45/47, IRS 54, EL 29, WL 10,

IRS 43, and IRS 44 [Andre et al., 1990; Bontemps et al., 1996; Jørgensen et al., 2009;

Kamazaki et al., 2003; Nakamura et al., 2011; Sekimoto et al., 1997]. This data im-

proves on past studies of the properties of the cloud, including molecular outflows in

the region, by having a higher angular resolution (14.5 arcsec) or a larger mapping

area in all three isotopologues. Many observations focused on lower transitions of

CO J = 2 ! 1 and J = 1 ! 0 in the L1688 cloud. For example, Andre et al. [1990]

observed both 12CO transitions with a 12 and 21 arcsec size beam respectively and

Bontemps et al. [1996] observed the J = 2 ! 1 transition of outflows in the cloud

using a 30 arcsec beam. Additionally, there are other studies observing more specific

regions of the cloud including Bussmann et al. [2007] of the Oph E with a 22 arcsec

beam in the J = 2 ! 1 transition and Sekimoto et al. [1997] used the same tracer

with a 34 arcsec beam to observe the Oph E/F region. More recent studies have ex-

amined to 12CO J = 3 ! 2 transition. Kamazaki et al. [2003] observed Oph A and

B2 using a 14 arcsec beam and Nakamura et al. [2011] observed most of the cloud

using a 22 arcsec beam but excluded important sources in Oph B2 (e.g. IRS 54)

and Oph F (IRS 44 and 43). The most recent study using 12CO J = 3 ! 2 is van

der Marel et al. [2013] observing 16 Class I sources in the cloud using a 14 arcsec

beam from the HARP instrument. However, these observations only consist of small

20 ⇥ 20 maps of each source.
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

3.5 Individual molecular outflow analysis of Ophi-

uchus

The molecular outflows in Ophiuchus can be further examined using the 12CO J =

3 ! 2 data. This section provides a detailed analysis of molecular outflows driven

by Class 0 and I protostars in this region.

3.5.1 Source classification and outflow detection

A total of 30 protostars were initially selected using Spitzer data from the survey

“From Molecular Clouds to Planet-Forming Disks” (c2d; Evans et al. 2009) as po-

tential drivers for molecular outflows. Using the data from the c2d survey, Padgett

et al. [2008] assigned a spectra index ↵2�24µm to classify the sources following Greene

et al. [1994]. I further analysed the sources with a spectral index ↵2�24µm > �0.3,

which correspond to Class 0 and I sources as well as flat spectrum objects, listed

in Table 3.2. Sources were also required to have a bolometric temperature (My-

ers & Ladd 1993) Tbol < 750 K to further distinguish between more evolved flat

spectrum sources bordering the Class II stage, where Class II protostars typically

have a bolometric temperature ranging from 650–2880 K [Andre et al., 2000; Chen

et al., 1995]. The bolometric temperature cut-o↵ was extended to 750 K in order

to include flat spectrum sources IRS 45 and 47 which were previously studied for

driving an outflow in the Oph B region [Kamazaki et al., 2003]. Class II source

WL 10 was also added due to past studies [Sekimoto et al., 1997] suggesting the

source drives an outflow visible in 12CO.

The 12CO J = 3 ! 2 map was used to search for molecular outflows in Ophi-

uchus. The method used to identify molecular outflow follows the objective criterion

introduced by Hatchell et al. [2007a]: are linewings detected in the 12CO spectra

above 1.5 K at ±3 km s�1 from the core/ambient cloud velocity, vLSR? Core veloc-

ities were determined by fitting a Gaussian to the C18O J = 3 ! 2 spectra at the

source coordinates. Source spectra were plucked from both the 12CO and C18O maps

using the KAPPA PLUCK command. Spectra are obtained from the two nearest pixel

values along each axis and interpolated for the final source spectrum. The 1.5 K

temperature criterion corresponds to TMB RMS values of ⇠ 5� (depending on the
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source location in the map). Temperature and velocity limits are used to identify

significant high velocity emission from each source that is characteristic of molecular

outflows. Figure 3.7 shows the individual 12CO spectra rebinned to 1 km s�1 with

the core velocities and outflow criterion.

Results of the outflow analysis are summarised in Table 3.2. I include the de-

tection of either a blue or redshifted linewing for each source and the conclusion of

the outflow analysis. The linewing criterion identifies not only protostars driving

molecular outflows, but also sources which are confused by nearby outflows or mul-

tiple velocity components along the line of sight. Outflow candidates are identified

with a blue and/or redshifted linewing and further examined to determine if the

high-velocity emission detected is an outflow and if the source or another protostar

is the outflow driving source. Sources with potential confusion are labeled ‘y?c’ and

the source number that could potentially cause confusion.

3.5.2 H2 knot analysis

Ancillary to investigating the 12CO molecular outflow lobes, molecular hydrogen

H2 maps can be used to better trace the underlying jet potentially driving the

molecular outflow. In the following sections, I also compare significant high-velocity

CO emission to past studies of Herbig-Haro (HH) objects and H2 knots in H2 maps

taken with WFCAM on UKIRT.

HH objects are shocks seen as optical nebulae in bipolar outflows and H2 knots

are shock-excited knots in the infrared. Both HH objects and H2 knots can look like

jets or bow shocks, curving in the direction the outflow is travelling which can make

them useful outflow tracers. In Sections 3.6.1–3.6.3, I discuss the H2 data region-

by-region and highlight past research that has discussed the potential YSOs that

drive lists of H2 knots and HH objects in the Ophiuchus region. There are numerous

studies identifying these objects in molecular hydrogen data, for example: Gómez

et al. [2003], Grosso et al. [2001], Kamazaki et al. [2003], Caratti o Garatti et al.

[2006], Eislö↵el et al. [2000], Khanzadyan et al. [2004], and Ybarra et al. [2006].
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Source 1 Source 2 Source 3

Source 4

Source 7

Source 10

Source 13

Source 16

Source 19

Source 22

Source 25

Source 28

Source 5

Source 8 

Source 11

Source 14

Source 17

Source 20

Source 23

Source 26

Source 29

Source 6

Source 9

Source 12

Source 15

Source 18

Source 21

Source 24

Source 27

Source 30

SSTc2d

J162614.6-242508
CRBR 2315 GSS 30

LFAM 1 GY 30 VLA 1623 W

SSTc2d

J162626.0-242340

VLA 1623 AB GY 91

WL 12 WL 2 SSTc2d

J162659.1-243503

WL 16 LFAM 26 WL 17

WL 10 Elias 29 SSTc2d

J162716.4-243114

IRS 37 IRS 42 WL 6

SSTc2d

J162721.8-242728

IRS 44

SSTc2d

J162730.9-242733

CRBR 2422

IRS 45

GY 301

IRS 43

IRS 47

IRS 54

Figure 3.6: C18O spectra at protostellar positions.
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Source 1 SSTc2d
J162614.6-242508

Source 4

Source 7

Source 10

Source 13

Source 16

Source 19

Source 22

Source 25

Source 28

Source 2

Source 5

Source 8

Source 11

Source 14

Source 17

Source 20

Source 23

Source 26

Source 29

Source 3

Source 6

Source 9

Source 12

Source 15

Source 18

Source 21

Source 24

Source 27

Source 30

CRBR 2315 GSS 30

LFAM 1 GY 30 VLA 1623W

SSTc2d 
J162626.0-242340

VLA 1623AB GY 91

WL 12 WL 2 SSTc2d 
J162659.1-243503

WL 16 LFAM 26 WL 17

WL 10 Elias 29 SSTc2d 
J162716.4-243114

IRS 37 IRS 42 WL 6

SSTc2d
J162721.8-242728

CRBR 2422 IRS 43

IRS 44 IRS 45 IRS 47

SSTc2d 
J162730.9-242733

GY 301 IRS 54

Figure 3.7: 12CO spectra at protostellar positions.
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3.6 Discussion

Using the criterion above, I detected outflows towards 28 out of 30 sources (8 firm, 20

marginal), which is 93 % of sources. All protostars with firm outflow detections have

been previously reported in other studies (VLA 1623 AB, WL 10, Elias 29, WL 6,

IRS 43, IRS 44 and IRS 54) and the driver of the main Oph B outflow (IRS 47)

is discussed in Section 3.6.2. Several new sources identified in the c2d survey have

been analysed for molecular outflows, labelled ‘SSTc2d’ in Table 3.2. The majority

of these sources have some evidence for red and/or blueshifted outflow lobes, but are

confused by other nearby protostars. Non-detections are found from 2 flat spectrum

sources in the Oph B and F regions. Flat spectrum objects are less embedded than

Class 0/I sources and are less likely to have outflow detections. I discuss sources

further analysed for outflows region-by-region in Sections 3.6.1–3.6.3. All plots with

red and blue contours correspond to red and blueshifted 12CO integrated intensities

at 3, 5, 10, 15, 30 and 45 K km s�1 unless otherwise noted.

3.6.1 Oph A

Oph A contains two Class 0, five Class I and three flat spectrum protostars. The
12CO outflow criteria have confirmed one outflow (expected to be driven by VLA 1623

AB) and potential outflows from SSTc2d J162614.6-242508, CRBR 2315, GSS 30,

LFAM 1, GY 30, VLA 1623 W, SSTc2dJ1626.0-242340 and GY 91 with at least one

high velocity outflow lobe. Figure 3.8 shows the H2 2.122 µm v = 1 ! 0 S(1) ro-

vibrational line map of the Oph A region with blue contours tracing the blueshifted
12CO intensity

R
TMB dv (integrated from �8.6 to 0.4 km s�1) and red contours trac-

ing the redshifted 12CO intensity (integrated from 6.4 to 15.4 km s�1). Protostellar

sources are denoted by ‘⇥’. H2 knots, used to provide further evidence for source

outflows, are labelled by 4. ‘[GSWC2003]XX’ denotes knots from Gómez et al.

[2003], ‘fXX-XX’ denotes knots from Khanzadyan et al. [2004], ‘[G01]XX’ denotes

knots from Grosso et al. [2001], and ‘[Y06]XX’ denotes knots from Ybarra et al.

[2006]. Figure 3.9 shows a channel map of the Oph A region, which provides further

evidence of high-velocity blue and redshifted outflow lobes. This map is rebinned to

1 km s�1 channels and shows channels with high-velocity blue and redshifted emis-

sion based on the linewing criterion used for the 12CO molecular outflow analysis.
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

GY 30
LFAM 1 GSS 30

CRBR 2315

VLA 
1623W

VLA 1623 AB

GY 91

WL 2

SSTc2d 
J162614.6           
-242508

SSTc2d 
J162626.0-242340

[GSWC2003]
24a

HH 79 a,b [GSWC2003]
24 b,c,d

[GSWC2003]
22/23

[GSWC2003]
10

[GSWC2003] 9

[GSWC2003] 8a

HH 313 a,b

f10-03 a,b

f10-04 a-m

f10-01 a-g

Figure 3.8: 12CO 3-2 outflows in Oph A.
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VLA 1623 AB, W

(1)

CRBR 
2315

GSS 30GY 30

(7)

GY 91

-6.5 km/s -5.5 km/s -4.5 km/s -3.5 km/s

-2.5 km/s -1.5 km/s -0.5 km/s 6.5 km/s

7.5 km/s 8.5 km/s 9.5 km/s 10.5 km/s

Figure 3.9: Channel map of Oph A. Channels are rebinned to 1 K km s�1 channels.
Class 0 sources VLA 1623 AB and SSTc2d J162614.6-242508 are denoted as ‘�’ and
other sources are denoted as ‘⇥’.

Individual sources are further discussed in Sections 3.6.1.1–3.6.1.6.

3.6.1.1 VLA 1623

The highly collimated outflow from VLA 1623 can be clearly seen in Figure 3.8. The

prominent blueshifted lobe of the outflow extends roughly 0.7 pc across Oph A, as

found by Dent et al 1995. VLA 1623 is composed of three sources [Murillo and Lai,

2013; Ward-Thompson et al., 2011]: VLA 1623 A (Class 0), VLA 1623 B (suggested

to be either between prestellar and Class 0 stages or a shocked knot in the jet) and

VLA 1623 W (Class I). I refer to VLA 1623 A and B as one source because they are

unresolved in the c2d survey [Evans et al., 2009]. The CO flow encompasses several

H2 knots labelled f10-04 (c-m) in the blueshifted emission and f10-04 (a,b) in the

redshifted emission that are attributed to VLA 1623 by both Gómez et al. [2003]

and Kamazaki et al. [2003]. The redshifted region is partially confused by hot dust

and potentially the PDR located to the west of the source, but emission from the

redshifted flow becomes clearer in channels 9.5 and 10.5 km s�1 of Figure 3.9. This

redshifted emission is not as extended as the blueshifted lobe.
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

The less prominent redshifted lobe from VLA 1623 to the northwest causes con-

fusion in the region for Class I sources GY 30, GSS 30, LFAM 1, CRBR 2315,

VLA 1623 W and Class 0 sources SSTc2d J1626.0-242508. These sources are fur-

ther discussed in Sections 3.6.1.2–3.6.1.4.

3.6.1.2 GSS 30

GSS 30 consists of two Class I sources (GSS 30-IRS1 and -IRS3, denoted as GSS 30

and LFAM 1 respectively) and one Class II source (GSS 30-IRS2). Only GSS 30

and LFAM 1 are considered for analysis in this study. Both red and blue linewings

are detected for the sources in Figure 3.8, but the sources are located in a confused

region due to their proximity to VLA 1623. To analyse further support for potential

outflows driven by the sources, a H2 2.122 µm v = 1 ! 0 S(1) map of the region

is shown in Figure 3.10 with relevant HH objects and H2 knots labelled and the

proposed axes for potential outflow driven by GSS 30. This figure also shows the

blue and redshifted CO map of the Oph A region. The first proposed axis is in

alignment with H2 knots [GSWC2003] 22a and 23c which agrees with Gómez et al.

[2003]. This axis also is in alignment with HH 313 (b), attributed by Caratti o

Garatti et al. [2006] and Eislö↵el et al. [2000] to GSS 30 and by Gómez et al. [2003]

to VLA 1623. The shape of HH 313 (b) could indicate the H2 knot travels to the

west, which is consistent with the knot originating from GSS 30. HH 313 (b) can

also be seen in optical wavelengths as a water maser [Gómez et al., 2003]. The

second potential flow is traced by H2 knot [GSWC2003] 9 and 10, discovered by

Gómez et al. [2003]. These knots are found only to the north of the source and

appear to continue travelling north. Lastly, the third potential flow travels through

a region of H2 knots [GSWC2003] 24b, 24c, and 24d [Gómez et al., 2003] and is in

line with f10-03 a,b [Caratti o Garatti et al., 2006; Gómez et al., 2003; Khanzadyan

et al., 2004]. The latter knots are roughly 2.50 southwest of GSS 30 and align in a

southwest motion.

Even though there is evidence from the 12CO outflow criterion and H2 knots, I

cannot be certain that GSS 30 and LFAM 1 drive outflows in this portion of the

confused Oph A region. This follows the conclusions from Bontemps et al. [1996],

which also found that the outflow from VLA 1623 caused too much confusion in
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LFAM 1
GSS 30

[GSWC2003]
24 b,c,d

[GSWC2003]
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[GSWC2003]
22/23

VLA 1623

CRBR 2315

f10-03 a,b

[GSWC2003]10

[GSWC2003]9

HH 313 b

Figure 3.10: Left: Blue and redshifted contours of Oph A, same as Figure 3.8 with
proposed H2 knots corresponding to GSS 30- and LFAM1 labelled. Right: Proposed
outflow axes for sources.

Oph A to conclude GSS 30 and LFAM 1 drive outflows.

3.6.1.3 GY 30

GY[92] 30 (GY 30) is located northeast of VLA 1623. Both blue and red linewings

are detected for GY 30, but like GSS 30 and LFAM 1 the confusing e↵ects of the

VLA 1623 outflow complicate the analysis. Figure 3.11 depicts the high-velocity

emission near GY 30, similar to Figure 3.10. Blue contours trace the blueshifted
12CO integrated main-beam temperature (from �9.0 to 0.3 km s�1) and red con-

tours trace the redshifted 12CO integrated main-beam temperature (from 6.3 to

16.0 km s�1). Both red and blueshifted emission can be seen in Figure 3.11, but the

region is heavily confused with the VLA 1623 outflow. Kamazaki et al. [2003] used
12CO 1-0 to show that it is likely GY 30 is driving an outflow parallel to VLA 1623.

An outflow driven by GY 30 is further supported by Figure 3.9, where there is no-

ticeable bipolar blue and redshifted emission in channels -0.5 and 6.5 km s�1. There

is also a H2 knot close to the source which seems to follow a bipolar outflow parallel

to VLA 1623, shown in Figure 3.8, which could be potentially driven by an GY 30.

Like GSS 30 and LFAM 1, the confusion from VLA 1623 prevents a confirmation

of a bipolar outflow driven by GY 30.
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GY 30

VLA 1623

GSS 30

CRBR 2315

CRBR 2315

SSTc2d J162614.6 
-242508

GSS 30
GY 30

VLA 1623 AB, W

SSTc2d
J162626.0
-242340

GY 91
WL 2

SSTc2d 
J162614.6 
-242508

CRBR 2315

VLA 1623

SSTc2d
J162626.0-242340

GY 30
GSS 30

CRBR 2315

Figure 3.11: Top: Blue and redshifted contours of confused sources in Oph A.
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3.6.1.4 CRBR 2315.8-1700

CRBR 2315.8-1700 (CRBR 2315) is located in Oph A, northwest of VLA 1623. Like

the other Class I protostars in the region both blue and red linewings are detected for

CRBR 2315, but these could be the result of confusion from the VLA 1623 outflow.

Figure 3.11 shows a close-up of the source. Blue contours trace the blueshifted 12CO

integrated main-beam temperature (from �9.0 to 0.1 km s�1) and red contours trace

the redshifted 12CO integrated main-beam temperature (from 6.1 to 16.0 km s�1).

Both red and blue line wings can be seen near the source, but this emission

could easily be the result of the VLA 1623 outflow. With the evidence from the CO

outflow criteria, I cannot be certain that CRBR 2315 drives an outflow in the region

due to this confusion with VLA 1623. I note that this region is known for many H2

knots that are mainly attributed to GSS 30, LFAM 1, or VLA 1623. If CRBR 2315

does drive an outflow, then it is possible that some of these H2 knots are driven by

the source as well.

3.6.1.5 GY 91

GY[92] 91 (GY 91) is located southeast of the central Oph A core region. Using

the outflow criterion, only a redshifted lobe is detected for the source. Figure 3.11

shows a close-up of the GY 91 source, similar to Figure 3.10. Blue contours trace the

blueshifted 12CO integrated main-beam temperature (from �9.0 to 0.0 km s�1) and

red contours trace the red shifted 12CO integrated main-beam temperature (from

6.0 to 16.0 km s�1). Only the redshifted emission can be seen for the source, which is

near the blueshifted outflow from VLA 1623. It is possible any blueshifted emission

from a high-velocity outflow is potentially obscured by VLA 1623. Without evidence

of the blueshifted emission, I cannot be certain that GY 91 drives a bipolar outflow.

3.6.1.6 WL 2

WL 2 is located south of GY 91. Using the outflow criterion, only a blueshifted

linewing is detected for the source. Confusion is caused in this region from the

highly collimated, blueshifted outflow from VLA1623, which could be the source of

the blue linewing for WL 2. Figure 3.11 shows a close-up of the blue and redshifted

emission with the same velocity ranges as Figure 3.8. The redshifted emission to
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3. OPHIUCHUS: MOLECULAR OUTFLOW DETECTION

the northwest of the source could potentially be remnants of outflow activity and

the blueshifted emission may be obscured by VLA 1623. With only the blueshifted

emission detected in the outflow criterion, the blue linewing is most likely due to

the confusion from the VLA 1623 outflow.

3.6.1.7 SSTc2d J162614.6-242508

SSTc2d J162614.6-242508 is a new Class 0 source on the western edge of the Oph A

clump (nearest to the PDR). Though a red linewing is detected using the outflow

criterion, there is no corresponding blue linewing. This outflow detection is most

likely the result of hot dust generated by nearby stars. Figure 3.11 shows a close-up

of the blue and redshifted emission. Due to the confusion with the surrounding

environment and lack of a blue outflow lobe, I cannot be certain if this source drives

an outflow.

3.6.1.8 SSTc2d J162626.0-242340

SSTc2d J162626.0-242340 is a new flat spectrum source directly north of VLA 1623,

close to star Oph S1. Though both red and blue linewings are detected towards

this source, the confusion from VLA 1623 makes it di�cult to decipher the origin

of the emission. Figure 3.11 shows a close-up of the blue and redshifted emission,

similar to Figure 3.10. Due to the confusion with VLA 1623, I label this source as

‘confused.’

3.6.2 Oph B

Oph B contains three Class I and five flat spectrum protostars. Using the 12CO

outflow criteria, three sources (WL 6, IRS 54, and IRS 47) have been confirmed to

drive outflows and four sources have been identified as marginal molecular outflow

candidates. Figure 3.12 shows the H2 maps with the outflows for this region. Blue

contours trace the blueshifted 12CO intensity
R
TMB dv (integrated from �6.0 to

1.0 km s�1) and red contours trace the redshifted 12CO intensity (integrated from

7.0 to 14.0 km s�1). Additionally, Figure 3.13 shows a channel map of the Oph B

region, which is further used to provide evidence of high velocity blue and redshifted

outflow lobes. This map is rebinned to 1 K km s�1 channels and shows channels
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SSTc2d
J162730.9-242733

IRS 45
SSTc2d
J162721.8-242728

IRS 37

SSTc2d
J162716.4-2423114

WL 6

IRS 47

IRS 54

[G01]
A 1-5
B 1-7
C 1-5

f08-01 a-h
f09-02

Figure 3.12: Contours of blue and redshifted 12CO J = 3 ! 2emission in Oph B.

with high velocity blue and redshifted emission based on the linewing criterion used

for the 12CO molecular outflow analysis.

3.6.2.1 SSTc2d J162730.9-242733, IRS 45, IRS 47 and WL 6

Protostars SSTc2d J162730.9-242733, IRS 45, and IRS 47 can be seen in the central

region of a large, clumpy outflow in Oph B (Figure 3.12). Kamazaki et al. [2001]

attributed this outflow to IRS 45 due to its proximity to the strongest blueshifted

emission in the lobe. The position-velocity diagram in Figure 3.14 clearly shows the

redshifted lobe extending from the centre of IRS 47 and ⇠0.30 from IRS 45, also seen
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SSTc2d 
J162730.9-242733

IRS 47

IRS 45

WL 6

IRS 54

SSTc2d
J162721.8
-242728

IRS 37

-5.5 km/s -4.5 km/s -3.5 km/s -2.5 km/s
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7.5 km/s 8.5 km/s 9.5 km/s 10.5 km/s

Figure 3.13: Channel map of Oph B. Channels are rebinned to 1 K km s�1 channels.
Class I and flat spectrum sources are denoted as ‘⇥’.

in Figure 3.12. I assume that IRS 47 is the driving source for this region due to its

more central location between the blue and redshifted lobes. This is in agreement

with recent work from van der Marel et al. [2013] who also attributes this outflow

to IRS 47. The bipolar outflow driven by Class I source WL 6 is located southwest

of IRS 47. It has been suggested by Khanzadyan et al. [2004] this source drives

the H2 knot f09-02 from the blueshifted lobe of the outflow. This outflow detection

agrees with Sekimoto et al. [1997]. The last firm bipolar outflow detection is from

IRS 54 in the east of Oph B, which is further discussed in detail in Section 3.6.2.4.

The remaining protostars located in Oph B are further discussed in Section 3.6.2.2–

3.6.2.4.

3.6.2.2 IRS 37

IRS 37 is located to the west of IRS 45 and IRS 47 in Oph B. Only the blueshifted

lobe is detected using the outflow criteria, which could be caused by confusion

from the blueshifted lobe of the IRS 47 outflow. Figure 3.15 shows a close-up of the

source. Blue contours trace the blueshifted 12CO integrated main-beam temperature
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IRS 45

IRS 47

Figure 3.14: Position-velocity diagrams for sources IRS 45 (left) and IRS 47 (right).
The positions used for the PV diagram are shown below. Colours are in main-beam
temperature (K).
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IRS 37

SSTc2d
J162721.8-242728

Figure 3.15: Top: Close-up images of confused sources in Oph B.

(from �6.0 to 1.2 km s�1) and red contours trace the redshifted 12CO integrated

main-beam temperature (from 7.2 to 14.0 km s�1). Only the blueshifted emission

can be seen in this image. However, there is a ‘bubble’ of redshifted emission to

the west of the source without an apparent driving source for the material. The

lack of a redshifted component suggests the blueshifted emission is the result of the

IRS 47 outflow. I note recent work from van der Marel et al. (2013) does conclude

this source drives a molecular outflow at lower velocities than the vo ± 2.5 km s�1

ambient velocity criterion.

3.6.2.3 SSTc2d J162721.8-242728

SSTc2d J162721.8-242728 is located west of IRS 47 in Oph B. Only the blue lobe

is detected for this source in the linewing criterion, which could be the result of

the blueshifted emission of the IRS 47 outflow. Figure 3.15 shows a close-up of the

source. Blue contours trace the blueshifted 12CO integrated main-beam temperature

(from �6.0 to 0.7 km s�1) and red contours trace the redshifted 12CO integrated

main-beam temperature (from 6.7 to 14.0 km s�1). The lack of a redshifted com-

ponent suggests the blueshifted emission is the result of IRS 47. In conclusion, an

outflow driven by the source cannot be confirmed.
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Figure 3.16: Proposed axis for the precessional outflow from IRS 54.

3.6.2.4 IRS 54

IRS 54 is binary with a separation measured to be 700 using near-IR observations

[Duchêne et al., 2004; Haisch et al., 2006] located on the edge of Oph B. Past studies

[Jørgensen et al., 2009] have suggested the source drives a bipolar, precessional

outflow. The clumpy east-west outflow driven by IRS 54 can be seen in Figure 3.12

and both blue and redshifted lobes are detected in the outflow criterion. The outflow

also corresponds to several H2 knots labelled [G01] C(1-5) [Grosso et al., 2001] and

f08-01(a-h) [Gómez et al., 2003; Khanzadyan et al., 2004]. Figure 3.16 (right) shows

the proposed outflow axes that depict the change in axis direction with the H2

2.122 µm v = 1 ! 0 S(1) map in the background. Figure 3.16 (left) shows a

close-up of IRS 54. Blue contours trace the blueshifted 12CO integrated main-beam

temperature (from �5.0 to 1.0 km s�1) and red contours trace the redshifted 12CO

integrated main-beam temperature (from 7.0 to 13.0 km s�1). The first axis I label

follows the more distant blue and redshifted 12CO emission. The second axis I label

follows the H2 knots in the region and portions of the CO emission that are closer

to the source. The change in outflow axis agrees with Jørgensen et al. [2009]. In

conclusion, the outflow criterion confirms the bipolar outflow driven by IRS 54 and

the precessional axes caused by the binary.
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3.6.3 Oph C, E, and F

The Oph C and E regions make up the mid to southwestern portions of the L1688

cloud. Together, the regions contain six Class I protostars and one Class II proto-

star analysed for the outflow study. Using the 12CO outflow criteria, two sources

(Elias 29 and WL 10) are confirmed to drive outflows and five sources are identi-

fied as marginal molecular outflow candidates with one high velocity linewing de-

tected. Figure 3.17 shows the H2 maps with the outflows for Oph C, E, and F.

Blue contours trace the blueshifted 12CO intensity
R
TMB dv (integrated from �5.7

to 1.3 km s�1) and red contours trace the redshifted 12CO intensity (integrated

from 7.0 to 14.3 km s�1. Figures 3.18 and 3.19 show channel maps of the Oph C,

E, and F regions, which are further used to provide evidence of high velocity blue

and redshifted outflow lobes. These maps are rebinned to 1 km s�1 channels and

shows channels with high velocity blue shifted and redshifted emission based on the

linewing criterion used for the 12CO molecular outflow analysis.

3.6.3.1 Elias 29

Elias 29 is located in Oph E near LFAM26, WL16, and WL17. This source is known

for its s-shaped bipolar outflow [Bontemps et al., 1996; Sekimoto et al., 1997; van der

Marel et al., 2013], which is potentially caused from its precessing axis without being

a part of a binary [Ybarra et al., 2006]. The bipolar outflow can be clearly seen in

Figure 3.17 and the outflow criterion detected both the blue and red outflow lobes.

The outflow encompasses several H2 knots, mainly in the southern redshifted lobe,

which are labelled 2(a,b) and 3(a,b) from Ybarra et al. [2006]. The detection of the

southern knots indicates that the outflow axis is currently a north-south alignment,

but remnant CO emission located to the northeast of the source indicates that the

outflow axis at one time may have been altered. The blueshifted outflow lobe extends

to the north, also potentially driving several knots near WL 10 outflow (discussed

further in Section 3.6.3.5, described by Khanzadyan et al. [2004]. Gómez et al.

[2003] also suggests that knot [GSWC2003]2 is driven by Elias 29, aligning with the

east-west CO emission and further supporting the poorly collimated shape of the

outflow. The shape of [GSWC2003]2 indicates the knot travels to the west. The

outflow criterion confirms the bipolar outflow driven by Elias 29 and supports the
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Figure 3.17: Contours of blue and redshifted 12CO J = 3 ! 2 emission in Oph C,
E, and F.
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WL 17
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Figure 3.18: Channel map of Oph C and E. Channels are rebinned to 1 K km s�1

channels. Class I and flat spectrum sources are denoted as ‘⇥’.
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Figure 3.19: Channel map of Oph F. Channels are rebinned to 1 K km s�1 channels.
Class I and flat spectrum sources are denoted as ‘⇥’.

112



outflow axis precession as indicated by multiple redshifted outflow lobes.

3.6.3.2 WL 16

WL 16 is located in Oph E west of Elias 29. Using the outflow criterion, a faint blue

linewing is detected without redshifted emission. Figure 3.20 shows a close-up of

WL 16. Blue contours trace the blueshifted 12CO integrated main-beam temperature

(from �5.7 to 1.2 km s�1) and red contours trace the redshifted 12CO integrated

main-beam temperature (from 7.2 to 14.3 km s�1). Blue and red contours begin

at 1.5 K km s�1. The blue lobe is detected at the source and borders a redshifted

region that also includes a separate blueshifted emission along with a H2 knot,

[GWCS2003]2. The H2 knot travels in a western direction but is further north to

the source which may indicate the knot is not driven by WL 16. As discussed in

Section 3.6.3.1, Gómez et al. [2003] concluded this knot is more likely driven by

Elias 29 due to its location and known bipolar CO outflow. In Figures 3.17 and

3.21, Gómez et al. [2003] and Zhang et al. [2003] suggest WL 16 is the driver of

f09-01(a,c,d), where f09-1a,c are thought to belong to the same flow. The shape

of this knot suggests the flow travels to the northeast, potentially from the same

direction of WL 16. However, the high velocity CO emission does not seem to follow

the shape of this possible flow. There is a possibility that this source does drive a

bipolar outflow, but I cannot conclude this using the 12CO molecular line emission.

3.6.3.3 LFAM 26

LFAM 26 is located north of Elias 29. Past studies [Bussmann et al., 2007; Nakamura

et al., 2011; van der Marel et al., 2013] have suggested this source drives an east-

west oriented bipolar outflow. Both blue and red linewings are faintly found in the

outflow criterion. Figure 3.17 shows the proximity of LFAM 26 to the blue outflow

from Elias 29. Figure 3.20 shows a close-up LFAM 26. Blue contours trace the

blueshifted 12CO integrated main-beam temperature (from �5.7 to 1.4 km s�1) and

red contours trace the redshifted 12CO integrated main-beam temperature (from 7.4

to 14.3 km s�1). Blue and red contours begin at 1.5 K km s�1. A small section of

blueshifted emission can be seen in the image along with redshifted emission that

is more than likely due to the northern portion of the Elias 29 outflow. It is mored
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WL 16 LFAM 26

SSTc2d 
J162659.1-243503 WL 17

WL 12

Figure 3.20: Close-up images of confused sources in Oph C and E.
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likely the precessing Elias 29 outflow causes confusion in this region and falls into

the path of LFAM 26. Due to this confusion, I cannot be certain that LFAM 26

drives an outflow.

3.6.3.4 WL 17

WL 17 is located in Oph E, south of WL 16. Using the outflow criterion, both blue

and red linewings are detected. Figure 3.20 shows a close-up of WL 17, with blue

contours trace the blueshifted 12CO integrated main-beam temperature (from �5.7

to 1.3 km s�1) and red contours trace the redshifted 12CO integrated main-beam

temperature (from 7.3 to 14.3 km s�1). Blue and red contours begin at 1.5 K km s�1.

The blue and redshifted regions can be seen in a north-south orientation around the

source at the 1.5 K km s�1 contour. There is a possibility that this source does

have an outflow, but confusion from EL 29 to the east of the source could easily

cause this blue and redshifted line emission. Due to this confusion, I cannot be

certain that this source drives a bipolar outflow. I note van der Marel et al. [2013]

concludes WL 17 drives an outflow, but this detection is at lower velocities than the

vo ± 2.5 km s�1 ambient velocity criterion requires.

3.6.3.5 WL 10

WL 10 is a Class II protostar [Kamata et al., 1997] located in Oph C, north of

Elias 29 at the end of the blueshifted VLA1623 outflow lobe. It is known for a

bipolar outflow [Sekimoto et al., 1997] that can be seen in Figure 3.17. Both blue

and redshifted linewings are detected in the CO outflow criterion. Figure 3.21 shows

a close-up of WL 10. Blue contours trace the blueshifted 12CO integrated main-

beam temperature (from �9 to 0.3 km s�1) and red contours trace the redshifted
12CO integrated main-beam temperature (from 6.3 to 16 km s�1). Figure 3.21 also

shows the H2 2.122 µm v = 1 ! 0 S(1) map of the source with relevant H2 knots

labeled. The outflow encompasses several H2 knots, labelled f09-01a-g (Khanzadyan

et al 2004). Gómez et al. [2003] and Zhang et al. [2011] attribute f09-01b,e-g to

the WL 10 outflow, shown as my first proposed axis for the WL 10 outflow. The

second axis follows knots f09-01a,c,d which could also be related to the CO flow.

As discussed in Section 3.6.3.2, these knots could be related to WL 16 (see Gómez
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WL 10

f09-01
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de
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Figure 3.21: Left: Blue and redshifted contours of the Oph C region, including
WL 10. Right: H2 map of Oph C region. Proposed knots corresponding to the
WL 10 outflow are labeled.

et al. 2003; Zhang et al. 2011). The combination of blue and reshifted outflow lobes

and H2 knots confirms the bipolar outflow driven by WL 10.

3.6.3.6 WL 12

WL 12 is located in the western portion of Oph C. Using 12CO J = 2 ! 1 detections,

Bontemps et al. [1996] classified the source as driving a molecular outflow because

of its high velocity linewings (at least ±5 K km s�1). This study also noted that

WL 12 is considered a more uncertain detection because it only fulfilled one of

the criterion for being an outflow (i.e., the detection was not bipolar). Using the

CO outflow criterion, only a slight redshifted lobe is detected and a high velocity

blueshifted lobe is not detected. Figure 3.17 shows a close-up of the source. Blue

contours trace the blueshifted 12CO integrated main-beam temperature (from �5.1

to 0.9 km s�1) and red contours trace the redshifted 12CO integrated main-beam

temperature (from 6.9 to 12.9 km s�1). Blue and red contours begin at 1.5 K km s�1.

The image shows a faint blue and redshifted lobe at the 1.5 K km s�1 contour,

which potentially indicates the presence of a bipolar outflow though this is a faint

detection. The detected blue and redshifted emission also encompasses a H2 knot,

labelled [GSWC2003]1, which was attributed to WL 12 by Gómez et al. [2003]. The

116



f04-02
f04-03a

f04-03b

f04-05 a,b,cf04-03c,d

f04-06

f04-05d

f04-05 
e,f,g,hf04-03

e,f

IRS 44

IRS 43

Figure 3.22: Maps of the Oph F region. Left: Blue and redshifted contours of the
CO emission. Right: H2 map of IRS 44 and IRS 43.

knot appears to be traveling to the west from the source in the opposite direction

than the redshifted CO emission. Even though I cannot be certain that this source

drives an outflow, it is possible that there is a bipolar outflow driven by WL 12.

3.6.3.7 IRS 43 and IRS 44

IRS 43 and IRS 44 are located in Oph F south of IRS 54. Both are known to drive a

bipolar outflow (IRS 44: Bontemps et al. 1996; Bussmann et al. 2007; Terebey et al.

1989; IRS 43: Bontemps et al. 1996), which can be seen in Figure 3.22 depicting

the Oph F region. Blue contours trace the blueshifted 12CO integrated main-beam

temperature (from �5.4 to 0.6 km s�1) and red contours trace the redshifted 12CO

integrated main-beam temperature (from 6.6 to 13.6 km s�1). Both blue and red

linewings are detected in the CO outflow criterion for the sources. Several H2 knots

have been attributed to IRS 44 and IRS 43, labelled f04-02 to f04-6 [Khanzadyan

et al., 2004]. The outflow axes have been labelled in Figure 3.22 over the H2 2.122 µm

v = 1 ! 0 S(1) map of the region. Proposed axes, based on the H2 knots, agree

with Khanzadyan et al. [2004], where f04-02, f04-05 a,b,d–f,h have been attributed

to IRS 44 and f04-03a–e have been attributed to IRS 43. In conclusion, the CO

outflow criterion confirms the bipolar outflow driven by IRS 44 and IRS 43.
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3.6.3.8 IRS 42

IRS 42 is southwest of IRS 43 and IRS 44. There is a small blue linewing detected

in the CO outflow criterion without a red linewing. The source is not in a region

that is particularly confused by surrounding outflow, like the outflows from IRS

43 and 44, but no high velocity emission is detected in Figure 3.17 of IRS 44 and

IRS 43 or in Figure 3.23 which is a close-up of IRS 42. Blue contours trace the

blueshifted 12CO integrated main-beam temperature (from �6.0 to 1.2 km s�1) and

red contours trace the redshifted 12CO integrated main-beam temperature (from 7.2

to 14.0 km s�1). Blue and red contours begin at 1.5 K km s�1. I cannot be certain

that IRS 42 drives a bipolar outflow due to the lack of defined bipolar outflow lobes.

3.6.3.9 CRBR 2422.8-3423

CRBR 2422 is located southwest of IRS 43 and IRS 44. A small blue linewing is

detected in the outflow criterion without a red linewing. Figure 3.23 shows a close-

up of the source, similar to Figure 3.17. Blue contours trace the blueshifted 12CO

integrated main-beam temperature (from �5.4 to 1.1 km s�1) and red contours trace

the redshifted 12CO integrated main-beam temperature (from 7.1 to 13.6 km s�1).

Blue and red contours begin at 1.5 K km s�1. Blue and redshifted emission can be

seen in the figure at the 1.5 K km s�1 contour. With the outflow driven by IRS 43 to

the east of CRBR 2422, the faint high-velocity emission is potentially due to IRS 43.

In conclusion, CRBR 2422 is in a confused region and I cannot be certain that it

drives an outflow.

3.7 Conclusions

In this chapter, I introduced the HARP 12CO, 13CO and C18O J = 3 ! 2 data

of the Ophiuchus molecular cloud. This data (primarily 12CO) was used to search

for outflows and calculate the cloud mass and energetics of the region. The main

conclusions can be summarised:

1. Molecular outflow search. Using Spitzer data from the survey “From

Molecular Clouds to Planet-Forming Disks” or c2d [Evans et al., 2009], I iden-

tified 30 Class 0/I/II and flat spectrum sources that were further analysed for
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CRBR 2422

Figure 3.23: Close-up images of confused sources in Oph F.

molecular outflows. Out of the sources analysed, 8 had firm molecular outflow

detections, 20 were ‘confused’ detections and 2 sources were non-detections.

2. New sources. Out of the 30 sources, 6 sources were newly identified from the

c2d survey and analysed for outflows for the first time. These sources consisted

of 1 Class 0, 2 Class I and 3 flat spectrum sources. All of these sources had

detections for high-velocity emission but were classified as ‘confused’ due to

confusion caused by nearby sources driving outflows.

3. Identifying H2 knots and outflow axes. For sources with a blue and/or

redshifted linewing detection, H2 knots were further analysed to better under-

stand possible directions of the outflow. This was particularly important for

sources confused by the Class 0 VLA 1623 AB outflow in the Oph A region,

IRS 54 with a precessing outflow axis and the Class II source WL 10 with con-

fusion from the outflow VLA 1623 AB and EL 29. From this analysis, possible

outflow directions from GSS 30 and LFAM 1 were discussed. Outflow direc-

tions from IRS 54 were examined and di↵ering outflow directions detected by

the H2 knots and molecular outflow were reconciled. The source WL 16, ini-

tially thought to drive the H2 knot f09-01 a,c [Gómez et al., 2003; Zhang et al.,

2011], was ruled out for driving a molecular outflow because the high-velocity
12CO emission corresponding to the H2 knot does not seem to be driven by
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the source. The Class II source WL10 was confirmed to drive an outflow with

two possible axes, determined from the H2 knots near the source and strong

red and blueshifted linewings detected in the 12CO spectrum. Lastly, IRS 44

and 43 were confirmed to drive outflows and their axes were further examined,

where the location H2 knots corresponds well with molecular outflow lobes.

120



Chapter 4

Ophiuchus: Global properties

As discussed in Section 2.4.3, cloud support against gravitational collapse is not fully

understood. The two main theories for the physical mechanism of cloud support are

magnetic fields and turbulence, where I focus on understanding turbulence in the

cloud. It has been shown using simulations that turbulence can support the cloud

while allowing local regions of collapse (e.g. Mac Low & Klessen 2004), where

supersonic turbulence generates a pressure preventing gravitational collapse in the

cloud. If turbulence does play a role in cloud support, then there must be a constant

driving source replenishing the turbulence to help support the cloud. While it is

possible radiative winds from nearby supernovae or main-sequence stars could drive

turbulence in a molecular cloud, molecular outflows driven by young protostars may

also be a dominant source of cloud turbulence (e.g. Li & Nakmura 2006).

The global properties of the cloud can be further investigated using the CO J =

3 ! 2 isotopologues introduced in Chapter 3. The C18O molecule is typically more

accurate at tracing denser gas since it is less abundant and less optically thick than
12CO and 13CO. This makes C18O more useful for examining the mass and energetics

(i.e. turbulent and gravitational energies) of the cloud. The optically thick and more

abundant 12CO molecule can be used to trace excitation temperatures and higher

velocity emission associated with molecular outflows. Outflow mass and kinetic

energy from 12CO can then be compared to the turbulent cloud energy to examine

the potential role of outflows driving turbulence in the cloud. The 13CO molecule

is less abundant than 12CO (by a factor of ⇠77; Wilson and Rood 1994) and more

abundant than C18O (by a factor of 8; Frerking et al. 1982). 13CO is particularly
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useful for investigating the optical depths of 12CO and C18O to make appropriate

optical depth corrections to cloud and outflow mass and energetics.

Using the HARP CO J = 3 ! 2 data presented in Chapter 3, the physical

characteristics of L1688 Ophiuchus cloud are examined, including the excitation

temperatures and optical depths. Additionally, I investigate the mass and ener-

getics of the cloud in an attempt to understand the physical state of Ophiuchus

(i.e. gravitationally bound or unbound) and the main driver of turbulence in the

region (including outflow energy). This comparison of the outflow energy and cloud

turbulence has been expanded to the other nearby Gould Belt clouds (including

Ophiuchus, Serpens and Perseus), investigating the significance of outflow energy

driving turbulence in star forming regions.

4.1 Cloud properties

In this section, the global cloud properties are examined in LTE conditions (see

Section 1.3.5), where the excitation temperature and optical depths must first be

determined using the CO isotopologues. Di↵erent methods are used to calculate

the cloud and high-velocity outflowing mass/energetics to further investigate how

the properties di↵er based on the initial assumptions and isotopologue used in the

analysis. Similarly, the global high-velocity gas is further examined for potential

drivers other than molecular outflows, e.g. hot dust from nearby B-type stars,

outflow remnants from less embedded sources and stellar winds from the nearby

Upper Scorpius OB association.

4.1.1 Excitation temperatures

In this section, I calculate the excitation temperature, Tex, of the 12CO and 13CO

molecular gas assuming the emission is optically thick and in local thermodynamic

equilibrium. The excitation temperature is calculated following the relation from

Myers et al. [1983] described in Section 1.3.5.1,

Tex(
12CO) =

16.6 K

ln
⇣

16.6 K
Tpeak+0.0377 K + 1

⌘ (4.1)
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Figure 4.1: Excitation temperature maps (K) of Tex(12CO) (left) and Tex(13CO)
(right) with contours from the 12CO integrated main-beam intensity at levels 50,
75, 100, and 125 K km s�1.

Tex(
13CO) =

15.9 K

ln
⇣

15.9 K
Tpeak+0.0472 K + 1

⌘
, (4.2)

where Tpeak is the peak main-beam temperature.

The results for 12CO and 13CO are shown in Figure 4.1. It is important to note

that there are strong absorption features in the 12CO emission ranging from ⇠ 2.0–

5.5 km s�1 and it is possible the excitation temperature has been underestimated for

this transition. From past research, temperatures are expected to rise in protostellar

outflows [Giannini et al., 2001; Hatchell et al., 1999a,b; Nisini et al., 2000]. Both

Tex(12CO) and Tex(13CO) have typical ranges from 12–40 K.

The most noticeable feature in the maps is the warm gas that traces the hot dust

caused by early-type B-type stars S1 and SR3 and the close binary HD 147889 (B2IV,

B3IV; Casassus et al. 2008). Figure 4.2 compares ISOCAM 12 µm continuum data

tracing the hot dust associated stars shown as yellow ‘O’s to the 12CO excitation

temperatures. The edge-on PDR can be seen as a filamentary-like feature in the
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S1

SR3

HD 147889

Figure 4.2: ISOCAM 12 µm map in MJy str�1 with 12CO excitation temperature
contours at levels 40, 50, 60, and 70 K. Stars HD 147889, S1, and SR3 shown.

north of Oph A. The excitation temperatures near the hot dust reach ⇠ 70 K

and ⇠ 50 K for 12CO and 13CO respectively. These excitation temperatures are

significantly higher than temperatures found in regions with molecular outflows.

For example, near the VLA 1623 outflow in Oph A, 12CO temperatures reach 30–

40 K in the blueshifted flow and higher in the redshifted flow (40–50 K), where the

redshifted flow has a closer proximity to the the star S1. The Elias 33 and WL 6

outflows in Oph B have 12CO temperatures ranging from 20–30 K, which is similar

to the temperatures found in the flows from Oph C, E, and F (including Elias 29,

WL 10, IRS 44, and IRS 43).

I note the excitation temperatures for 13CO are noticeably lower than 12CO even

though the 12CO emission has the additional complication of self absorption in some

portions of the cloud. This suggests the 13CO is optically thin in some regions and

temperature estimates based on this line must be corrected.
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4.1.2 Optical depth

In this section, I calculate the optical depth of 13CO and C18O in Ophiuchus. Op-

tically thin C18O can be used as a tracer of the column density and mass in the

cloud. It is important to calculate the C18O optical depth to confirm the emission

is optically thin for mass calculations. The optical depth is related to the intensity

ratio of di↵erent CO isotopologues, I(13CO)/I(C18O), by the relation [Myers et al.,

1983],
T

13CO

TC18O
=

1 � exp (�⌧

13CO)

1 � exp (�⌧C18O)
, (4.3)

where T is the peak brightness temperature and ⌧ is the line centre optical depth

of the corresponding isotopologues. The optical depths of the two isotopologues are

related by ⌧

13CO = X ⌧C18O, where X is the abundance ratio for 13CO/C18O.

An issue with this method is the visible self absorption in the line profiles (which

can be seen for the average regional spectra in Figure 3.4 of Chapter 3 for 12CO and
13CO and self absorption can be seen in C18O for the source spectra in Figure 3.6

of Chapter 3). Another approach is to use the method in Ladd et al. [1998] which

involves taking the ratio of 13CO and C18O integrated intensities to trace the optical

depth of the cloud. Even though the self absorption will still lower the integrated

intensities, this is a lower fractional error than the ratio between the peak main-beam

temperatures. This method involves

R1
�1 T

13CO(v) dvR1
�1 TC18O(v) dv

=

R1
�1(1 � exp[�⌧

13CO(v)]) dvR1
�1(1 � exp[�⌧C18O(v)]) dv

, (4.4)

where ⌧C18O = ⌧

13CO/X. This equation can be further expanded so that ⌧

13CO =

⌧

13CO exp [�v2/2�2], which assumes a Gaussian velocity distribution and an opti-

cally thin line will have a Gaussian shape. Equation 4.4 can then be numerically

minimised to determine the optical depth. I took � = 0.64, corresponding to the

average vfwhm of 1.5 km s�1 across the cloud. The abundance ratio was assumed to

be the accepted value of X = 8 [Frerking et al., 1982]. Only spectra with a peak

line detection of 3�rms were used for the 13CO and C18O maps to create the ratio

map, corresponding to peak line detections of 1.36 K in both maps.

Figure 4.3 shows the map of ⌧C18O, where ⌧

13CO would be greater by the abun-
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Figure 4.3: Optical depth map (⌧) of C18O. All sources examined for outflows are
shown as ‘⇥’ . The 13CO optical depth map is a factor of 8 larger than the C18O
map.
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dance factor of 8. In Oph A, typical integrated intensity ratios 13CO/C18O range

from ⇠2–7 at the sources, corresponding to ⌧

13CO of 2 to 16 and ⌧C18O of ⇠0.3 to

2.0. Across the map, 13CO is primarily optically thick with regions surrounding the

main clump of dense gas optically thin. C18O is optically thick in the regions that

directly corresponding to the cores and the hot dust from S1. Near the S1 star,
13CO is self-absorbed with a 13CO/C18O integrated intensity ratio as small as 1.2 at

the region of greatest self-absorption and a corresponding high C18O optical depth

(⌧C18O > 5). Conversely, regions found to reach a 13CO/C18O ratio higher than the

assumed abundance ratio due to systematic noise were manually set to low optical

depths (⌧C18O = 0.001). Optical depths in Oph B, C, E, and F are more variable

due to the quality of the observations (primarily striping e↵ects that were discussed

in Section 3.2.1). In these regions, the source C18O optical depths can become op-

tically thick and higher than the optical depths found for the Oph A sources which

is likely from remnants of systematic striping.

4.1.3 Cloud mass

In this section, I calculate both the mass of the cloud using the C18O integrated

intensity and the virial mass of the cloud assuming a spherical cloud of uniform

density [Rohlfs and Wilson, 2000]. Mass calculations are summarised in Table 4.1.

From Section 4.1.2, the optical depth of C18O emission is optically thick in some

regions, indicating an optical depth correction needs to be applied when calculating

the mass from the integrated C18O emission. Only pixels with a peak TMB of at least

3�rms (1.36 K) were included in the calculation. The excitation temperature, Tex,

was calculated using the 13CO peak temperature (Section 4.1.1). In regions without

Tex data, the average excitation temperature from 13CO was used (Tex = 20 K). A

ratio of C18O to H2 was taken to be XC18O = 10�7 so the result could be compared

directly with other work on GBS clouds [Curtis et al., 2010b; Graves et al., 2010],

which is similar to the commonly used value from Frerking et al. [1982] of 1.7⇥10�7.

The distance to the cloud was assumed to be 120 pc. Assuming local thermodynamic
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equilibrium, the mass was calculated using the relation from Section 1.3.5.3,

MC18O = 2.29 ⇥ 10�5

✓
Pixel length

3.49 ⇥ 10�3pc

◆2✓
XC18O

10�7

◆�1

(4.5)

⇥
X

j

0

@ Tex,j

exp
⇣

�31.6
Tex,j

⌘ ⌧C18O,j

1 � exp(�⌧C18O,j

)

Z
TMB,j

dv

1

A M�,

where XCO is the relative abundance of C18O to H2, pixel length is the length of

one pixel in parsecs assuming the distance of the cloud at 120 pc, ⌧C18O is the C18O

optical depth (Section 4.1.2),
R
TMB dv is the integrated main-beam temperature of

C18O, and j is an index over map pixels. A mass of 515 M� was calculated for the

cloud. Without the optical depth correction, the mass of the cloud was 439 M�.

Previous studies of star forming regions [Buckle et al., 2010; Curtis et al., 2010b;

Graves et al., 2010] have assumed a constant excitation temperature of around 10–

12 K based on the 13CO average excitation temperature. Had the lower, constant

excitation temperature been used, the mass would increase by a factor of ⇠1.6–2.3.

The virial mass of the cloud can be calculated using the following relation [Ma-

cLaren et al., 1988],

Mvir =
3c �2

R

G

, (4.6)

where I assume � is the 1D velocity dispersion�vC18O/
p
8 ln 2, �vC18O is the FWHM

velocity in km s�1, R is the radius of the cloud in parsecs, and G is the gravitational

constant. The constant c is based on the density profile as a function of distance

from the cloud centre, ⇢(r) = r

�n,

c =
5 � 2n

3 � n

, (4.7)

where n = 2, ⇢(r) = r

�2 and c = 1. The FWHM velocity �vC18O was determined to

be 1.5 km s�1 by fitting a Gaussian to the C18O average spectrum across the cloud.

An e↵ective radius of the cloud was determined from A = ⇡R

2
e↵ , where A is the

total pixel area of the map with peak TMB detections of at least 3�rms. This gave a

radius of 140 or 0.50 pc at a 120 pc distance. The virial mass was determined to be

141 M�.
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The virial mass is 27 per cent of the calculated C18O mass, indicating the cloud

is in a hugely overbound state, which is further discussed in the next section. Our

study agrees with results from past studies using 13CO 1–0 (Loren 1989; radius of

0.3 pc and 1.5 km s�1 velocity width) and C18O 1–0 (Tachihara et al. 2000; radius of

0.4 pc and 1.5 km s�1 velocity width) assuming a distance of 120 pc. The e↵ective

radius from the HARP C18O data is larger than the radius calculated by Tachihara

et al. [2000] simply due to the larger map size of the HARP observations. Loren

[1989] found the virial mass was 24 per cent of the total gas mass (475 M� gas mass

and 113 M� Mvir) and Tachihara et al. [2000] found the virial mass to be 21 per cent

of the cloud mass (455 M� gas mass and 97 M� Mvir. Similarly, Nakamura et al.

[2011] calculated the virial mass to be 22 per cent of the mass for the total L1688

cloud (R21-22, R24-26) using the 13CO data from Loren [1989] where a distance of

125 pc and a radius of 0.8 pc was used. My calculated virial mass is larger than

many of these past studies due to the higher e↵ective radius used in Equation 4.6.

To assess the reliability of the average cloud FWHM velocity, Figure 4.4 shows

the FWHM (km s�1) of each spectrum with a line peak of at least 3� in C18O. The

FWHM is estimated by counting the number of velocity channels with half the peak

intensity in the spectrum. I note the average FWHM of 1.5 km s�1 is not necessarily

valid for the entire cloud and increases the uncertainty in this calculation.

4.1.4 Global energetics

To understand the energetics of the cloud better, the gravitational binding energy

and the turbulent kinetic energy can be estimated assuming a uniform cloud density

using the relations,

Egrav = �3

5
�

GM

2

R

(4.8)

Ekin =
3

2
M�

2
, (4.9)

where G is the gravitational constant, M is the mass of the cloud (Section 4.1.3),

� is typically 5/3 assuming a spherical cloud with density structure ⇢ / r

�2, R is

the radius of the cloud (Section 4.1.3), and � = �vC18O/
p
8 ln 2 is the 1D velocity

dispersion. As shown from Figure 4.9, the turbulent energy of the cloud is typically
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x
o

Figure 4.4: C18O FWHM of lines with 3� peak intensity smoothed by 15 arcsec
Gaussian. Protostellar sources from Section 3.5 are shown with Class 0 sources as
‘�’ and Class I, flat spectrum and Class II sources as ‘⇥’.
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Cloud Total Mass Ekin Egrav Outflow Energy
(M�) (J) (J) (J)

Ophiuchus 515 6.3 ⇥ 1038 4.5 ⇥ 1039 1.3 ⇥ 1038

Table 4.1: Global mass and energetics.

measured using the line width of a molecular line. The C18O linewidth is used to

trace the bulk motions of the dense cloud (i.e. turbulence) since the molecule is less

optically thick than 12CO which traces higher velocity outflowing gas (e.g. Curtis

et al. 2010b; Graves et al. 2010).

For Ophiuchus, the gravitational binding energy was 4.5⇥1039 J (2282 M� km2 s�2).

Using vFWHM from the average C18O spectrum across the cloud (Section 4.1.3), the

turbulent kinetic energy was found to be 6.3⇥ 1038 J (320 M� km2 s�2). The global

energetics are summarised in Table 4.5. The turbulent kinetic energy is roughly a

factor of ⇠7 smaller than the binding energy, which also suggests the the cloud is

gravitationally bound as in Section 4.1.3.

The low virial mass calculated in the previous section suggests the cloud is over-

bound and potentially in a global state of collapse. Past research [Evans et al., 2009;

Nakamura et al., 2011] suggests the virial ratio is small due to a lower star formation

activity. Many of the YSOs in the region are older and less embedded (⇠100 Class II

sources), indicating more active cloud in the past. Outflows that may be a source of

turbulence are not driven by less embedded sources. An alternative explanation is

that the L1688 region may be compressed by an expanding shell created by stellar

winds and supernovae from the Scorpius OB association [Loren and Wootten, 1986;

Vrba, 1977]. According to Nakamura et al. [2011], this compression could lead to a

higher gravitational energy and therefore a lower virial mass. Section 4.1.7 further

investigates the global outflow energy of the region and compares the outflow and

turbulent kinetic energies to better understand the main driver of turbulence in the

region.

I note the mass and energetics of the cloud have nontrivial uncertainties from

the input parameters and assumptions in the calculations. In Section 4.1.3, the

largest sources of uncertainty on the mass include the C18O abundance and the

assumption of LTE. Christie et al. [2012] further studied CO depletion in Gould

Belt clouds by comparing N(H2) calculated from C18O and 850 µm data. For the
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Ophiuchus region, C18O was found to have a higher average depletion or lower C18O

abundance in bother starless and prestellar cores by factors of 7 and 4 respectively

assuming XC18O = 1.7 ⇥ 10�7. Using the C18O abundance from Section 4.1.3 of

XC18O = 10�7, this corresponds to depletion factors of 4 and 2 respectively in the

regions of starless and prestellar cores. Depending on varying depletion factors, the

mass of the Ophiuchus cloud would change accordingly (i.e. higher depletion levels

would increase the mass of the cloud by the depletion factor).

Uncertainties on the energetics involve the uncertainties of the mass, the assump-

tion the cloud is a uniform density sphere (e.g. for the virial mass and gravitational

binding energy calculations) and assuming a single velocity dispersion � for the

entire cloud. The velocity dispersion in particular is the combination between the

thermal and non thermal motions where

�

2 = �

2
NT + �

2
T (4.10)

�T =
kTex

m

p

µC18O
(4.11)

where �NT is the non thermal dispersion and �T is the thermal dispersion. From

Section 4.1.3, I assume �T is negligible (where �T = 0.07 km s�1 for a cloud Tex =

20 K, leading to �NT = 0.797 km s�1 compared to the value I use in Section 4.1.3

of � = 0.798 km s�1).

4.1.5 Cloud mass and energetics using 13CO

C18O has a lower abundance and optical depth than 13CO and does not necessarily

account for the mass and kinetic energy of less dense material in the cloud. To

test the cloud mass calculation, I calculate the mass of the cloud using the 13CO

integrated intensity with a peak intensity of at least 3� using the mass relation
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assuming local thermodynamic equilibrium

M13CO = 3.03 ⇥ 10�8

✓
X
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CCA M�,

where X

13CO is the relative abundance of 13CO to H2, Apixel is the pixel area

(36 arcsec2), Tex is the 13CO excitation temperature from Section 4.1.1, ⌧13CO,j

is

the 13CO optical depth from Section 4.1.2 and j is an index over map pixels. The

relative abundance X

13CO I use is 1.4⇥10�6 from Frerking et al. [1982] and Wilson

and Rood [1994].

The mass calculation is similar to the relation used for the outflow mass and en-

ergetics in Section 4.1.7. Kinetic and gravitational energies were similarly calculated

using Equations 4.8 and 4.9, where the radius of the cloud using an e↵ective area

from 13CO emission was 13.60 or 0.47 pc and the one-dimensional velocity dispersion

for the averaged 13CO spectrum across the cloud was based on vFWHM = 2.0 km �1.

I note 13CO isn’t as likely to trace high velocity outflowing gas like 12CO (e.g. Arce

et al. 2007), but can potentially trace higher densities found in the flows. Only

pixels with a line peak of 3� ( 1.36 K) were used in the calculation.

The calculated mass of the cloud using the 13CO data corrected for optical depth

is 582 M�, which is a factor 1.1 larger than the mass calculated from C18O. The

kinetic energy of the cloud was 1.3 ⇥1039 J (630 M� km2 s�2), which is a factor

of ⇠2 larger than the estimate of cloud turbulence using C18O. The virial mass

calculated from 13CO is also roughly a factor of 1.7 larger due to the larger one-

dimensional velocity dispersion value, increasing to 238 M�. The virial mass is

⇠40% of the total cloud mass, indicating the 13CO emission shows the cloud is ‘less’

bound than the C18O emission but still gravitationally bound. The corresponding

gravitational binding energy is 6.2 ⇥1039 J (3117 M� km2 s�2). Using the 13CO

data, the gravitational energy is still ⇠5 times larger than the kinetic energy.

The main di↵erence between the measurements of cloud masses and energies

calculated from C18O and 13CO is primarily due to the FWHM velocity. 13CO has
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a FWHM cloud velocity higher than the C18O by a factor of 1.3. This suggests

there may be material with lower densities at higher velocities, which increases both

the virial mass and turbulent kinetic energy of the cloud and results in the cloud

being less bound than C18O calculations. However, there is also a possibility that

the larger FWHM cloud velocity is biased by the high-velocity outflows that can

potentially be traced by 13CO. The cloud properties calculated by 13CO emission

still suggest the cloud is gravitationally bound and turbulence is not strong enough

to surpass the gravitational binding energy.

4.1.6 12CO high-velocity optical depths

As discussed in Section 2.4.3, molecular outflows can potentially inject energy into

the cloud and act as a substantial driving source for turbulence in a molecular

cloud. 12CO emission is often optically thick even in higher velocity regions. It is

important to correct 12CO emission for optical depth because high optical depths

lead to underestimates of the masses and energetics of the molecular outflows. The

ratio of 12CO and 13CO main-beam temperature was used to calculate the 12CO

opacity per velocity channel, ⌧12(v). The maps are averaged into a single spectrum

and clipped at 3�rms and 1�rms for 12CO and 13CO respectively. With this clipping,

opacity could be calculated in the 12CO linewings over a velocity range ⇠0–9 km s�1.

The 12CO optical depth is calculated using a similar relation to the one used in

Section 4.1.5 (see also Curtis et al. 2010b; Graves et al. 2010; Hatchell et al. 1999a)

T12

T13
=

✓
⌫12

⌫13

◆2

f

✓
1 � exp(�⌧12)

⌧12

◆
, (4.13)

where T is the main-beam temperature of each CO transition, ⌫ is the frequency of

the isotopologues, f is the relative abundance of 12CO to 13CO (f ⇡ 77; Wilson and

Rood 1994), and ⌧12 is the optical depth of 12CO. Even though 12CO is expected to

become optically thin in the high velocity blue- and redshifted linewings, 13CO does

not extend as far in velocity range as 12CO emission. Therefore, this equation was

solved by assuming ⌧12 >> 1 so that 1 � exp(⌧12) ⇡ 1.

Figure 4.5 shows the ratio of 12CO to 13CO main-beam temperatures with the

calculated 12CO optical depth per velocity channel. The 12CO emission is optically
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Figure 4.5: 12CO optical depth variation with velocity, ⌧12(v). The ratio of 12CO to
13CO is shown as a function of velocity (red) and the 12CO optical depth is shown
for the same velocity region (black).

thick (⌧12 > 1) in the velocity range ⇠ 0–9 km s�1 with detectable 13CO. The

limit of the 12CO optical depth measurement is ⌧12 ⇠ 3. The ratio of 12CO and
13CO main-beam temperatures supports the suggestion that 12CO is optically thick

because the ratio only begins to approach the abundance ratio at the edges of the

velocity range. I note the ratio at redshifted velocities (⇠7–9 km s�1) does not fully

reach the abundance ratio, indicating 12CO is still optically thick in this range. The

opacity correction applied to the 12CO main-beam temperature is further discussed

in Section 4.1.7.

4.1.7 Outflow energetics

The 12CO J = 3 ! 2 gas traveling at high blue and redshifted velocities was used to

calculate the global outflow mass and energetics of the cloud. To exclude ambient

emission, the central velocity, v0, was calculated using the average C18O spectrum

of the cloud and fit with a Gaussian to determine the line centre. The cloud velocity

is measured to be 3.3 km s�1 and the line criterion used to determine the velocities

of ambient gas was v0 ± 2.5 km s�1. The line criterion used for the global energetics
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is similar to the outflow criterion (Section 3.5.1) but it accounts for the change

in the line centre up to 1 km s�1 that is seen across the cloud. However, some

ambient emission will be included in these calculations because there is no fixed

velocity boundary between outflow-driven gas and gas set in motion by ambient

cloud turbulence. Unlike the cloud properties calculated from C18O, the outflow

mass and energetics are only calculated from the high velocity ranges associated

with molecular outflows. The range of ambient velocities are further examined in

Section 4.1.7.1 and a new ambient velocity is chosen based on 13CO optical depths.

Assuming local thermodynamic equilibrium (LTE; as in Section 4.1.5), mass was

calculated assuming a distance of 120 pc, optical depth corrections were included per

velocity channel based on the calculations in Section 4.1.6, and a constant excitation

temperature of 50 K was used [Curtis et al., 2010b; Graves et al., 2010; Hatchell

et al., 2007a]. Mass was calculated using the relation

M

12CO = 3.77 ⇥ 10�8

✓
XCO

10�4

◆�1✓ d

120 pc

◆2

(4.14)

⇥
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◆ X

j
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TMB,j

dv

◆
M�,

where XCO is the relative abundance of CO to H2 [Blake et al., 1987], Apixel is the

pixel area (36 arcsec2) and j is an index over map pixels. To estimate the momentum

and energy,
R
TMB dv is replaced by

R
TMB|v � v0| dv and 1

2

R
TMB(v � v0)2 dv

respectively, where v0 is the line centre for the cloud. With the correction for 12CO

optical depth discussed in Section 4.1.6 and similarly for 13CO in Section 4.1.5, the

integrated main-beam intensity becomes

Z
Tcorr dv =

Z
TMB

⌧12

1 � exp (�⌧12)
dv (4.15)

and the momentum and energy estimates are corrected similarly. Blue- and red-

shifted main-beam temperatures are integrated from -8–0.8 and 5.8–15 km s�1 re-

spectively and the opacity correction is applied to the corresponding velocity chan-

nels 0–9 km s�1 (Section 4.1.6). Velocity channel limits are based on detectable
12CO emission at 1�rms.

The basic kinematics for the global outflowing gas in Ophiuchus are summarised
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Mass Momentum Energy
(M�) (M� km s�1) (M� km2 s�2)

Thin
Blue 0.20 0.74 1.49
Red 0.54 1.74 3.18
Opacity Corr.
Blue 0.42 1.36 2.36
Red 4.30 12.67 19.85
Inclination Corr.
Blue – 2.72 7.08
Red – 25.34 59.55

Table 4.2: Kinematics for the global outflowing gas assuming optically thin 12CO
linewing emission (thin), an optical depth correction (opacity corr.), and a correction
for inclination (inclination corr.).

in Table 4.2. The mass, momentum, and energy increase substantially by factors of

6.4, 5.7, and 4.8 respectively when the optical depth of 12CO is taken into account.

I note the mass of the redshifted outflowing gas is substantially higher than the

blueshifted gas, particularly seen in the opacity corrected values. This di↵erence is

the result of higher optical depths calculated in redshifted velocities (up to 9 km s�1),

which boosts the mass, momentum and kinetic energies in those channels. E↵ects

involving outflow inclination angle can also greatly reduce the amount of momen-

tum and energy observed. A correction for inclination can be applied to the blue-

and redshifted velocities for momentum and energy calculations. The line of sight

velocities should be corrected by a factor of 1/ cos(i), where i is the inclination an-

gle. Assuming random inclinations to the line of sight with uniformly distributed

outflows (i ⇡ 57.3 deg; Bontemps et al. 1996), the momentum will increase further

by a factor 2 and the energy by a factor 3 [Curtis et al., 2010b].

The kinetic energy found at higher velocities gives an insight into the amount

of turbulence generated by high-velocity molecular outflows. The outflow kinetic

energy can be compared to the turbulent kinetic energy of the cloud to further

examine the possibility for outflows to drive cloud turbulence and potentially unbind

the cloud. When inclination is taken into account, the total outflow kinetic energy

is 1.3 ⇥ 1038 J (67 M� km2 s�2). The total outflow kinetic energy is found to be

21% of the turbulent kinetic energy. This suggests that outflows are significant but
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Figure 4.6: Integrated outflowing gas for Ophiuchus. Values are in: mass (black -
M�), momentum (blue - M� km s�1), energy (green - M� km2 s�2).

not the dominant source of turbulence in Ophiuchus.

4.1.7.1 Global outflowing gas

The calculated energetics of the outflowing gas can vary with the channels chosen

for the outflow velocity range. I further examine the relationship of the mass,

momentum, and energy per velocity channel (opacity corrected) for the sum over

the Ophiuchus cloud in Figure 4.6 to determine how these properties depend on the

velocity range of the integrated emission. The bulk of the mass, momentum and

kinetic energy are within the ambient velocity range, indicating these properties

can significantly vary if the inner velocity boundaries are changed. In the outer

velocities, the kinetic energy and to a lesser extent the moment can become more

unreliable due to noise.

Figure 4.7 further examines the e↵ects of the inner and outer velocity ranges

on the outflow mass, momentum, and energy. This figure shows the total value of

mass, momentum and kinetic energy using (left) varying outer velocities assuming

a constant line centre and (right) varying inner velocities using a fixed outer veloc-
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Figure 4.7: Left: Shows the total sum value with a constant line centre and varying
outer velocities for the 12CO outflow mass and energetics calculations. Right: Shows
the total sum value with a constant outer velocity and varying line centres. Red and
blue lines correspond to red and blueshifted emission. Values are in: solid line - mass
(M�), dashed line - momentum (M� km s�1), dotted line - energy (M� km2 s�2).

ity. The variation of the outer channel with a constant inner velocity range (inner

velocities - blue: 0.8 km s�1; red: 5.8 km s�1) does reinforce that the kinetic energy

can be influenced by the choice of outer velocity for integration but only by up to

10M� km2 s�2. Specifically, when more channels are included in the kinetic energy

calculation, the energy begins to decrease due to noise in the outer channels that is

amplified by the factor (vo �v)2. The variation of the inner velocity with a constant

outer velocity (outer velocities - blue: -8.0 km s�1; red: 15.0 km s�1) a↵ects the mass

and energetics to a greater extent than the variation of the outer velocities. The

ambient velocity range is particularly important, causing either ambient emission to

be included in the outflow emission (due to a small ambient velocity range) or ex-

cluding velocity channels with outflowing emission (due to a large ambient velocity

range).

It is possible the criterion for ambient gas velocities used in the calculation of

outflow energetics (3.3 ± 2.5 km s�1) from Section 4.1.7 may have included lower

velocity outflowing gas. To better examine the velocity range of global ambient

emission, other factors can be used to determine ambient velocities including the

optical depth of the 13CO molecule which is expected to be optically thin in high-

velocity ‘outflowing’ velocities. I calculate the 13CO opacity per velocity channel
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⌧13(v) using the ratio of 13CO and C18O emission (T13/T18). I use the relation

T13

T18
=

1 � exp(�⌧13)

1 � exp(�⌧18)
(4.16)

where ⌧18 = ⌧13/X assuming an abundance factor X of 8. The 13CO and C18O

spectra at the positions of the eight sources with confirmed outflows (determined

by Section 3.5 to be sources 8, 16, 17, 21, 24, 25, 27, 30) were averaged to calculate

⌧13(v). This was done by increasing the pixel size to a 30 arcsec diameter to decrease

noise and extracting the spectra for each source with at least a 3� peak detection.

Spectra were then cut at 1�. Ambient emission was defined by velocity channels

with optically thick 13CO emission (⌧13 > 1). This is similar to the methods used

in Sections 4.1.5 and 4.1.6, however there is no assumption that C18O is optically

thin. This is due to the possibility of optically thick C18O emission in the immediate

regions of the dense cores (see Section 4.1.2).

Figure 4.8 shows the T13/T18 ratio and correspond ⌧13. Optically thick emission

spans ⇠2 km s�1, o↵ centre from the ambient cloud emission of 3.3 km s�1. It is

possible that optically thick emission is o↵ centre from the ambient cloud emission

due to more sources with confirmed outflows in Oph B, C, E, F which are known to

have higher ambient velocities (measured by C18O in Section 3.5). The peak 13CO

optical depth corresponds to a velocity 3.8 km s�1, which is 0.5 km s�1 greater than

the central velocity measured by C18O. Optically thick 13CO (⌧13CO > 1 is found at

a velocity range from 2.5–4.7 km s�1. I use this new velocity range from optically

thick 13CO to define ambient velocities in the cloud, which covers the ambient cloud

central emission at 3.3 km s�1 from C18O.

Using the new ambient velocity criterion and the same extreme velocity cuts

from Section 4.1.7, I recalculate the global outflow mass, momentum, and kinetic

energy, shown in Table 4.3. Mass, momentum, and energy increase by factors of 22,

11, and 6 respectively. This indicates a large percentage of the mass and energy is

found in lower velocities of the cloud not originally included in the vo ± 2.5 km s�1

ambient velocity criterion. In relation to the cloud energetics, the total outflow

energy (370 M� km2 s�2) is 1.2 times the turbulent energy of the cloud. This

suggests the global outflows may drive turbulence in the cloud, assuming a 2.2 km s�1

ambient velocity range.
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Figure 4.8: 13CO opacity per velocity channel ⌧13(v) with the ratio T13/T18 used to
define the ambient velocity range for the 13CO cloud mass calculations.
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Mass Momentum Energy
(M�) (M� km s�1) (M� km2 s�2)

Opacity Corr.
Blue 67 86 59
Red 38 67 64
Inclination Corr.
Blue – 172 178
Red – 133 192

Table 4.3: Global kinematics for the global outflowing gas assuming opacity cor-
rected 12CO linewing emission (opacity corr.) and with an a correction for inclina-
tion (inclination corr.). Ambient velocities were defined by the 13CO opacity.

When compared to the turbulent kinetic energy calculated from 13CO in Sec-

tion 4.1.5 which includes energy from less dense gas in the cloud than the C18O

calculation, the global outflow energy is 59% of the cloud binding energy, which

is higher than the 21% contribution calculated in Section 4.1.7, potentially indi-

cating the outflows could be significant in regulating star formation in the cloud.

Additionally, it is possible this ambient velocity range does not fully cover all of

the ambient emission in the cloud, causing the increase in the global outflow en-

ergy. The influence of outflows on the global cloud turbulence is further discussed

in Section 4.2.3, including the possibility for overlap between the ambient velocities

defined using C18O to calculate the cloud turbulence and outflow velocity ranges

used in calculating outflow kinetic energies.

4.1.7.2 Mass-velocity relation

Past studies [Chandler et al., 1996; Downes and Cabrit, 2003; Lada and Fich, 1996;

Masson and Chernin, 1993; Richer et al., 2000; Rodriguez et al., 1982; Stahler, 1994]

indicate that molecular outflows have a power law dependence between the mass of

the outflow M(v) per velocity. This dependence characterised by M(v) / v��

where � = 1.8 is the typical value for low mass outflows. The slope steepens when

�v = |v � vo| > 10 km s�1 (where vo is the ambient velocity) to values � ⇡ 3 � 7.

The mass-velocity relation is particularly important for understanding molecular

outflow acceleration, e.g. through entrainment by a jet, and the various components

of the outflow.
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Overall map

Blue: ɣ = 3.5 (1-3 km/s)
          ɣ = 5.0 (3-9 km/s)
Red:  ɣ = 5.0 (>4 km/s)

Hot dust

Blue:  ɣ = 5.0 (>2 km/s)
Red:  ɣ = 5.0 (>4 km/s)

Outflows

Blue: ɣ = 2.8 (2-7 km/s)
          ɣ = 10.0 (7-9 km/s)
Red:  ɣ = 5.0 (>3 km/s)

VLA 1623

Blue:  ɣ = 2.5 (>5 km/s)
Red:  ɣ = 2.5 (>5 km/s)

Figure 4.9: Plots of mass (M(v) ⇠ TMB(v)) per velocity of the averaged 12CO
spectrum across the cloud, the region corresponding to the hot dust from ISO-
CAM 12µm, regions corresponding to red and blue outflow lobes and the VLA 1623
outflow. Dotted lines correspond to the fit v�, where the value of � is shown for
each region.
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In Figure 4.9, I make a comparison between the sum of the main-beam emission

(not corrected for 12CO opacity)
P
j

TMB,j

(v) where j is an index over map pixels per

change in velocity �v. I investigate � from di↵erent regions of the cloud: (top left)

the entire map, (top right) the region corresponding to hot dust from the ISOCAM

12 µm emission defined in Section 3.4, (bottom left) the region corresponding to

outflow lobes identified in Section 3.5 and (bottom right) the region corresponding

to the Class 0 outflow VLA 1623 AB. At velocities below 1–2 km s�1, ambient

emission dominates the main-beam temperature (i.e. mass). For the total cloud,

there appears to be a power-law relation starting at 3 km s�1 for the blueshifted

emission which is not present for the redshifted emission. The blueshifted emission

shows � ⇡ 5.0 at velocities less than 2–3 km s�1 and � ⇡ 3.5 at velocities greater

than 3 km s�1. The redshifted emission shows � ⇡ 5.0 at velocities greater than

3–4 km s�1. For the region corresponding to hot dust, the slopes of both blue and

redshifted emission corresponds to � ⇡ 5.0. Regions corresponding directly to the 8

confirmed outflows in Section 3.5 show two power-law relations for the blueshifted

emission that are not seen in the redshifted emussion. The blueshifted emission

shows a slope that changes from � ⇡ 2.8 to 10.0 at ⇠7 km s�1. The redshifted

emission has a slope � ⇡ 5.0. Lastly, the region corresponding to the Class 0

outflow VLA 1623 show � ⇡ 2.5 for both the blue and redshifted emission.

One of the most noticeable di↵erences between the regions in Figure 4.9 is the

change in slope seen for the total molecular outflows. The slope is more pronounced

for the blueshifted emission and becomes steeper at ⇠7 km s�1. A similar break

can be seen for the total cloud, but the slope in blueshifted emission isn’t as steep

(� ⇡ 5.0). VLA 1623 in unlike the other regions in the cloud where both blue and

redshifted emission has a much shallower slope at high velocities > 5 km s�1.

The slope found for the regions, particularly for the blueshifted emission, is much

steeper than the typical � ⇡ 1.8 that is found for outflows. It is possible the steeper

slopes seen in the mass-velocity relationships may be due to the higher-J transition

of 12CO used for this study [Curtis, Ph.D. Thesis; Downes and Cabrit 2003]. Lower-

J transitions are better at detecting high-velocity material at lower densities that

produce flatter profiles. Stahler [1994] calculated � for Class 0 source VLA 1623

and found the redshifted slope to be 1.83 and the blueshifted slope to be 1.98, which

is inconsistent with the total mass-velocity relation I calculate for the VLA 1623
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outflow or the total outflows. Out of the eight confirmed outflows in this region

(Section 3.5), only VLA 1623 is a Class 0 source while the other outflows are driven

by Class I, flat spectrum, and Class II sources. It is possible that older outflows

in the region have a steeper mass-velocity relation compared to younger and more

energetic outflows [Richer et al., 2000; Smith et al., 1997], which is supported by

Figure 4.9 with VLA 1623 having a shallower slope than the total outflows.

4.1.8 Other drivers of high velocity emission

Turbulence can be produced by a variety of sources in a molecular cloud in addition

to molecular outflows. Stellar winds from powerful main-sequence stars and outflow

remnants from more evolved sources are other potential drivers of cloud turbulence.

Even though outflows do not appear to be the dominant driver of turbulent energy

in the Ophiuchius cloud as described in Section 4.1.7, the region is surrounded by

nearby B-type stars S1 and SR3 and B2V star HD 147889 which drives a PDR near

Oph A (as described in Chapter 1). Additionally, Ophiuchus lies south of the Upper

Scorpius OB association region which bombards the the main Oph cloud L1688,

L1689 and Oph North clouds with radiation and winds [de Geus, 1992; Hatchell

et al., 2012; Nutter et al., 2006].

Using the molecular outflow analysis from Section 3.5 and the ISOCAM 12 µm

data, masks can be created to quantify the kinetic energy of high velocity 12CO

emission associated directly with molecular outflows and winds from the nearby

B stars in the Oph A region. This analysis is performed using the same method

as Section 4.1.7 for the global high velocity ‘outflowing’ gas. Outflow masks are

created using contour plots corresponding to the red and blue outflows lobes from

Section 3.5, where rectangular sections are copied directly from the map. This

gives an order of magnitude estimate of the kinetic energy in the outflow regions.

A mask corresponding to the hot dust from the Oph A stars is created using a

45 MJy sterad�1 cut from the ISOCAM 12 µm data, similar to Section 3.4.

Table 4.4 details the results of the kinetic energy associated directly with outflow

lobes, regions potentially corresponding to stellar wind from stars close to Oph A

(hot dust) and regions that do not include either outflow lobes or hot dust. The

energy has been calculated using the two di↵erent methods for identifying ambient
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Kinetic Energy (M� km2 s�2)
Scenario vamb = ±2.5 km s�1 vamb = 2.5–4.7 km s�1

Global 67 370
Outflows 22 74
Hot dust 17 100
Other emission 27 196

Table 4.4: Kinetic energies for the global outflowing gas assuming opacity corrected
12CO linewing emission and with a correction for inclination. Ambient velocities
from Sections 4.1.7 and 4.1.7.1 are shown. Scenarios include global high velocity
kinetic energy over the cloud, corresponding to outflow lobes, regions with hot dust
emission and high velocity emission that does not correspond specifically to either
outflow lobes or potential stellar winds.

velocities in the cloud (Sections 4.1.7 and 4.1.7.1), indicated by the vamb range.

For the ambient velocity range in Section 4.1.7 (�v = ±2.5 km s�1), the outflows

are ⇠33% of the global high velocity kinetic energy and the hot dust is ⇠26%

which leaves 41% of the high velocity kinetic energy unaccounted for. Using the

smaller ambient velocity range derived from 13CO opacity (�v =2.5–4.7 km s�1),

the outflows are ⇠20% of the high velocity kinetic energy and the hot dust is ⇠27% of

the energy which leaves 53% unaccounted for. In both scenarios, there is a significant

amount of global high velocity energy that is not driven by embedded protostars

through outflows or stellar winds from the stars near the Oph A region. Therefore,

it is possible other sources are generating this turbulence at higher velocities, i.e.

the Upper Sco OB association. Potential drivers of this high-velocity emission are

further discussed in Section 4.2.3.

4.2 Discussion

In Section 4.1, the mass and energetics of the cloud and molecular outflows were

presented using multiple CO J = 3 ! 2 isotopologues. The methods used to

calculate these global properties suggest di↵erent results for the e↵ect of outflows

on turbulence. Additionally, the significant high-velocity emission could potentially

result from other factors in the cloud (e.g. hot dust from near B-type stars or stellar

winds). In this section, the global cloud properties are further discussed, including
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the role of outflow kinetic energy in driving cloud turbulence. An attempt is made

to better understand the source of global high-velocity emission in the cloud (e.g.

molecular outflows, hot dust and stellar winds). Lastly, the global properties of the

Ophiuchus L1688 cloud are compared to the Perseus and Serpens Main clouds to

discuss the di↵erences between star forming regions in the Gould Belt.

4.2.1 Methods for calculating outflow properties

As described in Sections 4.1.7 and 4.1.7.1, the outflow energetics were calculated

using two di↵erent ranges for ambient velocities, the range based on a Gaussian

fit to the C18O average spectrum (vo ± 2.5 km s�1) and the range defined by the

average 13CO optical depth measurements across the cloud (2.5–4.7 km s�1). These

two methods result in outflow mass, momentum and kinetic energy calculations

that di↵er by factors of 22, 11 and 6 respectively. Due to the variation in these

calculations, the resulting influence over outflows on the overall global turbulence of

the cloud is uncertain. The outflow kinetic energy calculated by the larger ambient

velocity range determined from the C18O spectra suggests outflows are a significant

source of turbulence but not the dominant source at 21% of the turbulent kinetic

energy. The outflow kinetic energy derived from the smaller ambient velocity range

defined by the 13CO optical depth measurements suggests outflows are the dominant

source of turbulence and exceed the turbulent kinetic energy (factor 1.2 larger). It is

important to further examine the di↵erences between these calculations and discuss

the potential influence of outflows on the overall global turbulence.

It is possible the velocity ranges used to calculate the outflow properties include

ambient material since it is not possible to completely exclude this emission from the

outflow calculations. This is less likely for the larger ambient velocity range (defined

by the C18O velocities) since a larger range was used to account for variations in the

the central cloud velocity. However for the smaller ambient velocity range defined by
13CO optical depths, this is particularly important since this method shows higher

mass, momentum and kinetic energy for the molecular outflows. It is possible that

some ambient velocity emission is optically thin in 13CO and the primary velocity

channels with optically thick emission correspond directly to the densest regions

of the cloud (i.e. protostellar cores). In this case, I would be overestimating the
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properties of the molecular outflows and underestimating the ambient velocity range.

This would bias the comparison between the turbulent and outflow energies, leading

to a higher percentage of turbulence driven by molecular outflows. In the future,

this method can be revisited and a lower optical depth ⌧

13CO could be explored as a

limit for the ambient velocity range. Alternatively, since C18O is expected to trace

the bulk motions of the cloud, the ambient velocity range could be defined as the

range of velocities with at least a 3� detectable C18O measurement (corresponding

to ⇠2.0–5.5 km s�1).

Since the method described in Hatchell et al. (2005) has been used in past re-

search involving Gould Belt clouds (e.g. Curtis et al. 2010; Graves et al. 2010),

I continue to use the method with ambient velocity defined by the C18O data (i.e.

vo ± 2.5 km s�1) in the following sections. This allows me to compare the global

properties of the Ophiuchus cloud to the other Gould Belt clouds in Section 4.2.4.

4.2.2 Comparison of energetics with Nakamura et al. [2011]

Contrary to the results presented in Section 4.1.7, Nakamura et al. [2011] suggested

that protostellar outflows can drive turbulence in the region after finding the total

outflow energy injection rate (Ltot ⇠ 0.2 L�) to be larger than the dissipation rate of

the supersonic turbulence (Lturb ⇠ 0.06–0.12 L�) assuming optically thin emission.

I use a similar method to calculate the global outflow energy injection rate Lglobal =

Eout/TI where Eout is the global outflow kinetic energy and TI is the lifetime of a

Class I protostar (⇠ 0.5 Myr; Evans et al. 2009). This gives a global outflow energy

injection rate Lglobal = 0.02 L�, which is a factor of 10 smaller than the injection rate

from Nakamura et al. [2011]. The di↵erence between the outflow energy injection

rates is mainly due to my assumption of a longer outflow timescale that better reflects

the age of Class I protostars as opposed to calculating dynamical timescales for

individual outflows (⇠1.5⇥104 yr average). The majority of protostars in Ophiuchus

driving outflows are Class I, which are expected to drive outflows on longer timescales

(comparable to their lifetime). Additionally, the Ophiuchus molecular cloud has

regions of high velocity gas that cannot always be assigned directly to an embedded

protostar, but may be the result of jets or more evolved sources without a 12CO

outflow detection. It is important to use the longer timescale to account for this
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material. Nakamura et al. [2011] calculates the turbulent dissipation rate from

Mac Low (1999),

Lturb = f

1
2MvFWHM

2

�d/vFWHM
, (4.17)

where f ⇠ 0.33 is a non dimensional coe�cient, M is the cloud mass, vFWHM is

the FWHM velocity and �d is the driving scale of supersonic turbulence. Using

the values calculated in Section 4.1.3, I calculate the turbulence dissipation rate to

range from 0.05–0.12 L� on driving scales from the diameter of the cloud (1.0 pc)

down to the size of an outflow (⇠0.4 pc). There are increased turbulent dissipation

rates potentially due to the optical depth correction on the C18O data. Comparing

the injection rate using the longer timescale (0.02 L�) to the turbulent dissipation

rate suggests it is lower by a factor of 2.5–6.0 (depending on the driving scale). This

result agrees with the conclusion that global outflows in the Ophiuchus region are

significant but not necessarily the dominant driver of turbulence in the cloud.

Alternatively, the turbulent dissipation rate can also be derived from the 13CO,

similar to Section 4.1.5 where I calculate the mass and energetics of the cloud. 13CO

predicts dissipation rates ranging from 0.14–0.32 L� on driving scales from the size of

the cloud (0.94 pc) to the length of an outflow (0.4 pc ), which is higher than results

from C18O. Using these values, the outflow injection rate is a factor of 7–23 times

smaller than the dissipation rates. Even using the smaller dynamical timescale, the

outflow injection rates predicted by Nakamura et al. [2011] are comparable or less

than the turbulent dissipation rates.

4.2.3 High-velocity emission

As described in Section 4.1.8, there is a substantial amount of high-velocity emission

that does not appear to correspond to molecular outflows (classified in Chapter 3)

or regions with hot dust corresponding to nearby B-type stars. Using the standard

ambient velocity defined by the C18O spectra, ⇠41% of the high-velocity material

does not have an apparent source. It is possible the remaining turbulence in the

region is the result of remnants from past outflows, high-velocity emission resulting

from the H2 knots or underlying jets from less embedded sources (i.e. Class II

protostars) or stellar wind from the nearby Upper Scorpius OB association.
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4. OPHIUCHUS: GLOBAL PROPERTIES

The lower outflow energy relative to the turbulent kinetic energy found in the

Ophiuchus cloud could be indicative of the lower star formation activity in the

region. The sheer number of Class II YSOs (⇠60% of the YSO population) in

Ophiuchus is potentially indicative of a burst in star formation activity that declined

⇠0.1 Myr ago [Evans et al., 2009]. The decrease in star formation would lead

to an eventual decrease in the ability for outflows to drive cloud turbulence since

fewer protostars are at an age where powerful molecular outflows are produced (i.e.

Class 0/I protostars).

Less embedded Class II sources found in the region could still drive some high-

velocity emission. High-velocity remnants from outflows may remain or a jet inter-

acting with cloud material may contribute to the overall cloud turbulence. A good

example of this is found in Figure 3.8 of Chapter 3, located in the Oph A region. H2

knots f10-01 a–g correspond directly to a Class II source [Gómez et al., 2003]. There

is some corresponding blueshifted emission to the H2 knots, potentially indicating

the presence of a remnant outflow or an underlying jet interacting with surrounding

molecular gas. Another example is H2 knot [GSWC2003] 2 in the Oph CEF region

(see Figure 3.17 in Chapter 3). As discussed in Section 3.6.3, this H2 knot is near

Class I source WL 16; however, the shape of the knot does not indicate it is being

driven by the source. A noticeable ‘bubble’ of high-velocity blue and redshifted

emission corresponds directly to the knot, north of the Class I source, but does

not appear to be driven by the protostar. These cases of unexplained high-velocity

molecular gas could indicate that protostars continue to contribute to turbulence

in their natal cloud even as they become less embedded. There are numerous H2

knots and HH objects found in the region that could contribute to turbulence in the

cloud.

The Upper Sco OB association is a region to the north of the Ophiuchus cloud

complex. Stellar winds and a potential supernova explosion of the ⇣ Oph binary

companion is expected to create an expanding HI shell that surrounds Upper Sco

[de Geus, 1992]. This shell impacts on the ambient material from the Ophiuchus

cloud, including L1688 and other clouds located in Ophiuchus North. It has been

suggested from past work [Loren and Wootten, 1986; Vrba, 1977] that star formation

was initially triggered in L1688 from compression due to the OB association. It is

possible that stellar winds driven by Upper Sco could generate high-velocity blue
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and redshifted emission in the cloud, leading to turbulence that is unaccounted for

by molecular outflows. This is consistent with Evans et al. [2009] work suggesting

a burst of star formation activity triggered by Upper Sco that has subsequently

declined, leading to less star formation activity (and fewer Class 0 protostars in the

region). As discussed in Section 4.1.4, it is also possible this compression has lead

to higher gravitational energy leading to the cloud being overbound (suggested by

Nakamura et al. 2011). In this case, Upper Sco may still drive some turbulence in

the region but not enough to support the cloud against collapse.

4.2.4 Comparison of Gould Belt clouds

A main goal of the Gould Belt Survey is to observe a number of nearby star forming

regions in our Galaxy. This is particularly important for better understanding tur-

bulence in a molecular cloud, the driving force behind turbulence and global cloud

collapse. Using the GBS HARP observations, past studies [Buckle et al., 2010; Cur-

tis et al., 2010b; Graves et al., 2010] have similarly calculated the mass, energetics

and outflow energetics of molecular clouds in the Gould Belt (Perseus and Serpens).

These regions can be compared to Ophiuchus to investigate the turbulent support

mechanisms in a variety of environments.

Table 4.5 summarises the global mass, energetics, outflow energy turbulent dis-

sipation rate and outflow injection rate in Ophiuchus compared to other nearby star

forming regions. The Perseus molecular cloud includes regions NGC 1333, IC 348,

L 1448 and L 1455. The Serpens molecular cloud only includes the ‘Serpens Main’

region. Outflow energies assume random inclination. All regions use C18O for cal-

culating the total mass and kinetic energy and 12CO for the global outflow energy.

Turbulent dissipation and outflow injection rates are calculated using the method

in Section 4.1.7, Equation 4.17. The range of turbulent dissipation rates are the

result of a cloud and outflow driving scale and outflow injection rates are calculated

assuming the 0.5 Myr driving timescale. Outflow driving scales are taken from Cur-

tis et al. [2010b] and Graves et al. [2010], where Perseus clouds have a driving scale

estimated at ⇠0.15 pc and Serpens Main has a driving scale ⇠0.23 pc.

In terms of energy, the molecular cloud ⇠10 arcmin southwest of the cluster

IC 348 is one of the most similar clouds to Ophiuchus. I note that I refer to the
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bright molecular cloud as ‘IC 348’ as in Curtis et al. [2010b] even though it is more

accurately associated with the ‘Flying Ghost Nebula’ [Boulard et al., 1995]. The

outflow energies are ⇠38% of the turbulence in the region which is slightly higher

than the global outflow energy in Ophiuchus (21%), indicating that outflows are

unlikely to drive turbulence in the cloud. Additionally, this is reflected by low

outflow injection rates in comparison to turbulent dissipation rates. The majority

of sources in IC 348 are starless cores and indicate the region is quite young [Curtis

et al., 2010b] though there is evidence the region is a remnant of a larger cloud

that formed the IC 348 cluster. It is possible that the nearby cluster triggered star

formation in the molecular cloud. As discussed in Section 4.1.8, other factors can

drive high velocity turbulence in molecular clouds including radiative wind from

nearby stars. It is possible that both Ophiuchus and IC 348 have a significant

fraction of the turbulence driven by these stellar winds. Additionally, both regions

have low turbulent kinetic energy to gravitational binding energy, where IC 348 has

a kinetic energy value less than 1% of its gravitational binding energy indicating the

cloud is gravitationally bound like Ophiuchus.

Conversely NGC 1333, L1448, L1455, and Serpens Main have outflow energies

comparable to the total kinetic energies of the regions, indicating a main driver of

turbulence in these clouds is most likely high velocity outflows. NGC 1333 is the

most active region in the Perseus molecular cloud with outflow energies ⇠3 times

the kinetic energy of the cloud. Knee and Sandell [2000] suggest the structure of

the region is widely formed from cavities produced by these outflows and that it

is likely the outflow can destroy the cloud. The outflow energies are around ⇠16%

of the gravitational binding energy, which indicates that outflows can regulate star

formation and drive turbulence in the region if they can be e�ciently coupled to

the bulk motions of the cloud [Curtis et al., 2010b]. Both L1448 and L1455 have

outflow energies greater than the kinetic energies. L1448 is particularly noticeable

with an outflow energy a factor of 2 larger than the gravitational binding energy of

the cloud. Though Curtis et al. [2010b] notes the outflows extend beyond the parent

cloud, a portion of the outflow energy could be coupled to the cloud and potentially

lead to its destruction. Additionally, L1455 has outflow energies that are roughly

one-third of the overall binding energy of the cloud. Like L1448, Curtis et al. [2010b]

notes that the outflows extend past the cloud and are upper energy limits.
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Unlike the Perseus clouds that have outflow energies exceeding the turbulent

energies, Serpens has outflow energies that are comparable to the turbulence mea-

sured in the cloud (⇠68%) and ⇠61% of the binding energy. The cloud appears

to be weakly bound, which means on small scales there may be areas of collapse

and other areas of expansion. Graves et al. [2010] concludes the outflows will have

a strong influence on the structure in the region and fits with theories involving

outflows driving supersonic turbulence in active star forming regions (i.e. Matzner

2007; Nakamura and Li 2007).

4.3 Conclusions

In this chapter, I examined the HARP 12CO, 13CO and C18O J = 3 ! 2 data of

the Ophiuchus molecular cloud. These data were used to search for outflows and

calculate the cloud mass and energetics of the region. The main conclusions can be

summarised:

1. Cloud mass and energetics. Using optical depth corrected C18O emission, I

calculated a total cloud mass of 515M� and a virial mass of 141 M�, indicating

the cloud is gravitationally bound. These results are in agreement with past

studies [Loren, 1989; Nakamura et al., 2011; Tachihara et al., 2000]. The

turbulent kinetic energy was found to be 6.3 ⇥1038 J and gravitational binding

energy 4.5 ⇥1039 J, where the turbulence in the region is a factor of 7 smaller

than the gravitational energy. To test the possibility of C18O not accounting

for less dense material in the cloud, I also used 13CO to calculate the mass

and energetics. Mass increased by a factor of 1.1 (238 M�). Additionally, the

kinetic energy increased by a factor of 2 (1.3 ⇥1039 J) and the binding energy

decreased to 3.8 ⇥1039 J, indicating the cloud is gravitationally bound but less

bound than using C18O emission.

2. Outflow mass, momentum and energy. The global outflow properties

were calculated from the 12CO data with a correction for optically thick emis-

sion in the line wings. The total mass in outflows was found to be 4.72 M�,

momentum was 28.06 M� km s�1 and kinetic energy was 66.63 M� km 2 s�2.

The outflow kinetic energy was found to be ⇠21% of the turbulent energy in
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the region, indicating that outflows are a significant driver of turbulence but

not necessarily the main source. This disagrees with Nakamura et al. [2011]

that concluded outflows have a comparable or larger outflow energy injection

rate than turbulent dissipation rate. Using longer outflow timescales, I show it

can be misleading to use a dynamical timescale for these calculations and con-

clude the outflows are not the main driving source of turbulence in Ophiuchus.

Additionally, I test an alternate method of defining ambient velocities using
13CO opacity to examine the change in calculated outflow mass, momentum

and energy which increase by factors of 22, 11 and 6 respectively. These results

show the outflows have an outflow energy 1.2 times larger than the turbulent

energy in the cloud and ⇠59% of the gravitational binding energy.

3. Cloud comparison. Using HARP data, I compared a variety of regions

observed by the Gould Belt Survey (Serpens Main and regions in Perseus:

NGC 1333, IC 348, L1455 and L1448) to the Ophiuchus molecular cloud (see

Curtis et al. 2010b; Graves et al. 2010). I find IC 348 to be most similar to

Ophiuchus with a low outflow energy compared to the turbulent energy in the

cloud. Both regions have stellar radiation bombarding the clouds (Upper Sco

OB association for Ophiuchus, ‘Flying Ghost Nebula’ for IC 348) which may

drive the turbulence calculated for the regions.
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Chapter 5

Ophiuchus: HCO+ analysis and

non-LTE modelling

HCO+ J = 4 ! 3 emission with a rest frequency of 356.73428 GHz is typically used

to trace the warm, dense gas which is associated with active star formation (n
crit

⇠
8⇥106 cm�3, Eu ⇠ 43 K). As a dense gas tracer, observations of HCO+ can be used

to investigate the relation between high density regions and high column density

in molecular clouds. Recent Herschel observations of Gould Belt clouds support

a column density threshold for protostars at a level of N(H2) = 1022 cm�2 [André

et al., 2010] originally suggested from CO observations of Taurus [Onishi et al., 1998].

This column density may be a result of filament fragmentation, as it corresponds

to a critical mass per unit length in filaments [Ostriker, 1964] and/or it may link to

thresholds in the density probability density function or PDF [Kainulainen et al.,

2009]. Either way, it underlies the major issue in star formation of why so little of

the mass of a molecular cloud ultimately ends up in stars, leading to global star-

formation e�ciencies (SFEs) of a few percent [Evans et al., 2009]. In addition to

density calculations, HCO+ is often optically thick (⌧HCO+ ⇡ 103 ⌧C18O) making it

a useful tracer of cores in a state of collapse through blue asymmetries in the line

profile (e.g. Myers et al. 1996) and a tracer of outflows (e.g. van Kempen et al.

2009).

There have been several previous studies of dense gas tracers in the Ophi-

uchus L1688 cloud using a variety of molecules. Dense cores have been studied
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across the cloud using H13CO+ J = 1 ! 0 (ncrit ⇠ 105 cm�3; Maruta et al.

2010) and the Oph B region has been studied using N2H+
J = 1 ! 0 (ncrit ⇠

2⇥105 cm�3), NH3 (1,1) (ncrit ⇠ 104 cm�3), N2D+
J = 3 ! 2 (ncrit ⇠ 8⇥105 cm�3),

H2D+
J

K�1K1 = 111 � 110 (ncrit ⇠ 105 cm�3) and N2H+
J = 4 ! 3 (ncrit ⇠

7.7 ⇥ 106 cm�3; Friesen et al. 2009, 2010a,b). Work from van Kempen et al. [2009]

used both C18O J = 3 ! 2 and HCO+ J = 4 ! 3 to classify the evolutionary

stages of protostars in the Ophiuchus main cloud. Similarly, Simpson et al. [2011]

used large-scale maps of HCO+ J = 4 ! 3 in Ophiuchus to analyse prestellar cores,

specifically investigating blue asymmetries in the line profile in comparison to the

Jeans mass. These studies have mainly focused on core detection and properties

rather than the potential relation between higher density and column density in the

cloud.

In this chapter, I present the HCO+ J = 4 ! 3 observations of the main L1688

cloud in Ophiuchus using the JCMT under the proposals M11AU13 and M11BU11,

which is the largest survey of a dense gas tracer at high angular resolution (PI John

Richer). I examine the relationship between HCO+ as a dense gas tracer and column

density tracers like C18O, 850 µm continuum emission and visual extinction Av. I

then use non-LTE radiative transfer codes RADEX and TORUS to estimate the density

traced by HCO+ emission in the cloud.

5.1 HARP HCO+ J = 4 ! 3 reduction and obser-

vations

As discussed in Chapter 1, HARP uses a digital spectrometer called ACSIS. This in-

strument generates raw data files in a three-dimensional format, where each spectral

channel was written out with a time stamp from each receptor. The raw time-series

cube was regridded to a position-position-velocity cube (PPV; RA ⇥ Dec ⇥ velocity)

using the SMURF1 data reduction package [Jenness et al., 2008].

Before the PPV cube was produced, some receptors needed to be fully or par-

tially masked over a brief time period due to poorly performing receptors or bad

baselines. To mask out these sections, the KAPPA chpix command was used to set

1http://www.starlink.ac.uk/docs/sun258.htx/sun258.html
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Starlink GAIA::Skycat

a20110703_00011_01_0001.sdf(,8,) ()

GaiaTempCubeSection2.sdf

3.474367 2011-07-03 07:05:41 

emily Sep 30, 2013 at 16:40:33

Starlink GAIA::Skycat

a20110703_00011_01_0001_d8.sdf(,8,) ()

GaiaTempCubeSection2.sdf

3.474367 2011-07-03 07:05:41 

emily Sep 30, 2013 at 16:37:53

Receptor 8 before masking:

After masking:

Figure 5.1: Example of poor performance by receptor number 8. The x-axis corre-
sponds to the spectral channels and the y-axis corresponds to the time stamp. In
the ‘after’ image, the section of time corresponding to the poor performance was set
to BAD.

particular receptors to BAD. The HCO+ data for Ophiuchus had repeat poorly per-

forming receptors from receptor numbers 8 and 10 (H07 and H09) that I partially

or completely masked as they were found. An example of the poorly performing

receptor number 8 can be seen in Figure 5.1 before and after masking techniques

were applied. A large horizontal stripe extends across the length of the receptor,

where the x-axis corresponds to the spectral channels and the y-axis is the time

stamp. This indicates the receptor performed poorly at a certain point in time and

this section of the receptor must be set to BAD.

Once bad receptors were removed from the data, the raw time-series cube was

then converted into the three-dimensional PPV cube using the SMURF makecube

command. Multiple raw time-series files were coadded using this command, allowing

the resulting PPV cube to be created from multiple observations on various nights.

The pixel size was specified to be 6 arcsec using a 9 arcsec FWHM Gaussian gridding

kernel, which resulted in an equivalent FWHM beam size of 16.3 arcsec.

Once the PPV cube had been generated, I then removed the linear baseline using

KAPPA mfittrend. This routine can fit up to a 15th order polynomial to a molecular

line free portion of the data along the velocity axis. The baseline was subtracted

from the original data cube. Using KAPPA sqorst, the data was then rebinned to a

0.2 km s�1 spectral resolution.

Figure 5.2 shows the integrated HCO+ J = 4 ! 3 emission. Like the CO J =
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Oph A

Oph B2

Oph C, E and F

Oph B1

Figure 5.2: HCO+ integrated main-beam intensity map (K km s�1) with contours
at levels 1.5, 3, 5, 8, 10, 15 and 20 K km s�1. Map has been integrated from -2 to
10 km s�2.
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Figure 5.3: HCO+ noise maps in main-beam temperature (K).

3 ! 2 observations in Chapter 3, the map is centred on the L1688 main cloud of

Ophiuchus at 16h27m32.0s -24o33000.000. The map was planned in three sections,

designed to cover the Oph A, B and CEF regions based on the C18O data from

Chapter 3. Observations were taken between June and July 2011 in Grade 3 weather

conditions. The noise (RMS) of the map is shown in Figure 5.3 for 0.2 km s�1 velocity

channels with an average main-beam temperature noise 0.29 K. The edges of the

map have been clipped due to increased noise. The average main-beam temperature

noise values for the three di↵erent maps are 0.29 K for Oph A, 0.30 K for Oph B

and 0.28 K for the Oph C, E, and F regions.

5.2 Source comparisons

Since HCO+ has a high critical density, it is possible HCO+ emission detected in

molecular clouds indicates these regions have corresponding higher densities. Past
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work from van Kempen et al. [2009] utilised this tracer and C18O in the Ophiuchus

cloud to identify the evolutionary stages of protostars. Embedded protostars (i.e.

Class 0 and I sources) were thought to have higher levels of HCO+ emission as

opposed to less densely embedded ‘disk’ sources (i.e. flat spectrum or Class II

protostars). Hatchell et al. [2005] showed that embedded sources (protostars and

starless cores) also have a clear relation to column density, where the number of

cores and embedded protostars increase with increasing column densities. Using the

high density tracer HCO+, a similar relation may be found relating the number of

cores to density.

Protostellar sources were identified using the Spitzer c2d survey, described in

Chapter 3. The precursor to protostellar cores are pre-stellar or starless cores. Star-

less cores are thought to be regions of higher density that are most likely transient

and may or may not result in the formation of a protostar. Pre-stellar cores are the

precursors of protostars and are expected to be gravitationally bound. I denote ‘pre-

stellar cores’ to be a list of SCUBA 850 µm identified cores originally from Johnstone

et al. [2004] and remade by Simpson et al. [2008]. ‘Starless cores’ were identified by

Stanke et al. [2006] from 1.2 mm continuum data. Simpson et al. [2008] states these

sources are unlikely to be gravitationally bound since many of these sources have

low surface brightness and are more extended.

Figure 5.4 shows histograms of ‘pre-stellar’ and ‘starless’ cores, ‘embedded’ sources

(Class 0/I protostars with ↵ > 0.3 as in Chapter 3) and more evolved ‘flat spectrum’

sources (�0.3 < ↵ < 0.3). These histograms denote the number of sources binned

according to the HCO+ emission. Sources with 0 K km s�1 integrated intensities

had HCO+ peak main-beam temperatures less than 3� RMS.

A Kolmogorov-Smirnov test (KS test) can be used to test if these sources are

from similar distributions. The two-sample KS test compares two one-dimensional

distributions and determines if the distributions di↵er. The null hypothesis states

the samples are drawn from the same distribution. The KS statistic quantifies the

maximum distance between the empirical distribution function of the two samples.

For two samples of n and m members, the KS statistic is

D = max |S
n

(x) � S

m

(x)| , (5.1)
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Figure 5.4: Histograms corresponding to the fraction of sources with HCO+ emis-
sion.
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Source Pre-stellar Starless Flat
Pre-stellar – 0.603 0.603
Starless – – 0.603
Class 0/I 0.603 0.957 0.603

Table 5.1: P-values for the comparison between source distributions, derived using
KS tests.

where S
n

(x) and S

m

(x) are the empirical distributions for n and m members respec-

tively. The KS statistic can be related to the p-value, or the probability the null

hypothesis is true and the distributions are the same. Low p-values indicate the null

hypothesis is false (distributions are di↵erent) and high p-values indicate the null

hypothesis is true.

Table 5.1 shows the p-values for the comparison of source distributions between

the pre-stellar and starless cores, embedded protostars and flat spectrum sources.

The p-values suggest the null hypothesis is true and the sources have the same dis-

tribution. I note the pre-stellar cores, starless cores and the flat spectrum sources

appear to have HCO+ integrated intensities peaking around 0–1 K km s�1. This

trend is not seen in the embedded Class 0/I sources that have a peak at 3–4 K km s�1

and > 6 km s�1. This increase of Class 0/I sources with higher HCO+ emission

could potentially indicate these regions form in areas with higher densities. Since

the KS test compares the empirical distribution functions of the two samples (i.e. re-

distributing the fraction of sources corresponding to the HCO+ integrated intensity

bins), the test can result from two distributions with the same parent distribution

appearing di↵erent due to random sampling, especially when the sample is small.

5.3 Comparison between HCO+ and column den-

sity tracers

To investigate the relationship between density and column density in Ophiuchus, I

compare the high density tracer HCO+ to several column density tracers including

C18O J = 3 ! 2 from HARP, SCUBA–2 850 µm dust continuum and the visual

extinction Av from the Spitzer Space Telescope. Trends in the maps are further

analysed to investigate the relation between high density and high column density
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regions in the cloud.

5.3.1 Column density tracers

Figure 5.5 shows a comparison of column density tracers C18O (optical depth cor-

rected integrated intensities in K km s�1; see Chapter 4), SCUBA-2 850 µm dust

continuum (Jy beam�1) with 12CO molecular line emission subtracted from the con-

tinuum and Spitzer visual extinction Av data (mag). Black contours denote HCO+

integrated intensities corresponding to 1.5, 3, 5, 8, 10, 15 and 20 K km s�1. Cor-

responding column densities for each tracer are shown as cyan contours. Contour

levels range from N(H2) = 1, 5, 10, 30 and 50 ⇥ 1022 cm�2 for C18O and 850 µm data

and 2 and 3 ⇥ 1022 cm�2 for the visual extinction data. Methods for calculating the

column density from these tracers are described in Section 5.4.2, where 13CO was

used to calculate excitation temperatures used in the column densities derived from

C18O (Chapter 4) and a constant dust temperature of 10 K was used for the 850 µm

derived column densities. SCUBA-2 850 µm data is a part of the Gould Belt Survey

(Ward-Thompson et al 2007) and was reduced in 2013 by PhD student Kate Pattle.

Molecular line contamination from 12CO was subtracted from the continuum in the

reduction process using the recent method described in Chapter 2. Visual extinction

data was derived from Spitzer Space Telescope observations, taken as a part of the

Gould’s Belt Survey [Allen et al., 2010]. This data has a 270 arcsec angular resolu-

tion, which makes this map not as spatially sensitive as the other column density

tracers or HCO+. However, the basic shape of the high extinction regions follows

the recognisable outline of the L1688 cloud.

Oph A shows a similar spatial relation between HCO+ and both C18O and

850 µm data. There is an increase in emission on the eastern side of the core,

extending into a northern clump-like area. Both C18O and 850 µm show a peak

in emission between two peaks at the centre of Oph A, potentially indicating there

is a face-on filament at the centre of the clump. The central ‘hole’ of low HCO+

emission is not reflected in either C18O or 850 µm emission.

The Oph B region appears drastically di↵erent in column densities derived from

C18O and 850 µm data. The main star forming clump Oph B2 shows a distinct

lack of C18O emission in the centre of the region. The 850 µm emission shows an
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increase in dust continuum corresponding to the centre of Oph B2 that also relates

to increased HCO+ integrated intensities. The lower C18O emission could indicate

the molecule is depleted onto dust grains in this region. Conversely, Oph B1 is

traced by both C18O and 850 µm emission which corresponds to HCO+ emission.

The main emission seen in the Oph CEF regions in HCO+ emission is a filament-

like structure in the southern portion of the cloud, corresponding closely to Oph E

and F. Little HCO+ emission is found in the Oph C core. The C18O and 850 µm

data show emission in this region that is less defined than the HCO+ filament.

Surprisingly, the Oph C region between Oph B and the E/F filament has little to

no corresponding HCO+ emission. This region can be seen strongly in 850 µm

emission and to a lesser extent in C18O. This could indicate that any cores found in

this region are transient and lack the density to form protostars.

Figure 5.6 shows a pixel-by-pixel comparison using 6 arcsec pixels in the HCO+

integrated intensity map and maps of the column density tracers (C18O integrated

intensity with optical depth correction in K km s�1, SCUBA-2 850 µm continuum

with 12CO subtraction in Jy beam�1 and visual extinction AV data in mag). Regions

in Ophiuchus, including Oph A, B and CEF, are positions in the map identified as

red, green and blue points. Boxes correspond to scenarios that I further examine in

Table 5.2. The highest HCO+ integrated intensities are found in the Oph A region

(reaching ⇠26 K km s�1), followed by Oph B and CEF. There are increases in

HCO+ emission corresponding to optical depth corrected C18O integrated intensity

of ⇠10 K km s�1 (N(H2) = 3.3 ⇥ 1022 cm�2 using a constant kinetic temperature of

20 K), visual extinction ⇠27 (N(H2) = 2.5 ⇥ 1022 cm�2) and SCUBA–2 850 µm dust

continuum emission of ⇠0.3 Jy beam�1 (N(H2) = 6.5 ⇥ 1022 or 2.0 ⇥ 1022 cm�2

assuming constant dust temperature of 10 or 20 K respectively). This is most

noticeable in comparisons with C18O and Av where HCO+ integrated intensities

increase above 10 K km s�1. The increase in HCO+ emission could indicate the

molecule reaches the critical density for excitation at corresponding column densities.

To examine the possible link between column density and HCO+, I further

examine trends seen in Figure 5.6. These scenarios are shown in Table 5.2, where I

examine regions of ‘low’, ‘medium’ and ‘high’ levels of HCO+ and column density.

Figure 5.7 shows regions in the Ophiuchus cloud that correspond to various trends

in the comparison between HCO+ and column density tracers. Protostars from
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Figure 5.6: Comparison between HCO+ integrated intensity and column density
tracers, including opacity corrected C18O integrated intensity (top left), SCUBA-
2 850 µm dust continuum (top right) and visual extinction Av (bottom). Boxes
correspond to scenarios listed in Table 5.2.
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SSTc2d
J162626.0
-242340

GSS 30
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J162614.6
-242508

CRBR 
2315
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J162721.8
-242728
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Figure 5.7: Trends in HCO+
R
TMB dv and column density tracers, including opacity

corrected C18O integrated intensity (left), SCUBA-2 850 µm dust continuum (right)
and visual extinction Av (bottom) corresponding to Table 5.2. A list of protostars
from Chapter 3 are shown as ‘?’ and labelled in the top figure. Starless cores from
Stanke et al. [2006] starless cores shown as ‘4’, pre-stellar cores from Simpson et al.
[2008] are shown as ‘⇤’ and cores that are found in both lists are shown as ‘⇥’.
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Chapter 3 are shown as ‘?.’ Starless cores from Stanke et al. (2006) are shown

as ‘4’, pre-stellar cores (assumed to be gravitationally bound starless cores) from

[Simpson et al., 2008] are shown as ‘⇤’ and cores that are found in both lists are

shown as ‘⇥’.

The scenarios are further discussed in Section 5.3.1.1–5.3.1.3. I note several

protostars with confirmed outflows (Chapter 3) do not have corresponding HCO+

data from the comparison between emission from HCO+ and column density tracers.

These sources include WL 10 (Class II) and WL 6 (Class I). Additionally, source

IRS 54 (flat) is not located in the HCO+ map.

5.3.1.1 HCO+ comparison with C18O

In the Oph A region, the centre of the clump has noticeably high HCO+ and C18O

emission near 16:26:26 -24:23:16. Protostars in this central region of Oph A include

VLA 1623 AB (Class 0) and W (Class I), SSTc2d J162626.0-242340 (flat), GY 30

(Class I), GSS 30 (Class I) and LFAM 1 (Class I). VLA 1623 AB was confirmed to

drive an outflow in this region. Moving away from the central portion of Oph A shows

a gradual decrease in emission from HCO+ and column density tracers. Protostars

SSTc2d J162614.6-242508 (Class 0) and CRBR 2315 (Class I) are included in this

section of the clump.

The majority of the Oph B clump has quite low C18O emission (1–10 K km s�1)

with HCO+ emission that increases towards the centre of the B2 region. In the

central portion of the Oph B2 clump, protostars include SSTc2d J162730.9–242733

(Class I), IRS 47 (flat) and IRS 45 (flat), where IRS 47 was confirmed to drive

a molecular outflow in Chapter 3. Protostar SSTc2d J162721.8–242728 (flat) is

near this region. Like Oph A, the outer regions of the clump correspond to lower

HCO+ and C18O integrated intensities. Protostars IRS 37 (Class I) noticeably

has higher HCO+ emission than the surrounding material with the same levels of

C18O emission. Lastly, the B1 region has high emission from C18O but low HCO+

emission, which includes protostar SSTc2d J162716.4–2423114 (flat). This is nearly

the opposite of the central portions of B2 with higher HCO+ and low C18O emission.

The Oph C, E and F regions primarily have low emission from both C18O and

HCO+, similar to the outer portions of Oph B. Two protostars in the region with
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confirmed outflows consistently have higher HCO+ emission in the region (Class I

protostars IRS 43 and EL 29).

5.3.1.2 HCO+ comparison with 850 µm dust continuum

Like the comparison with C18O, the centre of the Oph A clump has the highest emis-

sion from both HCO+ and the 850 µm dust continuum. Protostars VLA 1623 AB

(Class 0) and W (Class I), SSTc2d J162626.0-242340 (flat) and GY 30 (Class I)

correspond to regions with high levels of HCO+ emission and the highest levels of

850 µm dust continuum. Similarly, GSS 30 and LFAM 1 correspond to the highest

levels of HCO+ but more mid-values of 850 µm dust continuum.

The Oph B, C, E and F regions are all fairly consistent. The majority of the

region can be defined with low HCO+ and mid/low levels of 850 µm dust con-

tinuum. The Oph B2 core has increased levels of HCO+ (similar to regions in

Oph A) with mid-levels of 850 µm continuum emission, corresponding to protostars

SSTc2d J162730.9–242733 (Class I), IRS 47 (flat) and IRS 45 (flat). Additionally,

protostars IRS 37 (Class I), EL 29 (Class I) and IRS 43 have similarly mid-levels of

HCO+ and 850 µm emission. The remainder of the clumps have both low HCO+

and 850 µm emission. I note there were fewer scenarios examined for this compari-

son, which could lead to the decreased variation in these cloud regions.

5.3.1.3 HCO+ comparison with AV

As explained above, the the visual extinction Av map has a 270 arcsec angular resolu-

tion, which is a factor ⇠18 larger than the beam for the C18O, HCO+ and SCUBA-2

850 µm maps. The visual extinction is the only column density tracer suggesting

other regions in the cloud may have higher column densities than the central region

of Oph A (for example, the Oph B1 regions has low HCO+ emission with high ex-

tinction Av > 34). The central region of Oph A showed the highest levels of HCO+

emission with corresponding mid-levels of visual extinction. Protostars included in

this region are VLA 1623 AB (Class 0) and W (Class I), SSTc2d J162626.0-242340

(flat), GY 30 (Class I), LFAM 1 (Class I) and GSS 30 (Class I).

Like the comparisons with the other column density tracers, the centre of the

Oph B2 clump corresponds to a mid-level of HCO+ emission and mid extinction (24–
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34 mag), corresponding to protostars SSTc2d J162730.9–242733 (Class I), IRS 47

(flat) and IRS 45 (flat). There is a northeastern portion of the clump with a lower

extinction than the rest of the cloud (Av ⇠9–24). As discussed above, the B1 region

has the highest levels of extinction with low levels of HCO+ (< 7 K km s�1) which

includes protostars IRS 37 (Class I), SST2721.8-242728 (flat) and SSTc2d J162716.4-

2423114 (flat).

The Oph C, E and F region is similar to the outer portions of the Oph B clump

with lower extinction and HCO+ emission. Increased HCO+ emission with mid

extinction levels are found near protostars EL 29 (Class I) and IRS 43.

5.4 Non-LTE modelling using RADEX

To interpret the HCO+ line emission in the cloud, it is necessary to understand how

the physical cloud conditions contribute to the production of radiation. This pro-

cess is known as radiative transfer. In Chapter 1, I described the radiative transfer

equation and derived molecular line excitation temperatures (Tex = Tkin), molecu-

lar hydrogen column density N(H2) and molecular hydrogen cloud mass assuming

LTE. LTE is a poor approximation on cloud scales where a high density tracers like

HCO+ may be subthermally excited (Tex < Tkin) and trace lower densities than the

critical density. Non-LTE radiative transfer codes are a useful tool in understanding

these regions without assuming LTE. These codes solve the level populations itera-

tively with inputs of the column density, density, FWHM velocity (or non-thermal,

turbulent velocities) and kinetic temperature. The codes output the molecular line

peak temperature (main-beam temperature) and corresponding excitation temper-

atures and optical depths. Using the HCO+ data to constrain peak main-beam

temperatures and FWHM velocities, 13CO data to constrain kinetic temperatures

and C18O to constrain column densities (see Chapter 4) these codes can be used to

model the densities traced by the HCO+ molecule and better understand the link

between column density and density in the cloud.

The simplest density model assumes the density remains constant along the

line-of-sight which is implemented in the non-LTE radiative transfer code RADEX. In

this section, I use this code to analyse the densities traced by the HCO+ emission

assuming constant density. I further develop the density model to vary along the line-
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of-sight in Sections 5.5 and 5.6 and implement the profiles into a more sophisticated

Monte Carlo non-LTE code TORUS.

5.4.1 RADEX

RADEX1 [van der Tak et al., 2007], originally written by J. H. Black, is a one-

dimensional non-LTE radiative transfer code that assumes an isothermal and ho-

mogeneous medium without large-scale velocity fields using the escape probability

method. The escape probability, or the probability a photon will break out of the

surrounding medium, can use three di↵erent geometries: a uniform sphere, an ex-

panding sphere and a plane-parallel slab. The program is iterative, finding a solution

for the level populations using the following method:

1. The following parameters are input to RADEX: molecular data file from LAMDA2

(including term energies, statistical weights, Einstein coe�cients and rate coef-

ficients for collisional de-excitation), frequency range of the transition, kinetic

temperature of the cloud, number of collision partners (typically H2 as the

only collision partner), H2 density, temperature of the background radiation

field, column density of the molecule being modelled and FWHM line width.

2. An initial estimate of the level populations is made by assuming optically thin

emission and statistical equilibrium considering the background radiation field

(typically 2.73 K blackbody representing the cosmic microwave background or

CMB).

3. The optical depths are then calculated for the molecular line.

4. The program iteratively continues to calculate new level populations with new

optical depth values until both converge on a consistent solution.

5. The program outputs are: background-subtracted main-beam line intensities,

excitation temperature and optical depth.

1
http://www.sron.rug.nl/

~

vdtak/radex/radex.php

2
http://home.strw.leidenuniv.nl/

~

moldata/
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5.4.2 Methods for calculating density

My initial constant density model uses RADEX with the uniform sphere geometry

for the escape probability. This geometry assumes the cloud is static, spherically

symmetric and a homogeneous medium. A Python script reads in observationally-

derived maps pixel-by-pixel of kinetic temperature, HCO+ column density, observed

HCO+ peak main-beam temperature and HCO+ FWHM velocity. The program

extracts the kinetic temperature, HCO+ column density and HCO+ FWHM ve-

locity of the first pixel from each map and inputs these parameters into RADEX

with an initial guess of the H2 density (typically the critical density of HCO+

(ncrit = 8 ⇥ 106 cm�3). RADEX makes a preliminary calculation of the HCO+ line

strength from these parameters and the the Python script compares this output

to the corresponding pixel from the observed HCO+ peak main-beam temperature

map. This program will iterate and change the density input until the ratio of the

model and observed line strengths agrees to within 1%. The program then outputs

the best-fit H2 density and corresponding excitation temperature and optical depth

and writes these values into two-dimensional arrays. The program moves onto the

next pixel in the kinetic temperature, HCO+ column density and HCO+ FWHM

velocity maps and does a new radiative transfer calculation. Once all of the pixels

have been extracted and ran through RADEX, the result is corresponding H2 density,

HCO+ excitation temperature and HCO+ optical depth maps.

The HCO+ column density N(HCO+) was calculated using several methods.

Using C18O (see Chapter 4) observations, the molecular hydrogen column density

N(H2) was calculated using the relation

N(H2) = 5.82 ⇥ 1012
Tex

exp (�31.6/Tex)

✓Z
TMB dv

◆
⌧

o

1 � exp (�⌧

o

)
[cm�2] (5.2)

assuming LTE where Tex is the excitation temperature calculated from 13CO emis-

sion,
R
TMB dv is the main-beam integrated intensity and ⌧

o

is the optical depth

calculated in Chapter 4. Molecular hydrogen column density can also be calculated

from visual extinction data using Spitzer. The dust is responsible for the high ex-

tinction of clouds through the absorption of both ultraviolet and visible wavelength

light. Extinction is related to column density using the relation [Bohlin et al., 1978]
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N(H2) =
9.4 ⇥ 1020

molecules cm�2 mag�1

Av

mag
[cm�2] (5.3)

where Av is the visual extinction from the Spitzer Gould Belt project. Lastly, sub-

millimetre dust continuum emission can also be used to calculate the beam averaged

molecular hydrogen column density,

N(H2) =
F

⌫

⌦beam µmH2⌫

B

⌫

(TD)
(5.4)

= 4.91 ⇥ 1022
F850

Jy beam�1

✓
exp

✓
16.93 K

TD

◆
� 1

◆✓
850

0.012 cm2 g�1

◆
[cm�2]

where ⌦beam is the solid angle in steradians subtended by the beam, mH2 is the

mass of a molecular hydrogen molecule, µ is the mean molecular weight per H2

molecule assuming 5 H2 for every He (assumed to be 1.4) and 

⌫

is the dust opacity

assumed to be 0.012 cm2 g�1. Past studies have assumed similar dust opacities at

0.02 cm2 g�1 [Johnstone et al., 2000] and 0.01 cm2 g�1 [van Kempen et al., 2009].

The column density was calculated at a dust temperature TD of 10 K and 20 K to

account for colder starless cores (see Curtis et al. 2010a) and warmer protostellar

cores [Johnstone et al., 2000] in the Ophiuchus region. Specifically, SCUBA-2 850 µm

data was used for this particular calculation. Molecular hydrogen column densities

N(H2) were converted to HCO+ column densities N(HCO+) using the relation

N(HCO+) = X N(H2) where X is the abundance factor, assumed to be 8 ⇥ 10�9.

HCO+ column density were fixed through the calculation.

The kinetic temperature map used for the model input was calculated from the
12CO data in Chapter 4. Observed HCO+ line strengths and FWHM line widths

were calculated by fitting a single Gaussian to the HCO+ data using the fit1d

algorithm from the SMURF software from JAC. Since HCO+ is usually optically thick,

some regions will have a double-peaked profile due to the absorption of the emission

from the central high temperature gas and potential infall. In regions with double-

peaked profiles, the single gaussian fits the centre of the two peaks and estimates

the line strength by taking into account the height of the peaks and absorption dips.

The model outputs for molecular hydrogen density n(H2) can be found in Fig-

ure 5.8. In every model, densities typically range from ⇠ 104 to 106 cm�3, below the

HCO+ ncrit (⇠ 8 ⇥ 106 cm�3). This indicates the HCO+ molecule is subthermally
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Figure 5.8: Molecular hydrogen density n(H2) in cm�3 calculated using HCO+
emission. HCO+ column densities N(HCO+) were estimated using column densi-
ties from C18O (top left), Av (top right), 850 µm dust continuum with 10 K dust
temperature (bottom left) and 20 K dust temperature (bottom right).

Model H2 peak density (cm�3)
Region Column density tracer

C18O 850 µm, 10 K temp 850 µm, 20 K temp AV

Oph A 1.4 ⇥ 105 7.8 ⇥ 104 2.6 ⇥ 105 1.9 ⇥ 105

Oph B 1.8 ⇥ 106 6.4 ⇥ 105 2.2 ⇥ 106 1.1 ⇥ 105

Oph CEF 1.6 ⇥ 105 1.3 ⇥ 105 4.0 ⇥ 105 5.7 ⇥ 104

Table 5.3: Peak densities found in Ophiuchus regions using the various RADEX mod-
els.
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excited. Peak densities for the cloud regions are shown in Table 5.3. Peak densities

found in the Oph B region are consistently modelled to be higher than the Oph A

clump. An exception to this is the model using column densities derived from the

visual extinction data where peak densities are comparable for the two regions. It

is possible the larger angular resolution is contributing to this discrepancy. Optical

depths, shown in Figure 5.9, indicate HCO+ is optically thick in each model to

varying degrees (i.e. ⌧ > 1, reaching ⇠ 102). Excitation temperatures range from

⇠ 6–21 K for each model.

Uncertainty in the density calculations can be examined based on the main-beam

temperature noise, discussed in Section 5.1, which vary with kinetic temperature,

peak temperature, line width and column density. Figure 5.10 demonstrates the

relationship between the peak main-beam temperature of HCO+ and density n(H2)

assuming a range of kinetic temperatures, column densities N(HCO+) and FWHM

line widths. Average uncertainties are highest at lower peak main-beam tempera-

tures. For a kinetic temperature of 30 K the uncertainties in density corresponding

to 1, 2, 3, 5, 8, 10 and 12 K respectively are: 31, 16, 12, 8, 6, 6, 5 per cent. Similarly,

for a 50 K kinetic temperature, corresponding density uncertainties for 1, 2, 3, 5,

8, 10 and 12 K main-beam temperature respectively are: 30, 16, 11, 7, 5, 4 and

4 per cent.

To test the plausibility of the densities calculated using RADEX, the molecular

hydrogen column density N(H2) can be used to estimate the cloud length along the

line-of-sight. Column densityN is related to density n by integratingN =
R

L

max

0 n ds

along the line-of-sight ‘ds’ from the front of the cloud to a distance Lmax. The range

of line-of-sight estimates vary greatly between each density model. Using column

densities calculated from C18O, line-of-sight lengths range from under 1 pc in Oph A

and Oph B, 1–2 pc in portions of Oph B, C, E, and F and up to 40 pc near Oph S1

in Oph A. The Av model predicts shorter line-of-sight lengths, mainly less than

1 pc but up to 2 pc. Similar to the C18O model, the dust continuum model with

TD = 10 K has line-of-sight estimates corresponding to mainly less than 5 pc, but

extending greater than 20 pc (50–90 pc) near Oph S1 in Oph A. Estimates are more

reasonable using a higher dust temperature (TD = 20 K) where most line-of-sights

are under 1 pc and the Oph S1 region is greater than 5 pc (up to ⇠ 9 pc). Compared

to the approximate width of the Oph A and B cores of 0.2 pc, the line-of-sight
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10 60 120 240 360 550

Figure 5.9: HCO+ optical depths. HCO+ column densities N(HCO+) were esti-
mated using column densities from C18O (top left), Av (top right), 850 µm dust
continuum with 10 K dust temperature (bottom left) and 20 K dust temperature
(bottom right).
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Figure 5.10: Relationship between the peak main-beam temperature of HCO+ and
the predicted molecular hydrogen density n(H2). Inputs include a (left) 30 and
(right) 50 K kinetic temperature. Colors denote the FWHM line width input into
RADEX: 0.5 (black), 1.0 (blue), 1.5 (green), 2.0 (red) and 2.5 km s�1 (cyan). HCO+
column densities are also input into the program and range 5 ⇥ 1013, 1 ⇥ 1014,
5 ⇥ 1014, 1 ⇥ 1015 and 5 ⇥ 1015 which are shown from left to right for each FWHM
line width assumption. Note that only N(HCO+) of 5 ⇥ 1015 is shown assuming a
30 K kinetic temperature with 0.5 km s�1 and only 5 ⇥ 1014, 1 ⇥ 1015 and 5 ⇥ 1015

are in range with a 30 K kinetic temperature and 1.0 km s�1. For the 50 K kinetic
temperature, the assumption of 0.5 km s�1 FWHM line width is out of the range of
peak temperatures and densities seen in Ophiuchus and only N(HCO+) of 5⇥ 1014,
1 ⇥ 1015 and 5 ⇥ 1015 are in range when assuming 1.0 km s�1 FWHM.
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estimates suggest the 850 µm dust continuum model with higher dust temperatures

better correlates to expected scales for the line-of-sight. However, each model has

produced large line-of-sight lengths that are inconsistent with expected line-of-sight

lengths.

The main issue with this method of modelling molecular line densities is the

restriction of a constant density, which is unrealistic to assume for a molecular

cloud. A peaked-density profile may be able to maintain similar average densities

traced by the HCO+ data with a smaller line-of-sight length. In the upcoming

sections (Section 5.5), I explore new methods for modelling density using models

that vary along the cloud line-of-sight.

5.5 Varying density profile: simple peaked-density

model

The assumption of a constant density does not realistically reflect the physical con-

ditions of the cloud. To improve the HCO+ radiative transfer models in Ophiuchus

and better understand the densities HCO+ tracers, it is important to develop den-

sity profiles that vary along the line-of-sight. The simplest peaked density profile

can be described by an isosceles triangle which increases from the front of the cloud

at a constant gradient to a peak density at the centre of the cloud and decreases

at a constant gradient to the back edge of the cloud. In this section, I discuss the

one-dimensional ‘triangle’ density profile I implement into the Monte Carlo radiative

transfer code TORUS. I discuss how TORUS works and benchmarks I use to test the

numerical quality of the code. I then discuss the one-dimensional radiative transfer

models developed to model scenarios corresponding to the physical conditions of the

cloud. The density results are discussed in Section 5.5.5.
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5.5.1 Triangle density profile

The density n along the line-of-sight x is defined by

n(x) =
2n

max

x

L

, 0  x  L

2
(5.5)

n(x) =
2n

max

(L � x)

L

,

L

2
 x  L (5.6)

where L is the length of the cloud and n

max

is the maximum H2 density of the cloud.

The density peaks at the centre of the cloud so that if x = L

2 , n = n

max

. The column

density can then be defined as NH2 =
1
2Lnmax

where the maximum density is related

to the average density n = 1
2nmax

.

The conditions of the overall cloud can be used to constrain the primary density

profile. Assuming a maximum cloud line-of-sight length L and an average density

defined by n = M/L

3 where M is the mass of the cloud, both a maximum density

and column density of the cloud profile is established. Individual column densitiesN
i

taken using observational data can then be used to infer a corresponding maximum

density n

i,max

and line-of-sight length L

i

towards di↵erent regions in the cloud using

the following relation:

N

i

=
n

max

L

2
i

L

(5.7)

n

i,max

=
N

i

L

i

. (5.8)

An example of the triangle density profile is shown in Figure 5.11, where N is the

maximum cloud column density that is derived from the assumed maximum line-of-

sight length L and the maximum cloud density n

max

(taken from the cloud mass and

length). Individual column densities N1�3 have been used to constrain the profiles in

yellow, green and blue and correspond to n

max,1–nmax,3 and L1–L3 respectively. The

highest individual column density corresponds to N1 and column densities decrease

with increasing numerical values (i.e N3 is the lowest individual column density).

Analysing the probability density function (PDF) of this simple peaked-density

model yields a constant function, i.e. the probability of finding individual density n,

P (n), in the triangle profile is the same for each individual density. Past research (see

Kainulainen et al. 2009) suggests the column density PDF across molecular clouds
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Figure 5.11: Example of the triangle density profile (n) along the line-of-sight (x).

can be defined using a log-normal function. Even though the triangle model does

not reflect the log-normal PDF, the profile is the first step in better understanding

how a varying density model can be implemented into radiative transfer codes and

how the the molecular line radiation is a↵ected by the varying density. Section 5.6

describes the next step in developing a density profile based on the more realistic

log-normal PDF.

5.5.2 TORUS

TORUS is a three-dimensional Monte Carlo radiative transfer code short for Transport

of Radiation Under Sobolev or Transport of Radiation Using Stokes (see Harries

2000). Though spherically and cylindrically symmetric source models can be used

to model cores and filaments respectively, the geometry I use for modelling HCO+

in Ophiuchus is a simple plane-parallel slab with constant density in the x and y

directions (RA and Dec) and the density profile implemented in the z direction.

Like RADEX, this program is iterative and finds a solution for the level populations

(solving the equations of radiative transfer) using the following method:
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1. The following parameters are input to TORUS, specifically for the implemen-

tation of HCO+ models: molecular data file from LAMBDA (including term

energies, statistical weights, Einstein coe�cients and rate coe�cients for col-

lisional de-excitation), the transition of the molecule, maximum number of

transitions to be considered for the calculation of non-LTE populations (typi-

cally around 10 in the case of HCO+), molecular abundance (8⇥10�9), number

of initial rays (typically 12800), distance to object (here 120 pc), H2 density

profile, kinetic temperature of the cloud, number of collision partners (typi-

cally H2 as the main collision partner), H2 maximum density, temperature of

the background radiation field, column density of the molecule and turbulent

line width. I note these are the parameters for modelling HCO+ in Ophi-

uchus and these can be changed and more parameters can be added for other

purposes (further discussed in Section 5.5.3).

2. An initial guess of the level populations is made, assuming LTE. This allows

the calculation of the emission and absorption coe�cients, j
⌫

and ↵

⌫

(discussed

in Section 1.3.2 using the Einstein coe�cients), optical depth ⌧

⌫

and the mean

intensity J

⌫

.

3. Using statistical equilibrium and the newly calculated J

⌫

, the level populations

are recalculated.

4. This process is repeated by recalculating emission and absorption coe�cients,

optical depth and mean intensity until convergence on a solution is achieved.

5. Program outputs include: background-subtracted main-beam temperature data

cube (K) along a velocity axis (km/s), excitation temperature (K) along the

line-of-sight (pc), and optical depth (⌧
⌫

) peak.

Once convergence is achieved for the level populations, a small set of rays are

used to sample the radiation intensity of the model cells. The second stage to this

process doubles the number of rays used to sample the radiation field per cell per

transition. This increase of rays diminishes potential systematic and random errors

by
p
N where N is the number of rays, i.e. Monte Carlo solution noise (see Rundle,

Ph.D. Thesis).
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5.5.3 TORUS benchmarks

To test the numerical quality of the TORUS code, it is useful to compare the output

to similar non-LTE radiative transfer codes with the same initial parameters. This

process is known as ‘benchmarking’ and is necessary to draw accurate conclusions

from modelling. In this section, I test TORUS with other non-LTE codes and test

various AMR grid splitting and tolerance parameters to optimise the e�ciency and

accuracy of the models.

Initially, I compared TORUS to non-LTE codes RADEX (discussed in Section 5.4.1)

and the Monte Carlo program RATRAN1 [Hogerheijde and van der Tak, 2000]. Some

discrepancies are expected from these models because both TORUS and RATRAN have

finite geometries while RADEX assumes an infinite geometry. I use the benchmark

developed by van der Tak et al. [2007] initially used to compare RADEX output from

HCO+ J = 1 ! 0 to output from RATRAN. Since I am implementing a plane-

parallel slab geometry in TORUS, I use the same geometry for RADEX. The other

inputs are the column density of the HCO+ molecule N(HCO+) = 1012, 1013, 1014

and 1015 cm�2, FWHM line width �V = 1.0 km/s, Tkin = 10 K, constant density

n(H2) = 104 cm�3 and background temperature TCMB = 2.73 K. Figure 5.12 shows

the excitation temperature results of HCO+ J + 1 ! 0 models from TORUS (black)

with RADEX (red). Excitation temperatures and optical depths of both RATRAN (see

Figures 3 and 4 in van der Tak et al. 2007 for RATRAN results) and TORUS agree,

including the noticeable shape of the excitation temperatures. This downward slope

is due to the geometry of a finite cloud. At the centre of the cloud, the excita-

tion is thermalised through photon trapping; however, emission can escape more

easily at the edge of the cloud. At higher column densities, optical depths begin

to increase and reach ⌧ > 100 at N(H2) = 1015 cm�2 (found in all models). At

these high optical depths, van der Tak et al. [2007] recommends not using RADEX

for non-LTE calculations since the excitation temperature may not reflect the true

cloud conditions. Di↵erences between RADEX and TORUS range between 4–48% for

integrated intensities, 15–72% for peak main-beam temperatures, and 2–22% for

optical depths. I note integrated intensities for RADEX are calculated assuming a

Gaussian line distribution, i.e.
R
Tmbdv = Tmb(1.06vfwhm).

1
http://www.sron.rug.nl/

~

vdtak/ratran/
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Figure 5.12: HCO+ excitation temperatures (K) from TORUS (black) and RADEX

(red) using benchmark parameters.
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Test 1 Test 2 Test 3
Column Density (cm�2) 1015 1014 1014

Kinetic Temperature (K) 30 30 50
H2 Density (cm�3) 105 5⇥104 5⇥104

Table 5.4: Test scenarios used for TORUS benchmarking.

In addition to benchmarking TORUS against other models, AMR grid splitting and

the tolerance levels were optimised for both an e�cient run time and accuracy. The

AMR splitting, n, determines the minimum and maximum cell depth of the model

described by 2n cells used to generate the density profile in the z-axis. For example,

if the grid size is set to be 3 ⇥ 1018 cm and n = 4, a cell would be 1.88⇥1017 cm or

0.06 pc across. I tested splitting values n = 4, 5, 6, and 7 for the constant density

scenarios. For each AMR grid splitting values, varying tolerances were also tested.

The global convergence of the model is defined by a parameter ⇠ (see Rundle, PhD

thesis), which must be lower than the tolerance input into TORUS. This factor is

determined from the old and new level populations in each cell after an iteration of

the code for all levels being included in the model. Tolerances of 0.01 (⇠1%) and

0.001 (⇠0.1%) were tested for both accuracy and run time.

The range of AMR grid splitting and tolerances were tested on three di↵erence

scenarios using HCO+ J = 4 ! 3. These scenarios were chosen to test a range

of H2 column densities, kinetic temperatures and densities (continuing to assume

a constant density) using TORUS. The test scenarios are listed in Table 5.4, where

all of the models had the same line widths (vFWHM = 2.0 km s�1), background

temperature (TCMB = 2.73 K) and HCO+ abundance (XHCO+ = 8 ⇥ 10�9).

As discussed in Rundle [PhD, 2010], the results for the 1% tolerance models

show some significant deviation from the 0.1% model. Using the n = 6 splitting as a

base, the percentage di↵erence between the n = 6 model and n = 4, 5 and 7 models

for the 1% tolerance level show increased variations in integrated intensities, peak

main-beam temperatures, excitation temperatures and optical depths. This was

particularly noticeable for test 1, which has the highest optical depth (⌧ ⇠61–73),

where the percentage di↵erences range from 6–32% in integrated intensity, 6–27% in

peak temperature, 5–24% in excitation temperatures and 1–15% in optical depths.

The other scenarios had much lower percentage di↵erences (peaking at 2%), but
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these scenarios have lower optical depths of ⇠6–7.

Comparing the splitting values for the 0.1% tolerance, the n = 6 and 7 splitting

values had the closest results, di↵ering at most 2% when comparing peak tem-

peratures, integrated intensities, excitation temperatures and optical depths. In

contrast, n = 4 and 5 models were up to 10% di↵erent compared to n = 6. Taking

into account the length of time to run the programs (n = 7 can be roughly a factor

of 5 greater than n = 6), I chose to use the n = 6 splitting for the triangle and

log-normal models with the 0.1% tolerance.

Since the TORUS outputs were comparable to the other non-LTE radiative transfer

codes, I proceeded in implementing a varying density profile into the code and

running models of the HCO+ line.

5.5.4 TORUS triangle models

The TORUS models implement the simple ‘triangle’ density profile described in Sec-

tion 5.5.1. These models were one-dimensional with a plane-parallel geometry. The

model inputs were H2 column density, kinetic temperature, FWHM velocity, density

profile and abundance (assumed to be constant at XHCO+ = 8 ⇥ 10�9). The model

outputs the HCO+ line profile (main-beam temperature as a function of velocity),

excitation temperature along the line-of-sight and peak optical depth. The model

HCO+ peak main-beam temperature, integrated intensity and FWHM velocity are

then compared to the HCO+ observational data.

As described in Section 5.5.1, the triangle density profile was constrained from

an assumed maximum line-of-sight cloud length and cloud mass to calculate the

corresponding cloud average density. Two maximum cloud lengths were chosen,

based on the lengths of the Oph A and B clumps measured in RA and Dec; these

cloud lengths were 0.2 and 0.3 pc respectively. The average density of the cloud

was estimated from the mass and assumed cloud lengths, navg = M/L

3. From C18O

integrated intensities with an optical depth correction, the mass of the cloud was

calculated to be 515 M� (see Chapter 4). For the 0.2 and 0.3 pc clouds, the average

density of the cloud was 9.6 ⇥ 105 and 2.8 ⇥105 cm�3. The corresponding peak

column densities for the cloud were 5.9 ⇥ 1023 and 2.6 ⇥ 1023 cm�2.

As discussed above and in Chapter 4, the cloud has varying physical conditions
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N

i

(H2) Tkin FWHM velocity
⇥ 1022 cm�2 K km s�1

1 12 0.2
5 15 0.3
10 20 0.4
30 30 0.5
50 40 0.6

50 1.0
1.5
2.0
2.2

Table 5.5: Parameter grid for TORUS models.

reflected in the observations. The list of input parameters is shown in Table 5.5 and

shown in Figure 5.13. These scenarios are not the same as the previous scenarios

detailed in Table 5.2 in order to better reflect the range of input parameters were

needed to reflect the variety of kinetic temperatures, column densities and HCO+

FWHM velocities found across the cloud. Individual column densities (N
i

) were

constrained by C18O data with the optical depth correction described in Chapter 4.

I note models with the 0.3 pc cloud length were unable to model regions with

the high column densities (3–5 ⇥ 1023 cm�2) due to the maximum cloud column

density constraint discussed above. C18O was chosen over the Spitzer Av extinction

and SCUBA-2 850 µm dust continuum data due to the larger angular resolution

of the extinction map and the dust continuum data is limited by a constant dust

temperature across the cloud. Kinetic temperatures were constrained using the
13CO data from Chapter 4. Lastly, the FWHM velocities were based on the HCO+

observations. In models with kinetic temperatures reaching 40 and 50 K with column

densities reaching 1–5 ⇥ 1023 cm�2, it was common for TORUS to be unable to

converge due to issues with population inversions or masing. The inversions in level

population lead to negative optical depth. Since these models would not converge

due to the population inversions, some models with kinetic temperature reaching 40

and 50 K were not included in the analysis.

The output main-beam temperature profiles can be found in Section 5.9 in Fig-

ures 5.36 and 5.37. The models were fit to the data by defining scenarios corre-

sponding to the range of column densities and kinetic temperatures found across
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Figure 5.13: Scenarios corresponding to Table 5.6.
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the cloud. Column densities calculated from the optical depth corrected C18O in-

tegrated intensities ranged from 0.5–40 ⇥ 1022 cm�2. Kinetic temperatures from

the 13CO data ranged from 10–60 K. Column densities and kinetic temperatures

were grouped into smaller ranges that covered the variety of column densities and

kinetic temperatures used as model inputs described above. Each scenario had a

corresponding range of FWHM velocities calculated from the HCO+ observational

data. Initially, all of the models were fit to the individual scenarios, independent

of the expected column density, kinetic temperature and FWHM velocity ranges.

The criterion for fitting the scenario was the model line profile must have a peak

temperature and integrated intensity within 20% of the minimum and maximum

temperatures and integrated intensities found in the scenarios. The FWHM veloc-

ity must also be within 0.1 km s�1 of the minimum and maximum FWHM velocities

found in the data. Uncertainties are based on standard HARP calibration uncer-

tainties (see Buckle et al. 2009) and the 0.2 km s�1 velocity channel binning for the

HCO+ maps.

The fitting process was further refined by choosing ‘best-fits’ or models that

had column density inputs and FWHM velocity outputs matching the ranges found

in the scenarios. Since scenario kinetic temperatures were not used to distinguish

between the quality of model fit, it is possible these models do not have input kinetic

temperatures relating to temperatures found using 13CO data. This issue is further

discussed in Section 5.7.2.

In the next section, I describe the fits from the triangle density models. I only

include pixels that correspond to HCO+ main-beam temperatures and integrated

intensities that have been successfully fit by the models as described above.

5.5.5 Determining density using the triangle model

The range of densities and cloud line-of-sight lengths are shown in Table 5.7 for the

triangle model fits. Models produced using the triangle density profile predict peak

densities that directly correspond to the input column density of the model, i.e. peak

densities are higher for scenarios with higher column densities. Figure 5.14 shows

the model column densities and peak densities used to fit each region. Class 0/I

protostars are denoted using ‘�’, pre-stellar cores (Simpson et al 2008) are denoted
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Scenario Column Density Tkin vFWHM

(cm�2) (K) (km s�1)
1 5 ⇥1021 - 3⇥1022 10 - 13.5 0.7–1.5
2 3 - 8⇥1022 10 - 13.5 0.4–2.8
3a 5 ⇥1021 - 3⇥1022 13.5 - 17 0.4–1.9
3b 5 ⇥1021 - 3⇥1022 13.5 - 17 0.4–2.9
4a 3 - 8⇥1022 13.5 - 17 0.4–6.2
4b 3 - 8⇥1022 13.5 - 17 0.4–3.7
5 5 ⇥1021 - 3⇥1022 17 - 25 0.4–2.4
6a 3 - 8⇥1022 17 - 25 0.4–1.5
6b 3 - 8⇥1022 17 - 25 0.4–1.5
6c 3 - 8⇥1022 17 - 25 0.4–1.5
7 8⇥1022 - 2⇥1023 17 - 25 0.2–1.2
8 5 ⇥1021 - 3⇥1022 25 - 35 0.4–2.0
9 3 - 8⇥1022 25 - 35 0.4 –2.0
10a 8⇥1022 - 2⇥1023 25 - 35 2.0–2.2
10b 8⇥1022 - 2⇥1023 25 - 35 0.4–2.0
10c 8⇥1022 - 2⇥1023 25 - 35 0.4–2.0
11 2 - 4⇥1023 25 - 35 0.9–1.7
12 4 - 8⇥1023 25 - 35 1.2–1.5
13 5 ⇥1021 - 3⇥1022 35 - 45 0.8–1.6
14a 3 - 8⇥1022 35 - 45 0.4–1.3
14b 3 - 8⇥1022 35 - 45 0.4–2.1
15 8⇥1022 - 2⇥1023 35 - 45 0.3–2.1
16 2 - 4⇥1023 35 - 45 1.1–1.9
17 3 - 8⇥1022 45 - 60 0.8–1.8
18 8⇥1022 - 2⇥1023 45 - 60 1.0-2.0
19 2 - 4⇥1023 45 - 60 1.3–2.0

Table 5.6: Scenarios chosen from the data which are fit using the triangle and log-
normal models.
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Scenario Column density (cm�2) Density peak (cm�3) Cloud length (pc)
0.2 pc 0.3 pc 0.2 pc 0.3 pc

1 1 ⇥ 1022 2 ⇥ 105 1 ⇥ 105 0.03 0.06
2 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
3a 1 ⇥ 1022 2 ⇥ 105 1 ⇥ 105 0.03 0.06
3b 1 ⇥ 1022 2 ⇥ 105 1 ⇥ 105 0.03 0.06
4a 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
4b 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
5 1 ⇥ 1022 2 ⇥ 105 1 ⇥ 105 0.03 0.06
6a 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
6b 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
6c 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
7 1 ⇥ 1023 8 ⇥ 105 3 ⇥ 105 0.08 0.19
8 1 ⇥ 1022 2 ⇥ 105 1 ⇥ 105 0.03 0.06
9 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
10a 1 ⇥ 1023 8 ⇥ 105 3 ⇥ 105 0.86 0.19
10b 1 ⇥ 1023 8 ⇥ 105 3 ⇥ 105 0.08 0.19
10c 1 ⇥ 1023 8 ⇥ 105 3 ⇥ 105 0.08 0.19
11 3 ⇥ 1023 1 ⇥ 106 – 0.14 –
12 5 ⇥ 1023 2 ⇥ 106 – 0.18 –
13 1 ⇥ 1022 2 ⇥ 105 1 ⇥ 105 0.03 0.06
14a 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
14b 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
15 1 ⇥ 1023 8 ⇥ 105 3 ⇥ 105 0.08 0.19
16 3 ⇥ 1023 1 ⇥ 106 – 0.14 –
17 5 ⇥ 1022 6 ⇥ 105 2 ⇥ 105 0.06 0.13
18 1 ⇥ 1023 8 ⇥ 105 3 ⇥ 105 0.08 0.19
19 3 ⇥ 1023 1 ⇥ 106 – 0.14 –

Table 5.7: Model fits to triangle scenarios for HCO+ data. Corresponding peak
densities and cloud lengths for each fit are shown. Scenarios without fits are shown
as ‘–’.
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0.2 pc 0.3 pc

5x105

1x106

2x106

3x106
4x106
5x106

Figure 5.14: Densities (cm�3) measured by the 0.2 and 0.3 pc triangle models.
Contours denote the 5� HCO+ peak main-beam temperature detection.

with ‘4’, ‘starless’ cores (Stanke et al 2004) are denoted with ‘⇤’, and duplicate

cores found in both lists are denoted using ‘⇥’. The peak density ranges from

0.2–2.0⇥106 and 0.1–0.3⇥106 cm�3 for the 0.2 and 0.3 pc models respectively. The

triangle models fit the majority of the regions with HCO+ emission across the cloud.

I note the peak densities do not fully reach the critical density of 8 ⇥ 106 cm�3.

Additionally, some of the high column density emission primarily from the Oph A

region has no corresponding density information in the 0.3 pc model due to the lower

maximum column density range this model was able to fit.

The most noticeable features in these density plots are the more uniform densities

in Oph B in comparison to Oph A, where Oph B does not show as high of column

densities as the Oph A region. The more uniform densities in the Oph B region

are the result of the choice in model scenarios. If the TORUS models had more

closely spaced column density inputs, more variation in density would have detected.

However, the range of Oph B densities would always be smaller than Oph A. Higher

densities are seen near a Class I source SSTc2d J162730.9-242733 (n = 6 ⇥ 105 and

2 ⇥ 105 cm�3 for the 0.2 and 0.3 pc models), which is close to the flat spectrum

sources IRS 45 and 47, where IRS 45 drives the main Oph B outflow (determined
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in Chapter 3). Additionally the Oph B1 region, which is further south than the

main Oph B clump, has higher column densities and thus a higher model density

(n = 6 ⇥ 105 and 2 ⇥ 105 cm�3 for the 0.2 and 0.3 pc models) than the main

clump. Oph B1 has only one Class I protostar (IRS 37) and several starless and

pre-stellar cores previously identified.

The Oph CEF region has a similar density distribution to Oph B, where there

is an increase in column density and thus density around Class I protostars EL 29,

IRS 43 and IRS 44 (n = 6 ⇥ 105 and 2 ⇥ 105 cm�3 for the 0.2 and 0.3 pc models),

where these three sources are known to drive outflows (determined in Chapter 3).

The filament itself has similar density to the majority of the Oph B region.

The Oph A region shows the greatest range of column densities and densities,

with an increasing density in the central region, corresponding to a stripe down the

centre of the clump where the peak column density and density are found. The

highest densities at the centre of this stripe correspond to increased 13CO kinetic

temperatures (calculated in Chapter 4), further discussed in Section 5.7.2. The

Class 0/I protostars are mainly clustered in the centre of the region, but do not

necessarily correspond to the higher densities located in the stripe across the clump.

Some starless and pre-stellar cores are located directly on the stripe of higher column

density in addition to being spread along the south-western and northern edge of

the cloud.

5.5.6 Understanding the three-dimensional cloud: triangle

model

Line-of-sight lengths can be further inferred from the triangle models, shown in

Figure 5.15. The lengths along the line-of-sight corresponding to the models are

shown in parsecs (pc). Like the peak density maps, lengths along the z-axis follow

column density. Therefore, line-of-sight lengths remain fairly constant across the

Oph B core due less variation in the column densities. The x and y-axis lengths at

the widest sections of the Oph B core taken from the 5� HCO+ emission range from

0.220-0.280 pc. Line-of-sight lengths are, for the majority of the region, only 0.021

and 0.065 pc for the 0.2 and 0.3 pc triangle models respectively. This indicates the

three-dimensional Oph B region is 5–10 times broader than it is deep. The z-axis
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Figure 5.15: Line-of-sight lengths (pc) measured by the 0.2 and 0.3 pc triangle
models. Contours denote the 5� HCO+ peak main-beam temperature detection.

length is roughly 7.5–10% (0.2 pc model) and 23–30% (0.3 pc model) of the longest

regions of the cloud, where the 0.2 pc triangle model predicts a thinner, flatter cloud

than the 0.3 pc model. There are small portions of the cloud in the main Oph B

clump and largely in the Oph B1 region where line-of-sight lengths increase to 0.046

and 0.108 pc (0.2 and 0.3 pc models respectively). In these sections, lengths increase

to 16–21% and 39–49% (0.2 and 0.3 pc models) of the largest cloud widths.

Oph CEF has similar line-of-sight lengths to the Oph B region. There appears

to be a distinct filament in the region where EL 29 and LFAM 26 are located.

Lower in the Oph F region are IRS 44 and 43 driving outflows. From the 5� HCO+

detections, the filament is around 0.270 pc long (including Oph F) and 0.030 pc wide.

The line-of-sight lengths predicted by the models range from 0.022-0.046 pc (0.2 pc

model) and 0.065–0.108 pc (0.3 pc model). This indicates the three-dimensional

structure of the region is fairly cylindrical or filamentary but increases around the

location of protostars for the 0.2 pc triangle model, where the 0.3 pc model predicts

the line-of-sight lengths are up to 3 times the filament widths at the location of the

protostars.

Oph A has the largest range of lengths along the line-of-sight. At the greatest x
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0.2 pc 0.3 pc

Figure 5.16: Pixel-by-pixel comparison between column density and density of the
entire cloud using the triangle models.

and y-axis lengths using 5� HCO+ emission, Oph A is ⇠0.340 pc long and ⇠0.190 pc

wide. Like the column density and density, line-of-sight lengths predicted by the

models increase towards the centre of the core where there is a stripe of increased

cloud depth. The models predict z-axis lengths ranging from 0.022–0.162 pc (0.2 pc

model) and 0.065–0.280 pc (0.30 pc model). This indicates the centre of the cloud

is bulging along the stripe and decreases towards the edge of the cloud. The 0.2 pc

triangle model with a peak line-of-sight length of only 48% of the full Oph A length

predicts a more ‘egg-like’ three-dimensional shape to the cloud. Similarly, the 0.3 pc

triangle model has a peak line-of-sight length of around 82% of the longest Oph A

length, indicating a slightly more rounded cloud. The 0.3 pc model is unable to fit

the most central portions of Oph A due to maximum column density constraints.

The regions of the cloud never fully reach the maximum cloud line-of-sight

lengths 0.2 and 0.3 pc. The individual column densities from observational data

are the main factor used to constrain the individual line-of-sight lengths. From

Section 5.5, line-of-sight lengths will reach the maximum cloud lengths when col-

umn densities reach the maximum column density constrained by the 0.2 and 0.3 pc

models.
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0.2 pc 0.3 pc

Figure 5.17: Source-by-source comparison between column density and density in
the cloud using the triangle models.

5.5.7 Links between column density and density

As discussed in Section 5.3.1, the link between column density and density can be

further investigated across the cloud using the density estimates from the above

models. Figure 5.16 shows a pixel-by-pixel comparison between column density and

density in the cloud. The full map comparison clearly shows the Oph A clump with

higher density and column density than the Oph B and CEF regions. Figure 5.17

shows the same comparison for protostars and pre-stellar and starless cores. The

source comparison shows a similar distribution to the full map. Column densities

and densities range from 0.1–3.0⇥1023 cm�2 and 0.2–2.0⇥106 cm�3 (0.2 pc model)

and 0.1–0.3⇥106 cm�3 (0.3 pc model) where densities are proportional to the column

densities in the cloud.

The majority of cores are evenly distributed over the range of column densities

for both the 0.2 and 0.3 pc models except for the high column densities N(H2) >

2 ⇥ 1023 cm�2. The Class 0/I embedded protostars are found primarily at column

densities ranging from 2–10 ⇥ 1022 cm�2, corresponding to density ranges 0.2–

1.0 ⇥ 106 (0.2 pc model) and 0.1–0.3 ⇥ 106 cm�3 (0.3 pc model).

Figure 5.18 and 5.19 show histograms of the percentage of pixels and sources at

various densities across the cloud. As in Section 5.2, KS tests were used to compare

the distribution of pixels and sources in the cloud shown in Table 5.8. P-values

indicate there is no di↵erence between the distribution of pixels across the cloud and

198



0.2 pc 0.3 pc

Figure 5.18: Histogram of the percentage of total pixels at di↵erent densities across
the entire cloud using the triangle models.

0.2 pc 0.3 pc

Figure 5.19: Histogram of the percentage of total sources at di↵erent densities across
the entire cloud using the triangle models.

the sources (i.e. starless cores, pre-stellar cores and embedded protostars). There

are slightly lower p-values for the comparison of embedded Class 0/I protostars to

the total cloud and the other sources, but these values are not low enough to suggest

the distributions are di↵erent.

Increased C18O emission may not necessarily be the result of higher column den-

sities. Molecular abundances and gas temperatures also a↵ected C18O emission that

can inevitably bias column density calculations. These e↵ects are further discussed

in Section 5.7.

0.2 pc triangle model 0.3 pc triangle model
Source Tot. Cloud Pre-stellar Starless Tot. Cloud Pre-stellar Starless

Tot. Cloud – 0.697 0.999 – 0.976 0.976
Pre-stellar – – 0.999 – – 0.976
Class 0/I 0.697 0.697 0.697 0.320 0.320 0.320

Table 5.8: KS test results (p-values) for the distribution of densities across the cloud
and for the pre-stellar, starless and protostellar cores.
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5.6 Varying density profile: log-normal PDF model

As discussed in Section 5.5, past research suggests the column density probability

density function or PDF has a log-normal distribution formed from supersonic tur-

bulence in the cloud. Lombardi et al. [2008] showed the Ophiuchus molecular cloud

to have a log-normal column density PDF, calculated from IR extinction at 2.2 µm

AK, where AK ⇡ 0.112AV [Rieke and Lebofsky, 1985] However, this work was un-

dertaken at AK < 0.6 or AV  5.36 mag (⇠5 ⇥1021 cm�2). These column densities

are much lower than peak column densities calculated using C18O optical depth cor-

rected emission and 850 µm dust continuum emission with 20 K dust temperatures

by 2 orders of magnitude (as discussed in Section 5.3.1).

Similarly, Kainulainen et al. [2009] used visual extinction data to calculate the

probability of finding column densities between 0.5–25 ⇥1021 cm�2 of numerous

clouds in the Galaxy, including Ophiuchus and other active and dormant star form-

ing regions. This work found all active areas of star formation to have a column

density PDF with a log-normal distribution at AV  2–5 mag and a power-law re-

lation at AV � 2–5 mag. In non-star forming regions (e.g. Lupus 5 and Coalsack)

or regions with lower star formation activity (e.g. the massive California nebula),

the column density PDF can be fit by the log-normal distribution. The log-normal

fit to the non-active and low star formation regions suggests the structure of the

cloud as it initially evolves is directly related to the supersonic turbulence found in

the region. The shape of the log-normal becomes altered as the cloud evolves and

local, higher density clumps and cores become self-gravitating. More gas becomes

assembled into higher density regions and generates the power-law tail of the column

density PDF.

Though the log-normal PDF is typically measured with column densities, the

distribution is expected to hold for the three-dimensional density distribution. In

the Ophiuchus region, Kainulainen et al. [2009] observed a column density PDF with

a power-law tail forming at Av ⇠5 and a log-normal distribution at lower extinction.

The next logical step in developing a more realistic peaked-density profile is to derive

a profile with a corresponding log-normal density PDF as opposed to the constant

PDF predicted by the previous triangle density profiles. In this section, I discuss the

one-dimensional ‘log-normal PDF’ density profile I implement into TORUS, similar to
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the methods described in Section 5.5. I detail the implementation of the log-normal

PDF density profile into the TORUS radiative transfer code. I discuss the model

fitting process to the HCO+ data using similar techniques as the triangle TORUS

models. Lastly, I discuss possible relations between column density and density in

the cloud using these modelling techniques.

5.6.1 Log-normal PDF density profile

This density model is based on the assumption of a log-normal PDF. The probability

of finding a normalised number density q(x) in range dq is P(q) dq / 1
L

dx where

q = n/n is the molecular hydrogen number density n relative to the average density

and L is the full length of the cloud. The probability is defined by the log-normal

distribution (see Elmegreen and Efremov 1997; Krumholz and Thompson 2007; Mac

Low and Klessen 2004),

P(q) dq =
1

q�

p
2⇡

exp

"
�
�
ln q � ln q

�2

2�2

#
dq (5.9)

where ln q = ��

2

2 and � is the width of the lognormal. Following Price et al. [2011],

I define �

2
ln q

= ln (1 + b

2M2) where M is the three-dimensional supersonic Mach

number of the turbulence or M =
p
3 M1D and the scaling constant b is assumed to

be 1/3. An example of this distribution is shown in Figure 5.20.

To obtain a relation between density and the position along the line-of-sight, I

integrate
R
P(q) dq =

R
1
L

dx and find the density n along the line-of-sight x to be

n(x) = n exp

p
2�erf�1

✓
4x

L

� 1

◆
� �

2

2

�
, 0  x <

L

2
(5.10)

n(x) = n exp

p
2�erf�1

✓
4 (L � x)

L

� 1

◆
� �

2

2

�
,

L

2
< x  L. (5.11)

The density diverges to infinity at the centre of the cloud
�
x = L

2

�
unless a maximum

density is defined for the above PDF. To find the column density, integrating the

two density functions yields the column density relation N = nL.

Like the triangle model, the global cloud conditions can be used to constrain the
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Figure 5.20: Example of a log-normal probability distribution function as described
by Equation 5.9 with varying � and ln q.
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primary density profile. A maximum line-of-sight cloud length L is assumed and

used to calculate the average density n across the cloud by n = M/L

3 where M

is the mass of the cloud (see Chapter 4). The average cloud density and assumed

line-of-sight length constrains the maximum column density and density across the

cloud. Additionally, the shape of the density profile is a↵ected by the chosen width

of the log-normal �.

The density profile along the line-of-sight is expected to vary across the molec-

ular cloud, dependent on individual column densities calculated from the C18O. To

investigate the variation of the density profile across the cloud, I use column den-

sities N

i

to constrain the corresponding maximum density n

i,max

and line-of-sight

length L

i

of the cloud. This is similar to the triangle density profile method. First,

the relationship between the individual cloud length L

i

and the maximum density

n

i,max

using Equations 5.10 and 5.11 is

L

i

=
L

2

 
erf

 
ln (n

i,max

/n) + �

2

2p
2�

!
+ 1

!
, (5.12)

where I assume n = n

i,max

when x = L

i

2 . Integrating Equations 5.10 and 5.11 from

0  x  L

i

2 (where L

i

2 <

L

2 ) yields an individual column density related to the

maximum cloud column density

N

i

= N

 
1 + erf

"
ln (n

i,max

/n) � �

2

2p
2�

#!
. (5.13)

Rearranging this equation yields the maximum individual density n

i,max

,

n

i,max

= n exp

p
2�erf�1

✓
N

i

N

� 1

◆
+

�

2

2

�
. (5.14)

Inputting these parameters back into Equations 5.10 and 5.11 and deriving the

relation between the individual density n

i

(x) peaking at the centre of a cloud cor-

responding to the individual line-of-sight L

i

/2, the new relation from 0  x  L

i

2
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where L

i

< L and N

i

< N becomes

n

i

(x) = n exp

2

664
p
2�erf�1

0

BB@

2x

✓
erf

✓
ln (n

i,max

/n)+�

2

2p
2�

◆
+ 1

◆

L

i

� 1

1

CCA� �

2

2

3

775 , (5.15)

and from L

i

2  x  L

i

the relation becomes

n

i

(x) = n ⇥ (5.16)
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Figure 5.21 demonstrates how varying log-normal widths (�1–�5) and varying

column densities (N1–N5) a↵ect the shape of the log-normal density profile. Col-

umn densities N

i

where i = 1–5 (right) correspond to individual column densities

as described above in Equation 5.13 and �

i

(left) corresponds to varying �. Higher

i-values correspond to increased column densities or �. As the width of the profile

(�) increases with constant column density, the maximum individual profile den-

sity n

i,max

decreases and the line-of-sight length increases. As the column density

increases with constant profile width (�), the maximum individual profile density

n

i,max

increases and the line-of-sight length also increases.

Two types of models can be derived from the log-normal PDF density profile.

The first is a more simple version where the width of the density profile � is constant

for Equations 5.15 and 5.17 (as in the right-side of Figure 5.21). In this case, � can be

defined from an average FWHM velocity across the cloud to derive the Mach number

(as described above). The second case is more complicated and involves a varying

density profile width that is defined from a range of FWHM velocities across the

cloud. The varying width causes profiles with the same individual column density

to have di↵erent corresponding individual densities n
i

and line-of-sight lengths (L
i

)

based on the profile width (as in the left-side of Figure 5.21).
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Figure 5.21: Example of a log-normal PDF density profile along the line-of-sight for
(left) varying-� with constant N(H2) and (right) constant-� with varying N(H2).

5.6.2 TORUS models

Like the TORUS models using the triangle density profile described in Section 5.5.4,

the log-normal PDF density profiles are implemented into TORUS using a one-dimensional,

plane-parallel geometry. The model inputs were H2 column density, kinetic temper-

ature, FWHM velocity, density profile and HCO+ abundance. The model outputs

included HCO+ main-beam temperature as a function of velocity, HCO+ excitation

temperature as a function of line-of-sight length and peak HCO+ optical depth. The

model main-beam temperature, integrated intensity and FWHM velocity were then

compared to the HCO+ observation data to determine if the model fit data.

Two density profiles were developed from the basic log-normal PDF profile de-

scribed in the previous section. The first profile (‘constant-�’) assumed a constant

width �, defined by the average FWHM velocity (i.e. M) across the cloud. The

FWHM velocity was 1.7 km s�1 using HCO+ data. The second profile (‘varying-�’)

allowed the width to vary across the cloud. Similar to the triangle models, the max-

imum cloud lengths 0.2 and 0.3 pc were chosen to calculate the average density of

the cloud of 9.6 ⇥ 105 and 2.8 ⇥105 cm�3. The corresponding peak column densities

for the cloud were 5.9 ⇥ 1023 and 2.6 ⇥ 1023 cm�2.

The range of model input parameters (i.e. kinetic temperature, column densities

and HCO+ FWHM velocities) are shown in Table 5.9 and match the values used in

Section 5.5.4 for the triangle models. For the constant and varying profile widths, the
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N

i

(H2) Tkin FWHM velocity Mach number
⇥ 1022 cm�2 K km s�1 varying-� constant-�

1 12 0.2 1.0 8.5
5 15 0.3 1.5
10 20 0.4 2.0
30 30 0.5 2.5
50 40 0.6 3.0

50 1.0 5.0
1.5 7.6
2.0 10.1
2.2 11.1

Table 5.9: Parameter grid for TORUS models (log-normal density profile).

corresponding Mach numbers are also listed. I note the varying-� density profile used

the input FWHM velocity to constrain the Mach number defining the width of the

profile. The relationship between �

2 and the Mach number depends on supersonic

turbulence (1  M  20; Price et al. 2011). The Mach numbers for several of the

lower FWHM velocities are low but still fall in this range. The constant -� Mach

number is 8.5. Like the triangle models, TORUS had convergence issues at kinetic

temperatures reaching 40–50 K and column densities ranging from 1–5 ⇥ 1023 cm�2.

The output main-beam temperature profiles can be found in Section 5.9 in Fig-

ures 5.38 to 5.41 for the models. As in Section 5.5.4, the same scenarios defined

from the observational data (kinetic temperatures and column densities) were used

to fit the models to the data. These scenarios are listed in Table 5.6. The criterion

for fitting the scenario was the model line profile must have a peak temperature

and integrated intensity within 20% of the minimum and maximum temperatures

and integrated intensities found in the scenarios. The FWHM velocity must also

be within 0.1 km s�1 of the minimum and maximum FWHM velocities found in

the data. Uncertainties are based on standard HARP calibration uncertainties (see

Buckle et al. 2009) and the 0.2 km s�1 velocity channel binning for the HCO+ maps.

Only fitted data was included in the density and line-of-sight length analysis.
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Scenario Column density (cm�2) Density peak (cm�3) Cloud length (pc)
0.2 pc 0.3 pc 0.2 pc 0.3 pc

1 1 ⇥ 1022 2 ⇥ 105 6 ⇥ 104 0.02 0.04
2 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
3a 1 ⇥ 1022 2 ⇥ 105 6 ⇥ 104 0.02 0.04
3b 1 ⇥ 1022 2 ⇥ 105 6 ⇥ 104 0.02 0.04
4a 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
4b 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
5 1 ⇥ 1022 2 ⇥ 105 6 ⇥ 104 0.02 0.04
6a 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
6b 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
6c 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
7 1 ⇥ 1023 4 ⇥ 105 2 ⇥ 105 0.07 0.16
8 1 ⇥ 1022 2 ⇥ 105 6 ⇥ 104 0.02 0.04
9 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
10a 1 ⇥ 1023 4 ⇥ 105 2 ⇥ 105 0.7 0.16
10b 1 ⇥ 1023 4 ⇥ 105 2 ⇥ 105 0.07 0.16
10c 1 ⇥ 1023 4 ⇥ 105 2 ⇥ 105 0.07 0.16
11 3 ⇥ 1023 8 ⇥ 105 – 0.12 –
12 5 ⇥ 1023 1 ⇥ 106 – 0.16 –
13 1 ⇥ 1022 2 ⇥ 105 8 ⇥ 104 0.02 0.04
14a 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
14b 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
15 1 ⇥ 1023 4 ⇥ 105 2 ⇥ 105 0.07 0.16
16 3 ⇥ 1023 8 ⇥ 105 – 0.12 –
17 5 ⇥ 1022 3 ⇥ 105 1 ⇥ 105 0.05 0.11
18 1 ⇥ 1023 4 ⇥ 105 2 ⇥ 105 0.07 0.16
19 3 ⇥ 1023 8 ⇥ 105 – 0.12 –

Table 5.10: Model fits to constant-� log-normal scenarios for HCO+ data. Corre-
sponding peak densities and cloud lengths for each fit are shown. Scenarios without
fits are shown as ‘–’.
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Scenario Col. density (cm�2) Density peak (cm�3) Cloud length (pc)
0.2 pc 0.3 pc 0.2 pc 0.3 pc

1 1 ⇥ 1022 3–6 ⇥105 0.7–2 ⇥105 0.003–0.080 0.01–0.04
2 5 ⇥ 1022 4–8 ⇥105 1–2 ⇥105 0.01–0.03 0.04–0.10
3a 1 ⇥ 1022 2–7 ⇥105 0.7–2 ⇥105 0.002–0.01 0.01–0.04
3b 1 ⇥ 1022 1–7 ⇥105 0.5–2 ⇥105 0.002–0.02 0.01–0.05
4a 5 ⇥ 1022 4–8 ⇥105 2 ⇥ 105 0.01–0.03 0.04–0.08
4b 5 ⇥ 1022 3–8 ⇥105 1–2 ⇥105 0.01–0.04 0.04–0.12
5 1 ⇥ 1022 1–7 ⇥105 0.5–2 ⇥105 0.002–0.02 0.01–0.05
6a 5 ⇥ 1022 5–8 ⇥105 2 ⇥105 0.01–0.02 0.04–0.07
6b 5 ⇥ 1022 5–8 ⇥105 2 ⇥105 0.01–0.02 0.04–0.07
6c 5 ⇥ 1022 6–8 ⇥105 2 ⇥105 0.01–0.02 0.04–0.05
7 1 ⇥ 1023 6–8 ⇥105 2–3 ⇥105 0.02–0.03 0.07–0.09
8 1 ⇥ 1022 2–7 ⇥105 0.7–2 ⇥105 0.002–0.01 0.01–0.04
9 5 ⇥ 1022 4–8 ⇥105 2 ⇥105 0.01–0.03 0.04–0.08
10a 1 ⇥ 1023 5 ⇥105 2 ⇥105 0.05 0.12-
10b 1 ⇥ 1023 5–8 ⇥105 2–3 ⇥105 0.02–0.05 0.07–0.12
10c 1 ⇥ 1023 5–8 ⇥105 2–3 ⇥105 0.02–0.05 0.07–0.12
11 3 ⇥ 1023 8–9 ⇥106 – 0.07–0.08 –
12 5 ⇥ 1023 1 ⇥ 106 – 0.11–0.12 –
13 1 ⇥ 1022 3–5 ⇥105 0.9–2 ⇥105 0.004–0.01 0.01–0.02
14a 5 ⇥ 1022 6–8 ⇥105 2 ⇥105 0.01–0.02 0.04–0.05
14b 5 ⇥ 1022 4–8 ⇥105 2 ⇥105 0.01–0.03 0.04–0.08
15 1 ⇥ 1023 5–8 ⇥105 2–3 ⇥105 0.02–0.05 0.07–0.12
16 3 ⇥ 1023 8–9 ⇥106 – 0.07–0.10 –
17 5 ⇥ 1022 4–8 ⇥105 2 ⇥105 0.01–0.03 0.04–0.08
18 1 ⇥ 1023 5–7 ⇥105 2 ⇥105 0.04–0.05 0.08–0.12
19 3 ⇥ 1023 8 ⇥ 105 – 0.08–0.10 –

Table 5.11: Model fits to varying-� log-normal scenarios for HCO+ data. Corre-
sponding peak densities and cloud lengths for each fit are shown. Scenarios without
fits are shown as ‘–’.
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Figure 5.22: Densities (cm�3) measured by the 0.2 and 0.3 pc log-normal models
with constant-�. Contours denote the 5� HCO+ peak main-beam temperature
detection.

5.6.3 Determining density using the constant-� log-normal

model

The range of densities and cloud lengths along the line-of-sight are shown in Ta-

ble 5.10. Like the triangle models, the log-normal models with constant-� predict

peak densities that are proportional to the column density input parameter of the

model (i.e. peak densities are higher for scenarios with higher column densities).

The sources shown in the image are the same as the triangle model. Peak densities

range from 2–10 ⇥ 105 (0.2 pc model) and 0.6–2.0 ⇥ 105 cm�3 (0.3 pc model). Peak

densities are slightly less than those predicted from the triangle model and do not

reach the critical density of HCO+. I note the 0.3 pc model is not able to model the

higher column densities (i.e. ⇠3–5 ⇥ 1023 cm�2) due to the lower maximum column

density of the model.

As in the triangle model, both the 0.2 and 0.3 pc constant-� models show more

uniform densities in the Oph B region. This density uniformity is the result of

the column density bin used to fit this region, where more density variation would

be detected had more model column density inputs been used. The 0.2 pc model
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has been unable to fit the majority of the B1 region, where corresponding models

predicted higher integrated intensities and peak main-beam temperatures that did

not match the data (lowest model peak main-beam temperature was at 3.8 K while

the typical main-beam temperatures found in the data for Oph B1 were ⇠1–3 K).

This model additionally does not fit the region near Class I source SSTc2d J162730.9-

242733 that was found to have slightly higher densities than the rest of the Oph B

region. Using the 0.3 pc model, Class I source SSTc2d J162730.9-242733 does have

an associated higher density than the rest of the Oph B region (1 ⇥ 105 cm�3) and

IRS 37 has higher densities found in both models (3 ⇥ 105 and 1 ⇥ 105 cm�3 for

the 0.2 and 0.3 pc models respectively) similar to the triangle models.

The Oph CEF region has a similar density range as Oph B. The 0.2 pc model

has been unable to map a significant portion of the Oph F clump (corresponding to

protostars IRS 43 and IRS 44) and patchy portions of the primary filament in the

region. Both the 0.2 and 0.3 pc models show increased density corresponding to the

Class I protostar EL 29 (3 ⇥ 105 and 1 ⇥ 105 cm�3) and the 0.3 pc models show

the same increased density corresponding to IRS 43 and IRS 44 in Oph F.

The Oph A region has not been thoroughly fit by either the 0.2 or 0.3 pc models.

The 0.2 pc models have not been able to fit large portions of the outer edges of the

clump and the 0.3 pc models have not been able to fit the inner portions of the

region corresponding to the highest column densities in the cloud. Like the triangle

model, the Class 0/I protostars are located in the centre of the clump but do not

necessarily correspond to the highest densities. The starless and pre-stellar cores are

spread throughout the clump with many of them lining a stripe across the clump

corresponding to higher densities.

5.6.4 Determining density using the varying-� log-normal

model

Fits by the varying-� log-normal models are not as straightforward as the triangle

or the constant-� log-normal models, as shown in Figure 5.21. Unlike the triangle

models, regions with higher column density do not automatically correspond to high

density due to the inclusion of the three-dimensional Mach number derived from

the HCO+ FWHM velocities. The FWHM velocity (through the Mach number)
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Figure 5.23: Densities (cm�3) measured by the 0.2 and 0.3 pc log-normal models with
varying-�. Contours denote the 5� HCO+ peak main-beam temperature detection.
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determines the width of the log-normal density profile, as discussed in Section 5.5.

When the FWHM velocity is fixed, densities predicted by the log-normal models

vary with column density and line-of-sight lengths (higher column density and line-

of-sight lengths relates to a relatively higher density). However, with a constant

column density, the peak density may decrease or increase with increasing FWHM

velocity. Lower column densities N

i

(relative to the maximum column density N)

have corresponding peak densities that decrease with increasing FWHM. Conversely,

higher relative column densities have increasing peak densities with higher FWHM

velocities. These features are the result of the log-normal density profile shape.

With higher FWHM velocity, the density profile has a larger line-of-sight length

corresponding to lower density material with the centre of the distribution peaking

at a high density. Therefore, lower/moderate column densities with higher FWHM

velocities will have lower peak densities and longer line-of-sight lengths (resembling

a ‘flat’ isosceles triangle with a larger base than height). Higher column densities

have peak densities continuing to increase with FWHM velocity because a large

portion of the material is being pushed to lower densities. The peak densities must

therefore be increased to result in the same column densities.

The results from the log-normal models can be found in Figure 5.23, which shows

the densities (cm�3) of the regions fit by the models. The log-normal models have

not been able to cover the cloud as fully as the triangle models (i.e. on the edges of

the Oph A and B regions), but the main portions of the cloud with significant HCO+

emission and regions near protostars and cores have been su�ciently modelled. Due

to the more complex nature of the models, there are lower and upper density limits

based on the highest and lowest FWHM velocities respectively in each scenario. I

note that upper density limits are fairly constant. This is mainly due to low FWHM

velocity limits for each scenario that are reasonably similar. Peak densities vary

little with column density at low velocities.

Similar to the triangle models, peak densities predicted by the log-normal models

are quite constant across the Oph B region, where the lower limits are 2.0⇥ 105 and

0.7⇥105 cm�3 and upper limits are 7.0 ⇥105 and 1.0⇥105 cm�3(0.2 and 0.3 pc

models). Some variation is found in the Oph B1 region and near Class I sources

SSTc2d J162730.9-242733 and IRS 37 where there are narrower or similar but higher

density ranges. These slight regions with variation indicate the density (on average)
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will be higher than the rest of the region. However, there will be a variety of

densities instead of constant density blocks that do follow the FWHM velocity of

the individual pixel.

Oph CEF has similar densities as seen in the Oph B region. In both the lower-

limit regimes for the 0.2 and 0.3 pc models, the main filament in the region is

largely 1.0–7.0 ⇥105 cm�3 and 0.5–2.0 ⇥105 cm�3 respectively. There is an increase

in density near EL 29 at 5.0–8.0 ⇥105 cm�3 for the 0.2 pc model while the upper-

and lower-limits for the 0.3 pc model are constant at 2.0 ⇥ 105 cm3. Additionally,

there is an increase in density around IRS 43 and 44 of ⇠3.0–8.0⇥105 cm�3 and

1.0–2.0⇥105 cm3 for the 0.2 and 0.3 pc models.

Lastly, the Oph A region has a larger range of densities (lower limit) than the rest

of the cloud with a fairly constant density range at the upper limit levels. The stripe

of higher column densities in the centre of the clump corresponds to a maximum

density 1.0 ⇥106 cm�3 in the 0.2 pc model (constant lower- and upper-limits). At

the 0.3 pc model lower limit, the stripe has the same density as the rest of Oph A;

however, this region has a higher density upper limit (2.0–3.0⇥105 cm�3).

5.6.5 Understanding the three-dimensional cloud: constant-

� model

Figure 5.24 shows the line-of-sight lengths (pc) estimated by the constant-� models.

Similar to the triangle models, the z-axis lengths increase with increasing column

density. Line-of-sight lengths continue to remain fairly constant across the Oph B

clump and increase towards the B1 region (primarily shown in the 0.3 pc model).

For the majority of the region, lengths are 0.01 pc (0.2 pc model) and 0.04 pc

(0.3 pc model). With the x- and y-axes lengths ranging from 0.22-0.28 pc at the

widest sections of the clump, these models continue to suggest Oph B is quite ‘flat’

which is similar to the triangle models. The line-of-sight lengths are 4–5 % (0.3 pc

model) and 14–18% (0.2 pc model) of the longest regions of the cloud. There are

small portions in the B2 region and largely in the B1 region (primarily for the 0.3 pc

model) where line-of-sight lengths increase to 0.05 pc and 0.11 pc for the 0.2 and

0.3 pc models respectively. Therefore, lengths increase to 18–23% and 39–50% of

the largest cloud widths for the two models.
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Figure 5.24: Line-of-sight lengths (pc) measured by the 0.2 and 0.3 pc log-normal
model with constant-�. Contours denote the 5� HCO+ peak main-beam tempera-
ture detection.

The range of line-of-sight lengths found in Oph CEF are the same as Oph B.

This region has a noticeable filamentary-like structure that is around 0.270 pc long

(including the Oph F clump) and 0.030 pc wide. As discussed in Section 5.6.3, the

0.2 pc model does not trace portions of the Oph F region but does trace the main

filament near EL 29. The line-of-sight lengths predicted by the models range from

0.01-0.05 pc (0.2 pc models) and 0.04-0.11 pc (0.3 pc models). Like the triangle

models, the constant-� models also indicate the three-dimensional structure of the

region is fairly cylindrical or filamentary but increases around the location of the

protostars (EL 29 for the 0.2 pc triangle model). The 0.3 pc model predicted the

line-of-sight lengths can be 3–4 times the filament width at the location of the

protostars.

Like the triangle model, Oph A has the largest line-of-sight length range. The

clump is ⇠ 0.34 pc long and ⇠0.19 pc width at the largest x and y-axis lengths.

Line-of-sight lengths increase towards the centre of the core, near the stripe of higher

column densities. The models predict line-of-sight lengths ranging from 0.01–0.16 pc

(0.2 pc model) and 0.11-0.16 pc (0.3 pc model). As in Oph B, the 0.2 pc model does

not adequately map the edges of the Oph A clump and the 0.3 pc model does not
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map the inner portions of the clump corresponding to the highest column densities.

In the regions fit by the models, the centre of the cloud seems to bulge along the

central stripe and decreases towards the outer edges of the cloud. The inner portions

of the cloud covered by the 0.2 pc models suggests the z-axis lengths are ⇠ 84% of

the width of the cloud, suggesting the clump has a similar ‘egg-like’ three dimension

shape of the cloud like the triangle models. The 0.2 pc triangle model finds a similar

0.16 pc z-axis length along the primary stripe in the cloud, indicating the region is

somewhat more rounded than the 0.2 pc model.

5.6.6 Understanding the three-dimensional cloud: varying-

� model

The lower and upper-limits on the line-of-sight lengths predicted by the log-normal

models are shown in Figure 5.25. Like the triangle models, Oph B and Oph CEF

regions have similar line-of-sight lengths. Lengths along the x and y-axis predicted

for the majority of Oph B range from 0.002–0.010 pc (up to 4% of the widest part

of the cloud) and 0.008–0.040 pc (up to 14% of the widest part of the cloud) for

the 0.2 and 0.3 pc models. Compared to the triangle models, the log-normal models

predict a similar three-dimensional shape but an even flatter distribution along the

z-axis. Even though the 0.2 pc model does not cover the total area of the Oph B1

region, there are still some regions with noticeable longer line-of-sight lengths than

the majority of Oph B. These regions range from 0.011–0.027 pc (0.2 pc model) and

0.035–0.075 pc (0.3 pc model), or up to 10% and 27% of the largest Oph B width.

This indicates that the lower portion of the Oph B clump including Oph B1 bulges

relative to the other sections of the region.

Oph CEF has the same line-of-sight length ranges as Oph B. Increased lengths

directly correspond to Class I protostars EL 29 and LFAM 26 along the filament

in the region and IRS 43 and 44 in the Oph F region. When the lower and upper

line-of-sight limits are compared to the width of the filament, the log-normal models

show increased lengths towards the centre of the filaments corresponding up to 67%

for the 0.2 pc model and up to 4 times the filament width for the 0.3 pc model. This

indicates the filament is cylindrical in shape, narrower on the edges and growing

near the location of the protostars.
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0.03

0.06

0.09
0.12
0.15
0.21
0.27

0.2 pc lower 0.2 pc upper

0.3 pc lower 0.3 pc upper

Figure 5.25: Line-of-sight lengths (pc) measured by the 0.2 and 0.3 pc log-normal
models (varying-�). Contours denote the 5� HCO+ peak main-beam temperature
detection.
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0.2 pc 0.3 pc 

Figure 5.26: Pixel comparison between column density and density of the entire
cloud using the log-normal constant-width models.

Lastly, the Oph A region has a large range of line-of-sight lengths, where the

lowest lengths are on the edge of the cloud and increase towards the centre of the

clump along the central stripe of the region. Lower limits for the region range from

0.011–0.114 (0.2 pc model) and 0.036–0.123 pc (0.3 pc model). Upper limits on the

line-of-sight lengths range from 0.028–0.123 and 0.074–0.123 pc respectively. Like

the triangle models, the increase of cloud lengths indicates the cloud is more of an

‘egg-like’ shape with a bulge along the stripe, peaking at the centre of the core.

However, this three-dimensional shape is to a much less extent due to the lower

length estimates for the region. Additionally, the 0.3 pc model has been unable to

map the centre of the region due to constraints on the maximum column density.

5.6.7 Links between column density and density

Using the log-normal profiles to estimate the density corresponding the the HCO+

emission, the link between column density and density can be further explored simi-

lar to the triangle density profiles. Figures 5.26 and 5.27 shows the pixel comparison

between column density and density across the entire cloud for the log-normal mod-

els. Log-normal models with constant-� show a similar link between high column

density and density as the triangle models. This link is also found in the varying-�

models in the lower-limit. Upper-limit cases for the varying-� models show a more

evenly spread density distribution across the entire range of column densities.
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0.2 pc , lower limit 0.2 pc, upper limit

0.3 pc, lower limit 0.3 pc, upper limit

Figure 5.27: Pixel comparison between column density and density of the entire
cloud using the log-normal models.
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0.2 pc, constant-width 0.3 pc, constant-width

Figure 5.28: Source comparison between column density and density in the entire
cloud using the log-normal constant-width models.

Figures 5.28 and 5.29 show the comparison between column density and density

for the pre-stellar, starless and protostellar sources in Ophiuchus. The majority

of the cores are evenly distributed over the column densities and densities for the

constant-� and varying-� lower-limit models. Class 0/I protostars are found mainly

in the ‘middle’ column density limits (⇠0.2–1.0⇥1023 cm�2) where pre-stellar and

starless cores are found in column densities up to 3 ⇥ 1023 cm�2. Therefore, these

protostars are not found at the corresponding highest densities in the cloud.

Figures 5.30 and 5.31 show histograms of the percentage of pixels and sources

at various densities across the cloud for the various models. KS tests, shown in

Table 5.12, comparing the distribution of pixels and sources in the cloud indicate

mixed results for the constant- and varying-� models. The constant-� models in-

dicate there is no di↵erence between the distribution of pixels across the cloud and

the sources (i.e. starless cores, prestellar cores and embedded protostars). This is a

similar result for the triangle models. The lower-limit varying-� models also suggest

there is no di↵erence between the distribution of pixels across the cloud and the

cores. The upper-limit varying-� models suggest the total cloud distribution and

the Class 0/I embedded protostars are a di↵erent distribution for the 0.2 pc model

(p-value: 0.077) while the comparison between the total cloud and the other sources

suggest a similar distribution. The KS test result in the upper-limit suggesting the

Class 0/I protostars have a di↵erent distribution than the total cloud is most likely

due to a higher percentage of sources at lower column densities and densities (i.e.
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0.2 pc, varying-width
lower limit

0.2 pc, varying-width
upper-limit

0.3 pc, varying-width
lower-limit

0.3 pc, varying-width
upper-limit

Figure 5.29: Source comparison between column density and density in the entire
cloud using the log-normal models.
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Log-normal model with constant-�
0.2 pc triangle model 0.3 pc triangle model

Source Tot. Cloud Pre-stellar Starless Tot. Cloud Pre-stellar Starless
Tot. Cloud – 0.999 0.999 – 0.976 0.976
Pre-stellar – – 0.999 – – 0.976
Class 0/I 0.697 0.697 0.999 0.976 0.976 0.976

Log-normal model with varying-�, lower-limit
Tot. Cloud – 0.883 0.883 – 0.999 0.697
Pre-stellar – – 0.999 – – 0.999
Class 0/I 0.883 0.883 0.883 0.697 0.697 0.697

Log-normal model with varying-�, upper-limit
Tot. Cloud – 0.810 0.318 – 0.844 0.844
Pre-stellar – – 0.999 – – 0.844
Class 0/I 0.077 0.810 0.999 0.844 0.844 0.844

Table 5.12: KS test results (p-values) for the distribution of densities across the
cloud and for the pre-stellar, starless and protostellar cores.

 1023 cm�2) than the total cloud or the other sources.

Like the triangle models, protostars are not seen at the highest densities be-

cause of the proportionality between column density and density predicted from

the models. Other e↵ects resulting in potentially higher C18O emission and thus

higher column densities are discussed in Section 5.7, comparing both the triangle

and log-normal models. Additionally, gas temperatures are discussed.

5.7 Discussion

The radiative transfer models detailed in this chapter have been relatively successful

in modelling the HCO+ emission and resulting in the underlying density traced by

the molecule. In this section, I discuss the model results in further detail and the

benefits and limitations of the modelling techniques. Additionally, potential issues

are detailed including 13CO kinetic temperatures, varying abundances of HCO+ and

C18O and beam dilution. Lastly, I discuss methods for improving the models and

the next logical step in model development.
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0.3 pc0.2 pc

0.2 pc, lower limit

0.2 pc, upper limit

0.3 pc, lower limit

0.3 pc, upper limit

Figure 5.30: Histogram of the percentage of total pixels at di↵erent densities across
the entire cloud using log-normal models.

0.2 pc 0.3 pc

0.2 pc, lower-limit 0.3 pc, lower-limit

0.2 pc, upper-limit

0.3 pc, upper-limit

Figure 5.31: Histogram of the percentage of total sources at di↵erent densities across
the entire cloud using log-normal models.
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5.7.1 Model results

In Section 5.4.2, the limitations of a using a constant density profile for radiative

transfer models was discussed (for example, large line-of-sight lengths). I do not

include the RADEX models in the discussion of the TORUS radiative transfer models

because I have ruled out the e�ciency of using constant density models for modelling

accurate cloud densities.

Both the triangle and log-normal TORUS models predict reasonable densities and

line-of-sight lengths constrained by numerous observational cloud properties (cloud

mass, observable cloud lengths in RA and Dec, column density, kinetic temperature

and FWHM velocity). The 0.2 pc models have been able to model the full range of

column densities observed in the cloud calculated from C18O integrated intensities

while the 0.3 pc models have not been able to model the highest densities (i.e.

> 2 ⇥ 1023 cm�2). The two lengths provide two possible maximum line-of-sight

lengths based on these observations. Additionally, is possible that some regions of

the cloud may be better mapped with a smaller or larger cloud length.

Comparing the spatial coverage of the three TORUS models (triangle, constant-�

log-normal and varying-� log-normal), the triangle model and the varying-� models

were successful in fitting the majority of the cloud. The 0.2 pc constant-� log-normal

model had some problems modelling lower HCO+ integrated intensities found in

the outer portions of the Oph A and B2 clumps and the Class I protostars found in

Oph F. The 0.3 pc models were more successful in mapping the outer portions of

the clumps but were still constrained by column densities higher than the maximum

model column density at the centre of the Oph A core.

It is di�cult to distinguish between the model fits and determine the density

profile best fitting the HCO+ data. The triangle and constant-� log-normal profiles

are most constrained by column density input due to the proportionality between

column density and density in Sections 5.5.1 and 5.6.1. In the physical cloud it is

possible higher column density does not yield higher density, e.g. higher column

density relative to the total cloud may be detected if a filament is observed down

its length but a proportionally high density may not be present. The varying-�

log-normal model begins address this issue, taking a range of Mach numbers found

throughout the cloud into account. Using the Mach number or FWHM velocity of
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the material, a relative higher density doesn’t always result from a higher column

density. The drawback to this model is the limitation of fitting scenarios with a

range of FWHM velocities. This leads to the lower- and upper-limits in density and

line-of-sight lengths described in Section 5.6.2. It would clearly be more useful to fit

the map pixel-by-pixel to determine the precise peak density and line-of-sight length

associated with the HCO+ emission.

The comparison between the cloud densities associated with di↵erent evolution-

ary stages of the sources remains inconclusive. Apart from the single KS test indicat-

ing the Class 0/I embedded protostars had a di↵erent density distribution than the

total cloud using the 0.2 pc varying-� log-normal model, the remaining models indi-

cate the density distribution across the total cloud was no di↵erent to the distribu-

tion for protostellar, pre-stellar and starless cores. Additionally, some pre-stellar and

starless cores are found at higher densities than the protostellar cores. Though the

protostars are not seen at the highest column densities (2–4⇥1023 cm�2) in the cloud,

they are still found at high column densities in the region (⇠0.2–1.0⇥1023 cm�2).

The column densities corresponding to both protostars and the starless/prestellar

cores in Ophiuchus are greater than previously derived thresholds for star formation.

Onishi et al. (1998) measured C18O column density in Taurus, finding ‘young’ proto-

stars and starless H13CO+ cores to have an average column density � 8⇥1021 cm�2

(i.e. Av = 9). This is a factor of 1.25 lower than the minimum column density for

the list of cores further analysed using HCO+. Additionally, Johnstone et al. (2004)

found no cores using SCUBA 850 µm continuum data below Av < 7 (i.e. column

density ⇠6⇥1021 cm�2).

Improvements to these density profiles and other potential molecules tracing high

density in star forming regions are further discussed below.

5.7.2 Gas temperature

As discussed in Section 5.5.4, the models were fit to the data primarily using the

model column density matched to the average of each defined scenario column den-

sity in the cloud. This method ignores the kinetic temperature input in the model

calculated from 13CO (assuming optically thick emission and LTE; Chapter 4).

Therefore, the models fitting the data could have significantly lower or higher ki-
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SR3 (GSS 25)

Oph S1

Edge-on PDR

Figure 5.32: ISOCAM 12µm data (MJy sterad�1) with contours of 13CO excitation
temperatures, corresponding to 15, 20, 30 40 and 50 K.

netic temperatures than temperatures calculated from 13CO. To validate the models,

it is necessary to further investigate the di↵erences between the model and 13CO

kinetic temperatures. Additionally, HCO+ excitation temperatures are calculated

and compared to excitation temperatures from the output models.

Kinetic temperatures for 13CO are calculated in Chapter 4, where I assume LTE

(Tkin = Tex) and optically thick emission. Figure 5.32 shows the ISOCAM 12 µm

dust continuum data in MJy sterad�1, which traces hot dust in the Ophiuchus

cloud. Contours correspond to 13CO kinetic temperatures at 12, 20, 30, 40 and

50 K. The Oph A region is noticeably warmer than the rest of the cloud (> 30 K)

and temperatures increase to ⇠40–50 K near B-type star Oph S1 (labelled ‘peak’).
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Scenario 13CO Tkin Tkin Model Input
Triangle Constant-� Varying-�

0.2 pc 0.3 pc 0.2 pc 0.3 pc 0.2 pc 0.3 pc
1 10–13.5 15 20, 30 20+ 40, 50 15 20, 30
2 10–13.5 12 12 – 12, 15 12 12, 15
3a 13.5–17 40 30, 50 40 50+ 20 30, 40
3b 13.5–17 40 30, 50 30, 40 50+ 20 30, 40
4a 13.5–17 15 15, 20 12, 15 20 15 15, 20
4b 13.5–17 15 15, 20 12, 15 20 15 15, 20
5 13.5–17 40 30, 50 40 50+ 20 30, 40
6a 17–25 15, 20 15, 20 15 15+ 15 20
6b 17–25 15, 20 15, 20 15 20 15 15, 20
6c 17–25 15, 20 15, 20 15 20 15 20
7 17–25 15 15 15, 20 15, 20 15 15
8 25–35 20, 30 30 30 40, 50 20 30
9 25–35 20, 30 30, 40 20, 30 30, 40 30 30, 40
10a 25–35 20 20 20+ 30 20+ 20+

10b 25–35 20, 30 20 30 30, 40 20 30
10c 25–35 20, 30 20 30 30, 40 20 30
11 25–35 20, 30 – 20, 30 – 20 –
12 25–35 20 – 20 – 20 –
13 35–45 15, 20 20 20 40 15 20, 30
14a 35–45 30+ 30+ 20+ 50+ 30+ 40+

14b 35–45 30 30, 40 20, 30 40, 50 30 30, 40
15 35–45 20 20, 30 20, 30 30, 40 20, 30 30
16 35–45 20, 30 – 20, 30 – 20 –
17 45–60 15 12, 15 12 20 15 15, 20
18 45–60 15 15, 20 15, 20 20 15 20
19 45–60 20, 30 – 20 – 20 –

Table 5.13: List of 13CO kinetic (excitation) temperatures. Only kinetic tempera-
tures corresponding to models that were able to fit the peak main-beam temperature
and integrated intensity from each scenario are listed. Temperatures marked with
the symbol ‘+’ denote the closest fitting model to the scenario but was unable to
fully fit the scenario peak main-beam temperature.
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Similar heating is seen near the B-type star SR3 (GSS 25). It is possible the B-type

stars are biasing the 13CO kinetic temperatures in this region. If 13CO traces a hot,

optically thick outer layer of the cloud heated by these young stars, the corresponding

kinetic temperatures may not accurately correspond to material traced by HCO+.

This issue with kinetic temperature can be further investigated by comparing
13CO kinetic temperatures and the kinetic temperatures from the model fits. As

shown in Table 5.13, kinetic temperatures for the Ophiuchus cloud range from 13.5 to

60 K (the warmest regions are found in Oph A). There is a noticeable issue regarding

model kinetic temperature inputs not fitting the scenario 13CO kinetic temperature

range. Scenarios 1, 3 (a,b) and 5 consistently have model kinetic temperatures

that are higher than 13CO kinetic temperatures. These scenarios correspond to

low column density regions (N = 0.5–3 ⇥ 1022 cm�2) primarily in Oph B and the

EF filament. The need for higher model kinetic temperatures to fit the HCO+

data could suggest the column densities are too low to produce the HCO+ emission

detection in these lower column density regions. Depletion, i.e. the freezing of

a molecule onto dust grains, could be a possible cause of low column densities

predicted by the C18O molecule. This issue is further discussed in Section 5.7.3.

Conversely, scenarios 10a, 11, 12, 13, 14a, 15, and 16 have some model kinetic

temperatures that are lower than the 13CO kinetic temperature and scenarios 17,

18 and 19 consistently have all model kinetic temperatures lower than the observed

temperature. The scenarios involved have 13CO kinetic temperatures at or above

25–35 K and reach 45–60 K. As stated above, the high 13CO kinetic temperatures

could potentially result from 13CO emission tracing di↵erent features in the cloud

(e.g. the front of the cloud or regions near the hot dust) instead of the regions

directly corresponding to star formation. In this section, I focus on understanding

the models with consistently low model kinetic temperature inputs.

To further investigate the di↵erence between the model and 13CO kinetic tem-

peratures I calculate excitation temperatures from the HCO+ data. The model fits

can be further investigated by comparing the HCO+ excitation temperatures to the

model output excitation temperatures. I calculate HCO+ excitation temperatures
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VLA 1623 
(AB, W)

SSTc2d
J162614.6
-242508

CRBR 
2315

GSS 30
LFAM 1

GY 30

LFAM 26

IRS 43, 44

SSTc2d 
J162730.9
-242733

IRS 37

SSTc2d
J162721.8
-242728

EL 29

Figure 5.33: HCO+ excitation temperatures (K). Class 0/I protostars are denoted
as black ‘⇥’.

using a similar method for 12CO and 13CO in Chapter 4,

Tex(HCO+) =
17.1 K

ln 17.1 K
Tpeak+0.0324 K + 1

(5.17)

where Tpeak is the peak HCO+ main-beam temperature and 17.1 K is Tul = h⌫/k.

This equation assumes the gas is optically thick and in LTE. Using the models

produced by TORUS, the kinetic temperature and the output excitation temperature

can be compared for each scenario to ensure the modelled regions are in LTE ( i.e.

Tkin = Tex). While it is likely HCO+ is optically thick, it is possible the excitation

temperatures underestimate the gas temperature if the molecule is subthermally

excited (i.e. Tex < Tkin).

The HCO+ excitation temperature map is shown in Figure 5.33. The Oph A

region has the largest range of HCO+ excitation temperatures, corresponding to ⇠7–
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22 K. HCO+ excitation temperatures predominantly trace the regions directly corre-

sponding to Class 0/I protostars (VLA 1623 AB, VLA 1623 W, SSTc2d J162626.0-

242340, GY 30, LFAM 1, GSS 30, CRBR 2315 and SSTc2d J162614.6-242508),

where there are distinctly higher temperatures (⇠15–22 K) located in a ‘C-shape’

in the centre of the region (shown in Figure 5.33). The main star formation is sur-

rounded by hot material from Oph S1, SR3, and B2V star HD 147889 which drives

an ‘edge-on’ PDR seen in the 12µm dust continuum as a long, filamentary struc-

ture. Similarly in Figure 5.34, I point out two distinct peaks in HCO+ excitation

temperatures that also correspond to peaks in dust continuum emission. Peak 1

corresponds to VLA 1623 AB and peak 2 corresponds to GSS 30 and LFAM 1.

Other regions in Ophiuchus have a fairly constant HCO+ excitation tempera-

tures of ⇠8 K. Higher temperatures are found in the main Oph B clump (⇠12–13 K)

near Class I protostar IRS 37 and increase to 17 K near the Class I SSTc2d J162730.9-

242733 and flat spectrum sources IRS 45 and 47 (not shown in Figure 5.33) driving

the main Oph B outflow. Peak 3 in Figure 5.34 shows a correlation between a peak

in HCO+ excitation temperature and dust continuum emission corresponding to

this region, most likely IRS 47 instead of SSTc2d J162730.9-242733. Oph B1 has

fairly low excitation temperatures in comparison (10 K), which could potentially

correspond to several prestellar and starless cores in the region. Similarly, Oph CEF

shows that protostars EL 29, LFAM 26, IRS 44 and 43 have a temperature range of

⇠8–12 K, the brightest EL 29 which is shown as peak 4 in Figure 5.34.

Table 5.14 shows the range of HCO+ excitation temperatures for each of the

scenarios and the corresponding model excitation temperatures. The model exci-

tation temperature ranges are based on all of the kinetic temperature inputs from

Table 5.13 and can vary with the linewidths input into TORUS. For a number of the

models, Tkin = Tex and LTE is a fair assumption. However at lower column densities

and depending on the models used, LTE does not necessarily hold (i.e. Tex < Tkin).

Matching the HCO+ excitation temperatures to the model excitation temper-

atures yields an interesting insight into the chemistry of HCO+. In cases of high

kinetic temperature (as predicted by 13CO) some of the models with lower model

kinetic temperatures have excitation temperatures that agree with or are closer to

HCO+ excitation temperatures. These are most noticeable in scenarios 17, 18 and

19 where model input kinetic temperatures did not correspond to the 13CO temper-
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Oph S1

SR3 (GSS 25)

Peak 2

Peak 1

Peak 3

Peak 4

Edge-on PDR

Figure 5.34: ISOCAM 12µm data (MJy sterad�1) with contours of HCO+ excitation
temperatures, corresponding to 8, 12, 15, 20 K.
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ature range. The remaining scenarios have model excitation temperatures near or

overlapping the HCO+ excitation temperatures.

Comparing HCO+ and 13CO kinetic temperatures from Figures 5.32 and 5.34,

noticeable discrepancies emerge primarily in the Oph A region. 13CO predicts high

kinetic temperatures in the clump Tkin � 30 K. HCO+ kinetic temperatures range

only from ⇠7–22 K. Even at the peak excitation temperature 22 K, assuming a

20% peak main-beam temperature uncertainty only yields an upper limit of ⇠28 K.

With the indication that 13CO is tracing regions corresponding to hot dust from

Oph S1 instead of the local star formation, higher kinetic temperatures will bias the

kinetic temperature parameter input into the TORUS models. This has the e↵ect of

increasing output main-beam temperature peaks and integrated intensities for the

HCO+ molecule. Additionally, column densities calculated from C18O observations

will be altered, though this e↵ect is small. Column densities are dependent on

the exponential term Tex/ exp (�31.6 [K]/Tex), which causes column densities to

decrease when 0 K < Tex  31.6 K and increase when Tex � 31.6 K. For example,

in a region with 50 K excitation temperature, column density would only decrease

by a factor of 1.09 if the excitation temperature changed to 35 K.

Accounting for higher kinetic temperatures traced by the 13CO molecules still

does not fully address modelling issues with continual high model excitation tem-

peratures compared to the HCO+ temperatures calculated above using the observa-

tional data. Additionally, it does not address the problem found in several scenarios

regarding high model kinetic temperatures relative to 13CO kinetic temperature.

Varying abundances and beam dilution could be potential issues unaccounted for in

the modelling of emission.

5.7.3 Abundance

Molecular abundance fluctuations across a cloud can cause corresponding variations

in the amount of detected molecular line radiation. When modelling molecular

emission using radiative transfer models, it is important to consider the abundance

of the molecule when fitting the data.

The simple models developed in this study using TORUS have been chosen to keep

a constant abundance. HCO+ is expected to vary through means of CO depletion,
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Figure 5.35: Typical chemistry of HCO+ in molecular clouds.

photodissociation due to nearby hot stars, recombination with other molecules or

electrons, or enhanced ionisation due to magnetic fields. The HCO+ abundance

used in the TORUS models was 8 ⇥ 10�9 (Irvine et al 1987), but varies by a factor

of 2–4 in other studies (e.g. Blake et al. 1987; Kulesa et al. 2005). The chemical

cycle of HCO+ abundance is expected to follow CO, where CO depletion occurs at

temperatures ⇠20 K [Nakagawa, 1980]. The typical lifecycle of HCO+ is shown in

Figure 5.35, where HCO+ is made from the combination of H+
3 and CO. Addition-

ally, in the outer envelopes of stars and PDRs, HCO+ can also be created from the

combination of C+ and H2O. Destruction of HCO+ typically occurs through several

main processes, including electron dissociative recombination forming CO or proton

transfer to water creating H3O+ in higher temperatures (> 100 K). Additionally,

HCO+ can be destroyed through combination with neutral metallic atoms (i.e. Na

and Mg to form Na+ and Mg+).

CO depletion could be an issue in high density regions, i.e. starless cores which

have densities ⇠105 cm�3 and lower temperatures ⇠10 K [Di Francesco et al., 2008].

Christie et al. [2012] found Ophiuchus to have the lowest average CO depletion levels
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in comparison to other GBS clouds (including Serpens, NGC 2024, NGC 2071 and

Taurus). In this study, CO depletion levels were defined as the ratio of 850 µm and

C18O dust column densities,

Fdep =
N(H2)dust
N(H2)CO

, (5.18)

where depletion factors were estimated to be a mean of 7 in starless cores and

4 in protostellar cores. I note these values were not corrected for optically thick

C18O emission, where depletion factors would decrease because the column densities

estimated by C18O would increase with the optical depth correction. The abundance

of C18O was assumed to be XC18O ' 1.7 ⇥ 10�7 from Frerking et al. [1982]. In

my analysis, I use a C18O abundance of 10�7, which would change the depletion

values calculated by Christie et al. [2012] to 4 and 2 for the starless and protostellar

cores respectively in my data. Assuming the main method of creating HCO+ is

from the combination of H+
3 and CO and the abundance of CO and HCO+ have a

linear relation, HCO+ abundances would decrease by the same factor to 2–4 ⇥ 10�9

(assuming the original HCO+ abundance is 8 ⇥ 10�9). These values are similar to

values found in other clouds, for example OMC-1 [Blake et al., 1987].

Depletion would result in important consequences needed for modelling the

cloud. First, the input column density for each model would be a factor 2–4 too low.

In the optically thin scenario, increased column densities would cause the HCO+

main-beam temperature output to increase proportionally. Second, C18O deple-

tion could indicate corresponding HCO+ depletion by the same factor (if the two

molecular abundances are linearly related). The increase in column density by the

depletion factor would then result in the HCO+ main-beam temperature outputs

remaining the same in the optically thin limit (due to the decreasing the HCO+

abundance).

It is unlikely depletion will a↵ect regions like Oph A with model main-beam

temperatures which were found to surpass the corresponding cloud main-beam tem-

peratures. However, Oph B has model main-beam temperatures that are found to

be consistently lower than what is found in the cloud. To understand how depletion

may a↵ect a region with lower column density and kinetic temperature like Oph B, it

is important to understand HCO+ optical depth and excitation temperatures. The
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models predict a varying range of optical depths dependent on the column density,

density and line width of the molecules. The majority of these molecules indicate

that at the column densities and kinetic temperatures corresponding to the C18O

and 13CO integrated intensities, optical depths range from < 1–10 in the Oph B1,

B2 and CEF regions. In thermalised and optically thick emission, the HCO+ in-

tegrated intensities will saturate and remain constant with increasing or decreasing

column density. The optical depth is then proportional to column density, where

N(H2) / ⌧

1�exp(�⌧)

R
TMB dv. Therefore, varying abundance due to depletion will

not a↵ect the corresponding main-beam temperatures of a thermalised and optically

thick molecule.

The scenarios primarily a↵ected by low model main-beam temperatures are found

to have low column densities (⇠ 1022 cm�2), a range of optical depths and non-LTE

conditions (i.e. Tex < Tkin). Scenarios include 1, 3 ab, and 5, primarily found

in Oph B, C, E and F. The molecule appears to primarily be optically thick but

not thermalised. In the optically thick regime, the main-beam temperature of the

molecule is equivalent to the excitation temperature as discussed in the above sec-

tion. Since the molecule is not thermalised, the excitation temperature will increase

a higher column density that has been corrected for lower C18O abundance. Even

though the molecule is optically thick, the main-beam temperature will still increase

with the higher excitation temperature and column density. This would allow the

models to produce higher main-beam temperatures that may match the HCO+ data

better in these particular regions.

Past studies of the Oph A clump indicate an enhanced ionisation rate from

magnetic fields may a↵ect HCO+ abundances in the region. Using HCO+ J = 3 !
2 and H13CO J = 3 ! 2 data, Kulesa et al. [2005] describe a ‘ring-like’ structure at

the centre of Oph A and calculate a varying HCO+ abundance for the region ranging

from 3⇥10�9 on the south-side of the ring to 1.2⇥10�8 on the eastern portion of the

ring near VLA 1623. Both values are higher than the HCO+ abundances inferred

from CO depletion. This increase in abundance is theorised to be the result of

an enhanced ionisation rate from the nearby magnetic B star S1 and three other

nearby sources. The potential for HCO+ destruction through gaseous H2O was ruled

out due to low abundance of H2O in the cloud, taken from the Submillimetre Wave

Astronomy Satellite [Ashby et al., 2000; Snell et al., 2000]. I note my observations of
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Ophiuchus find increased column densities and gas temperatures in Oph A compared

to those found in Kulesa et al. [2005], where they use a column density N(H2) '1–

5 ⇥ 1022 cm�2 and kinetic temperature 25 K. However, the abundance I use for the

HCO+ models is comparable to the upper limit on abundance found in this study

(smaller by a factor of 1.5).

Using the lower limit of X(HCO+) = 3 ⇥ 10�9 from Kulesa et al. [2005], the

integrated intensities would decrease at most by a factor of 0.375 (assuming optically

thin emission). In particular, the edges of the Oph A, B and CEF cores have

less prominent emission than the centres of the regions and these areas are not

fully covered by the existing models. Decreasing peak main-beam temperatures

by 0.375 would allow more of these regions to be covered in the optically thin

scenario. However, these regions are modelled to have high optical depths reaching

⌧ ⇠ 102. Using the upper abundance limit 1.2 ⇥ 10�8, the HCO+ abundance

and thus the main-beam temperatures will increase at most by a factor of 1.5.

With emission predicted to be widely optically thick, it is likely the HCO+ line is

saturated and increasing the abundance would not drastically a↵ect output main-

beam temperatures.

There is a distinct possibility that multiple issues are the cause of the TORUS

models not fitting all (or some) of the data. For example, optically thick 13CO may

still trace outer cloud layers directly heated by the early B-type stars surrounding

the inner star-forming regions and inevitably predict high kinetic temperatures. Ad-

ditionally, abundance variations across the cloud due to depletion and an enhanced

ionisation rate may require separate models for each region to be developed with

di↵erent abundances.

5.7.4 Beam dilution

Lastly, beam dilution can lead to decreased main-beam temperature measurements,

occurring when the material being observed is clumped on scales smaller than the

size of the beam, ⌦s << ⌦B. The main-beam temperature will fall with the ratio of

the solid angle subtended by the source and telescope beam. Additionally, this can
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be related to the FWHM or the angular size modelling the source as a Gaussian,

TMB,corr = TMB,s

✓
✓s

✓B

◆2

, (5.19)

where ✓s is the FWHM corresponding to the source and ✓B is the FWHM of the

beam. The JCMT beam is ⇠1500 FWHM for HARP at 356 GHz. While cores are

typically comparable or larger than the JCMT beam size [Christie et al., 2012], it

is possible that Ophiuchus largely consists of clumpy material smaller than the size

of the beam. In this scenario, the main-beam temperature will be reduced by beam

dilution.

As discussed in Section 5.7.2 and 5.7.3, the region where HCO+ main-beam

temperatures are overpredicted by the models is Oph A. Models with kinetic tem-

perature inputs corresponding to 13CO predict main-beam temperatures that range

up to 20 K. Main-beam temperatures in the Oph A region range up to 13–14 K.

This would mean the main-beam temperature of the source would decrease by 0.7,

or the corresponding FWHM size of the source would be ⇠ 1300.

Though it is possible material in the cloud has a clumpy distribution smaller

than the beam, it is more likely beam dilution would a↵ect individual sources like

cores since the Oph A region doesn’t particularly appear to be a series of small

clumps/cores from HCO+ observations. Additionally, Oph A consistently has high

main-beam temperatures predicted using the TORUS modelling, which would be bet-

ter described from abundance variations across the cloud or high kinetic temperature

inputs.

5.7.5 Improvements and future work

Using radiative transfer models to investigate the underlying densities traced by

molecular line emission has much room for improvement. In addition to account-

ing for depletion or high kinetic temperatures and further developing the one-

dimensional density profile (and eventually adding more complex geometries), other

molecules with high critical densities can be further explored for potential appli-

cation. In this section, I discuss the next steps for the log-normal density models,

developing new density profiles and other useful molecules tracing high densities.

237

TORUS


5. OPHIUCHUS: HCO+ ANALYSIS AND NON-LTE MODELLING

As discussed above, the varying-� log-normal models primarily had an issue with

the range of FWHM velocities. The resulting fits had lower- and upper-limits on

density and line-of-sight lengths. It would be more appropriate to fit the HCO+

emission pixel-by-pixel, similar to the method introduced using the RADEX models

to have a better idea of the density and line-of-sight variations across the cloud.

Additionally, this would allow a better comparison of the distribution of densities

associated with the sources and total cloud.

The next step in developing the density profile is to include the observed power-

law tail in the log-normal density distribution, described in Section 5.6.1 and ob-

served by Kainulainen et al. [2009] from the column density PDF. The inclusion

of the power-law tail in the density PDF and the derived density profile along the

cloud line-of-sight would e↵ectively increase the peak densities suggested by the log-

normal profile and potentially solve the issue that none of the current density profiles

predict HCO+ emission reaching its critical density based on the conditions in the

cloud. This may also allow the log-normal density profile and the log-normal with

the power-law density profile to be tested on di↵erent types of molecular clouds,

i.e. the log-normal density profile should better fit regions with little to no active

star formation and the power-law profile should better fit regions with active star

formation.

Other molecules with high critical densities can also be used to explore the

relationship between high density and column density in molecular clouds. Friesen

et al. [2009, 2010a,b] concluded the N2H+ 1–0 with a critical density close to the

HCO+ line (2 ⇥ 105 cm�3) traced the dense gas in the Oph B and CEF regions and

was resilient to depletion at high densities and older temperatures (n > 105 cm�3).

Deuterated molecules were also used in this study, including N2D+
J = 3 ! 2

(ncrit ⇠ 8⇥ 105 cm�3) and H2D+
J

K�1K1 = 111 � 110 (ncrit ⇠ 105 cm�3). Deuterated

species are thought to be abundant in cold cores where significant depletion has

occurred. Additionally, another high density tracer HCN 4–3 has a frequency similar

to HCO+ (354.505 GHz) and traces similar densities. Variations in emission from

multiple dense gas tracers would give a more complete view of higher densities found

in the cloud which would facilitate the development of accurate density profiles.
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5.8 Summary

This chapter aimed to make a comparison between column density and density

in the Ophiuchus molecular cloud (L1668) by modelling the densities traced by

HCO+ J = 4 ! 3 using non-LTE radiative transfer codes RADEX and TORUS. Each

method results in a density map corresponding to HCO+ emission used to compare

densities at positions of embedded Class 0/I protostars, prestellar cores [Simpson

et al., 2008] and ‘starless’ cores [Stanke et al., 2006]. The main conclusions are

summarised:

1. Trends in HCO+ and column density comparison. Trends can be

seen in the comparison between HCO+ integrated intensities and the various

column density tracers (C18O integrated intensities, SCUBA-2 850 µm dust

continuum and extinction maps Av). In each comparison, there is a drastic

increase in HCO+ emission (> 10 K km s�1) corresponding to values (C18O)

10 K km s�1, (850 µm) 0.1 Jy beam�1 and (Av) 27 mag. The increased HCO+

integrated intensities were found in the Oph A region and were thought to

potentially correspond to the region reaching the critical density for HCO+.

2. RADEX non-LTE modelling. RADEX was used to model densities traced by

HCO+ in the cloud using the column density tracers listed above. The pro-

gram was modified to input an initial density into the o✏ine program and

compare the output HCO+ line peak to HCO+ data. The program would

vary the density input based on the ratio of HCO+ model output and HCO+

data. Results indicated HCO+ was widely subthermally excited (densities

ranging from 103–105) and line-of-sight estimates ranged from several parsecs

to 90 pc which is unrealistic for a cloud like Ophiuchus with clumps on scales

of 0.2 pc in length. This suggested the need for an improved density profile

varying along the line-of-sight.

3. TORUS non-LTE modelling using varying density profiles. To improve

upon a constant density model, the TORUS non-LTEMonte Carlo code was used

to implement varying density profiles for modelling HCO+ emission. One-

dimensional density profiles were developed for a plane-parallel slab geometry,

including a ‘triangle’ density profile and ‘log-normal PDF’ density profile based
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on the assumption the density probability density function (PDF) follows a

log-normal distribution. The density models were constant along the x- and

y-axes and varied along the z-axis. Models were constrained using an average

cloud density (derived from the cloud mass) and an assumed cloud length

(corresponding to the length of the Oph A and B clumps). Input parameters

included the column density (derived from C18O), kinetic temperature (derived

from 13CO), line width, density profile and abundance.

4. Modelling Results. Models were fit to scenarios in the data, defined as re-

gions with similar column density and kinetic temperature within the cloud.

Initially, the column densities for each model were fit to the scenarios, allow-

ing a range of kinetic temperatures to fit the data. For the triangle models,

density fits ranged from 0.2–2.0 ⇥106 cm�3 and 0.1 � �0.3 ⇥106 cm�3 for

the 0.2 and 0.3 pc models respectively. Log-normal models with constant-�

show density ranges from 0.2–1.0 ⇥ 105 cm�3 and 0.6–2.0 ⇥ 105 cm�3 for 0.2

and 0.3 pc models. Log-normal models with varying-� have lower and upper

density limits corresponding to the range of FWHM velocities that constrain

the density profile. Densities (lower and upper limits) range from 0.1–1.0 ⇥106

and 0.5–3.0 ⇥105 cm�3 for the 0.2 and 0.3 pc models respectively. Upper and

lower density limits are the result of fitting a range of FWHM velocities in

the scenarios of the data. Using a pixel-by-pixel fitting method, these lim-

its would be replaced with a single fit to each individual pixel in the map.

Implementation of the pixel-by-pixel fitting method is expected in the future.

5. Source Densities. Densities corresponding to embedded Class 0/I proto-

stars, starless cores and prestellar cores were determined from the model re-

sults. The distribution of peak densities at the positions of the protostars do

not di↵er for the majority of the scenarios with the exception of the upper

density limit using the log-normal varying-� models. The density distribu-

tions most likely vary because the protostars are not found at the highest col-

umn densities in the cloud (2–4 ⇥1023 cm�2), though they are found at high

column densities within column density thresholds found in previous studies

[Johnstone et al., 2004; Onishi et al., 1998].
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5.9 Appendix: Model main-beam temperature pro-

files
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Figure 5.36: HCO+ main-beam temperature models assuming the triangle density
profile with a maximum cloud length of 0.2 pc. Column densities increase from left
to right (1⇥1022, 5⇥1022, 1⇥1023, 3⇥1023 and 5⇥1023 cm�2). Kinetic temperature
increases from top to bottom (12, 15, 20, 30, 40 K). Colours correspond to input
model velocities: (black) 0.2, (blue) 0.3, (red) 0.5, (orange) 0.7, (yellow) 0.8, (green)
1.0, (cyan) 1.5, (brown) 2.0 and (gray) 2.2 km s�1.
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Figure 5.37: HCO+ main-beam temperature models assuming the triangle density
profile with a maximum cloud length of 0.3 pc, as in Figure 5.36. I note that column
densities 3 and 5 ⇥ 1023 cm�2 are not constrained using these models.

243



5. OPHIUCHUS: HCO+ ANALYSIS AND NON-LTE MODELLING

Figure 5.38: HCO+ main-beam temperature models assuming the constant-� log-
normal PDF density profile with a maximum cloud length of 0.2 pc, as in Figure 5.36.
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Figure 5.39: HCO+ main-beam temperature models assuming the constant-� log-
normal PDF density profile with a maximum cloud length of 0.3 pc, as in Figure 5.36.
I note that column densities 3 and 5 ⇥ 1023 cm�2 are not constrained using these
models.
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Figure 5.40: HCO+ main-beam temperature models assuming the varying-� log-
normal PDF density profile with a maximum cloud length of 0.2 pc, as in Figure 5.36.
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Figure 5.41: HCO+ main-beam temperature models assuming the varying-� log-
normal PDF density profile with a maximum cloud length of 0.3 pc, as in Figure 5.36.
I note that column densities 3 and 5 ⇥ 1023 cm�2 are not constrained using these
models.

247



5. OPHIUCHUS: HCO+ ANALYSIS AND NON-LTE MODELLING

248



Chapter 6

Conclusions

I stepped from plank to plank

So slow and cautiously;

The stars about my head I felt,

About my feet the sea.

I knew not but the next

Would be my final inch,–

This gave me that precarious gait

Some call experience.

— Emily Dickinson

This thesis primarily focused on using submillimetre observations of molec-

ular lines to improve our understanding of nearby low-mass star formation. It

demonstrated the variety of properties that can be traced by molecular lines like

CO J = 3 ! 2 isotopologues and the dense gas tracer HCO+ J = 4 ! 3 and their

significance in addressing current questions in star formation research. In this chap-

ter, I review the conclusions from my work and discuss potential areas for future

research.

6.1 Molecular line contamination

The first part of this thesis introduced SCUBA-2, a bolometer array on the JCMT

that began full operations in Fall 2011. SCUBA-2 observes dust continuum emission
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at 450 and 850 µm. In Chapter 2, I described a method used to calculate molecular

line contamination in the SCUBA-2 dust continuum observations. Observations of

continuum emission can be contaminated by molecular line flux, potentially biasing

the fluxes and masses of protostellar sources. This line contamination can be quan-

tified by comparing observations of the continuum to line emission. The brightest

molecule in the submillimetre wavelength range is 12CO, where 12CO J = 3 ! 2

and J = 6 ! 5 transitions have corresponding wavelengths to the 850 and 450 µm

SCUBA-2 bands respectively. Therefore, I derived line contamination (or conver-

sion) factors used to convert 12CO molecular line emission maps in K km s�1to

molecular line flux in mJy beam�1 contaminating the dust continuum emission of

SCUBA-2.

I applied these conversion factors to HARP 12CO J = 3 ! 2 maps of NGC 1333

of Perseus and NGC 2071 and NGC 2024 of Orion B to quantify the 12CO contam-

ination found in corresponding SCUBA-2 850 µm maps. Noticeable line contami-

nation was seen near sources with known outflows, including SVS13 in NGC 1333,

LBS-MM18 of NGC 2071 and FIR 1–7 of NGC 2024. Fluxes and masses were quan-

tified for a list of submillimetre sources in the SCUBA-2 850 µm and 12CO line

contamination maps, where the majority of sources had line contamination < 20%.

Substantial contamination was found for sources driving or near molecular outflows,

where contamination ranged from 24–79%. 12CO J = 6 ! 5 contamination to the

450 µm data was concluded to be insignificant compared to the dust continuum

RMS value.

Since some star forming regions have molecular line contamination that domi-

nates the dust continuum emission, my work emphasised the importance of removing

this flux from the 850 µm continuum. Dust continuum is used for a variety of anal-

yses, including core detection, core mass, dust temperature and dust emissivity.

Without subtracting the 12CO line flux from the 850 µm emission, it is possible

dust temperatures and core masses would be biased due to higher continuum fluxes.

Similarly, outflow lobes seen in the continuum from 12CO line contamination can

easily be mistake for starless cores (e.g. Figure 2.4 in Section 2.4).

Since my initial work incorporated in Drabek et al. [2012], the filtering process for

the HARP maps was improved [Hatchell et al., 2013] and new beam sizes have been

measured [Dempsey et al., 2013] which changes the initial line conversion factors
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by a factor of 1.06 higher (new e↵ective beam size) or lower (primary beam only).

This work contributed to dust temperature estimates of NGC 1333 in Hatchell et al.

[2013] and dust emissivity � calculations of B1 in Sadavoy et al. [2013] . Additionally,

the method for applying conversion factors to 12CO J = 3 ! 2 HARP data and

subtracting this line contamination has now been implemented into the SCUBA-2

reduction process for 850 µm maps used in the JCMT Gould Belt Survey [Ward-

Thompson et al., 2007b].

6.2 Outflows and global properties of Ophiuchus

L1688

Molecular outflows are thought to be ubiquitous in star formation, where each pro-

tostar is expected to undergo a period of mass-loss. Outflows provide a mass-loss

history of the protostar and potentially solve issues regarding excess angular mo-

mentum for matter to accrete onto the central protostar. Additionally, there are

disputes regarding the role of turbulence in the molecular cloud and the ability of

turbulence to provide support against gravitational collapse.

Understanding turbulence and its driving source is important for understanding

the cloud conditions leading to star formation. Observational evidence shows star

formation e�ciency in molecular clouds to be lower than expected if the cloud is

collapsing under gravity in a free-fall timescale (as discussed in Chapter 1). Turbu-

lence can act as a support mechanism against gravity for the cloud, allowing smaller

scales to collapse and form stars [Mac Low and Klessen, 2004]. If molecular out-

flows drive turbulence in star forming regions, this may suggest self-regulated star

formation and explain the support mechanism for longer cloud lifetimes and lower

star formation e�ciency.

In Chapter 3, I further analysed a catalogue of sources from the Spitzer survey,

“From Molecular Cores to Planet-Forming Disks” or ‘c2d’ [Evans et al., 2009] for

the presence of molecular outflows in the Ophiuchus L1688 cloud. This list consisted

of 30 source ranging from Class 0, Class I and flat spectrum sources (Class II source

WL 10 was included with research from Sekimoto et al. 1997 suggesting an outflow

was present). The source list included 6 new protostellar sources found in the c2d
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survey that had never been analysed for molecular outflows. A HARP 12CO J = 3 !
2 map was used to search for high-velocity blue and redshifted emission characteristic

of bipolar outflows driven by embedded protostars. Out of the 30 sources analysed,

8 had firm molecular outflow detections, 20 were ‘confused’ detections and 2 sources

had non-detections. Additionally, outflow directions were further investigated with

H2 data taken by UKIRT. From this study, the location of confirmed outflows was

determined and the velocity range associated with molecular outflows in the region

was defined which is important for quantifying the outflow mass and energetics.

The Ophiuchus L1688 cloud has an active history of star formation that was

thought to be triggered by a supernova explosion of the ⇣ Oph binary companion.

My work found the L1688 cloud to be gravitationally bound, where the virial mass

is 27% of the cloud mass and the turbulence is a factor of 7 smaller than the cloud

binding energy. Additionally, the energy driven by outflows was found to be only

21% of the turbulent kinetic energy, suggesting outflows are significant but not the

dominant source of turbulence in the cloud. This conclusion is contrary to results

from Nakamura et al. [2011], who suggested outflows drive turbulence in the region

after comparing the outflow injection rate to the turbulent dissipation rate. I showed

that using a longer outflow timescale that reflected the lifetime of a Class I protostar

(0.5 Myr; Evans et al. 2009) and recalculating the turbulent dissipation rate using

the updated masses from the optical depth corrected C18O emission, the outflow

injection rate is lower than the dissipation rate by a factor of 2.4–6.0. This result

agreed with my conclusion that global outflows in the region are significant but not

the dominant driver of turbulence.

One issue with my comparison between the outflow and turbulent kinetic energies

was the uncertainty that outflows are the source driving the global high-velocity

emission. In Section 4.1.8, I further examined the physical regions corresponding to

this global high-velocity emission and used masks to quantify the amount of energy

from confirmed molecular outflows, hot dust from the nearby B-type stars Oph S1

and SR3 and regions that have energies with sources unaccounted for. Using the

ambient velocity range vo = 3.3± 2.5 km s�1, outflows were found to be 33% of the

global high-velocity energy and regions with hot dust were 26%. This left ⇠41% of

the high-velocity energy unaccounted for. It is possible this emission is the result

of several factors, including outflow remnants from less embedded sources, Class II
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jets with corresponding H2 knots that excite the molecular medium or stellar winds

from the nearby Upper Sco OB association.

The low outflow-driven turbulence is not surprising in a region like Ophiuchus

with relatively fewer embedded Class 0/I protostars compared to the less embedded

Class II/III sources. Evans et al. [2009] noted the region seems to have a star

formation rate that has declined relative to the lifetime of the cloud. The decline

in star formation could similarly relate to a decline in outflow-driven turbulence in

the region.

What are the implications of the declining star formation rate and low turbulence

in the Ophiuchus L1688 cloud? As the cloud collapses under gravity, there is a

possibility the region could undergo a second generation of star formation. Jørgensen

et al. [2008] noted a higher fraction of starless cores relative to protostellar cores in

L1688. These cores could go on to form protostars in the cloud. Turbulence may

then be renewed in the region with this new generation of protostars. Similarly, the

molecular cloud associated with IC 348 is similar to Ophiuchus, where outflow energy

is only 38% of the turbulent kinetic energy. This region is a remnant of a larger

cloud that has formed the IC 348 cluster. The stars that now produce the Flying

Ghost Nebula are likely the sources of past outflows that created strong velocity

gradients in the region. The cores in the region are primarily starless and will likely

go on to collapse and form protostars [Curtis et al., 2010b]. Like Ophiuchus, the

lack of outflow-driven turbulence in IC 348 is likely due to the lack of embedded

protostars able to drive molecular outflows and turbulence is likely driven by the

nearby IC 348 cluster that initially triggered star formation in the region.

One aspect of this study was to use di↵erent methods to calculate both the mass

and energetics of the cloud and global molecular outflows to further investigate how

di↵erent methods can a↵ect the calculations. For the mass and energetics of the

molecular cloud, I used C18O and 13CO observations with optical depth corrections

and compared the results. The cloud was gravitationally bound in both cases where

the kinetic turbulent energy is smaller than the gravitational binding energy by

factors of 7 and 5 for the respective isotopolgues and potentially in a state of collapse.

I chose to continue using cloud mass and energetics derived from C18O observations

to match past studies of Gould Belt clouds (e.g. Curtis et al. 2010b; Graves et al.

2010) and to avoid potentially including outflowing gas from the 13CO FWHM
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velocity 2.0 km s�1.

Similarly, the global molecular outflow properties were calculated using two am-

bient velocity ranges based on the outflow criterion (vo ± 2.5 km s�1) as described

above and the 13CO optical depths (2.5–4.7 km s�1). The small ambient velocity

range defined by the 13CO optical depths (⌧ > 1)had a corresponding outflow ki-

netic energy a factor 6 larger than the original outflow energy and a factor 1.2 larger

than the turbulent kinetic energy from C18O measurements. Unlike the original

calculations, this indicated the outflows have enough energy to drive turbulence in

the molecular cloud. I chose to continue using the ambient velocity range derived

from the outflow criterion to prevent ambient velocities from being included in the

calculation of outflow properties. However, the di↵erence between the outflow ki-

netic energies and the contrasting conclusions indicates the need for the ambient

velocities to be explored further. This method of using the 13CO can be revisited in

the future and lower optical depths could be used as a limit for the ambient velocity

range. Alternatively, ambient velocity ranges could be defined using velocities with

a 3� detectable C18O measurements since the molecule is expected to trace the bulk

motions of the cloud.

6.3 Non-LTE modelling of density using HCO+

Lastly in Chapter 5, I further investigated the relationship between column density

and density in the Ophiuchus molecular cloud. This work involved developing den-

sity models using non-LTE radiative transfer codes to model HARP HCO+ J =

4 ! 3. Past work (e.g. André et al. 2010; Johnstone et al. 2000; Onishi et al. 1998)

indicates there is a column density threshold for star formation that may link to a

density threshold. This can lead to further understanding why a small percentage of

the cloud mass proceeds to form stars and the low star-formation e�ciencies. As a

dense gas tracer (ncrit ⇠ 8⇥106 cm�3), HCO+ emission may indicate regions of high

density in molecular clouds. Modelling the densities traced by the HCO+ emission

allowed me to compare these densities to column density tracers and examine the

potential density threshold of star formation.

Densities traced by HCO+ were first traced using the non-LTE radiative transfer

code RADEX [van der Tak et al., 2007]. This code assumes an isothermal and homoge-
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neous medium with a constant density model along the cloud line-of-sight. Kinetic

temperatures were constrained using 13CO data, column densities were constrained

by three di↵erent tracers (C18O, 850 µm dust continuum and visual extinction Av)

and FWHM velocities were determined using the HCO+ line maps. I was able to

incorporate RADEX into Python code and iterate over the density input to determine

the best fitting output HCO+ main-beam temperatures to my data. The result in-

dicated HCO+ was predominantly subthermally excited with densities ranging from

103–105 and line-of-sight estimates from several parsecs to 90 pc, which is unreal-

istic for a cloud like Ophiuchus with clumps on scales of 0.2–0.3 pc. Realistically,

the physical conditions of the cloud would not have constant line-of-sight densities,

suggesting the need for an improved density model.

To improve the HCO+ radiative transfer models and better understand the den-

sities across the cloud, the Monte Carlo non-LTE radiative transfer code TORUS

[Harries, 2000] was used to implement density profiles varying along the line-of-

sight. The simplest peaked density profile was described by an isosceles triangle,

increasing from the front of the cloud at a constant gradient to a peak density at

the centre of the cloud and decreasing at a constant gradient to the back edge of

the cloud. This model was known as the ‘triangle’ density profile. The second den-

sity profile was more complex than the triangle model and was derived from the

density probability density function (PDF), which has been described as log-normal

in shape (see Kainulainen et al. 2009; Lombardi et al. 2008). The density profiles

varied along the z-axis and remained constant along x- and y-axes. These models

were constrained using the average cloud density, derived from the mass calculated

by C18O in Chapter 4 and an assumed cloud length (corresponding to the length of

Oph A and B clumps). Like the RADEX models, the column density was constrained

by C18O, kinetic temperatures were constrained by 13CO and FWHM velocities were

constrained using the HCO+ maps.

The peaked-density profiles implemented into TORUS were relatively successful at

modelling the primary regions of HCO+ emission found across the Ophiuchus L1688

cloud. The 0.3 pc cloud length models were unable to model regions with column

densities � 3.0 ⇥ 1023 cm�2 due to constraints with the maximum column density

of the cloud. For the triangle models, density fits ranged from 0.2–2.0⇥106 cm�3

and 0.1–0.3⇥106 cm�3 for the 0.2 and 0.3 pc cloud length models respectively. Log-
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normal models with constant-� (constant width of the log-normal PDF) had peak

density ranges from 0.2–1.0 ⇥105 cm�3 and 0.6–2.0⇥105 cm�3 for 0.2 and 0.3 pc

models respectively. Similarly, log-normal models with varying-� had lower and

upper density limits corresponding to the range of FWHM velocities. Densities

(lower and upper limits) ranged from 0.1–1.0 ⇥106 and 0.5–3.0 ⇥105 cm3 for the 0.2

and 0.3 pc models respectively.

The result of the HCO+ density modelling showed the protostars and star-

less/prestellar cores do not have a preference for higher densities with respect to

the rest of the cloud. This distribution of peak densities for the starless, prestellar

and protostellar cores did not di↵er from the total cloud according to KS tests. This

result disagrees with past research suggesting the probability of finding a submil-

limetre core steeply rises as a function of column density (e.g. Belloche et al. [2011];

Hatchell et al. [2005]). Since it is likely Ophiuchus evolved from a burst of star

formation that has since declined, the region represents one particular evolutionary

stage in the lifetime of a molecular cloud. The small sample of Class 0/I protostars

likely to be embedded in the surrounding dense material of the cloud may not accu-

rately represent the density or column density distribution of protostellar cores in all

molecular clouds. Additionally out of the list of ‘embedded’ protostellar cores, there

are only two Class 0 objects. Class I protostars are expected to be less embedded

in the surrounding cloud material relative to Class 0 sources. Additionally, Class I

sources are likely to have undergone a longer period of outflow activity that could

impact the surrounding cloud material (i.e. outflow cavities; see Quillen et al. 2005)

and lead to lower corresponding densities. Therefore, it is possible the density dis-

tribution of protostellar cores do not favour higher densities in clouds with declining

star formation rates like Ophiuchus. I note there are a small number of starless

and prestellar cores that are forming at the highest densities and column densities,

which could indicate the region will undergo a second generation of star formation

in the future [Jørgensen et al., 2008].

Alternatively, it is possible column densities predicted by C18O are a↵ected by

depletion, which could potentially a↵ect the densities predicted from the HCO+

modelling (i.e. yielding lower column densities and densities). Using the SCUBA-

2 850 µm data to calculate column density could potentially resolve this issue for

future models. Additionally, improvements to the density models could be made so
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that pixel-by-pixel fitting methods using the log-normal PDF density profiles are

applied to the HCO+ data. This method would be similar to the RADEX models so

that the lower and upper density limits are eliminated. This would allow density

variations to be modelled across the cloud and the density distribution could be

further investigated for cores and the total cloud.

Additionally, the density profile can be further improved by incorporating the

power-law tail in the log-normal density PDF as described in Section 5.7.5 and ob-

served by Kainulainen et al. [2009]. The log-normal density PDF with the inclusion

of the power-law tail better describes the Ophiuchus region and other regions with

active, ongoing star formation. This tail would e↵ectively increase the peak densi-

ties higher than the log-normal PDF and potentially solve the issue that none of the

current density profiles predict HCO+ emission reaching its critical density.

This method for modelling densities traced by molecular lines is not exclusive to

HCO+. Other molecules with high critical densities can also be used to explore the

relationship between column density and density in molecular clouds (e.g. HCN,

DCO+, H13CO). Multiple dense gas tracers with a variety of critical densities and

optical depths would provide a more rounded view of densities found in the cloud. A

more accurate density profile could be better constrained using a variety of molecular

lines tracing di↵erent densities across the cloud.
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