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Abstract

There are various notions of attractor in the literature, including measure (Milnor) attract-
ors and statistical (Ilyashenko) attractors. In this paper we relate the notion of statistical
attractor to that of the essential ω-limit set and prove some elementary results about these.
In addition, we consider the convergence of time averages along trajectories. Ergodicity
implies the convergence of time averages along almost all trajectories for all continuous
observables. For non-ergodic systems, time averages may not exist even for almost all tra-
jectories. However, averages of some observables may converge; we characterize conditions
on observables that ensure convergence of time averages even in non-ergodic systems.

1. Introduction

Chaotic attractors are subsets of the phase space for dynamical systems to which, in some
sense, typical trajectories converge. Exactly what is understood by “typical” and “converge”
may give rise to subtly different concepts of attractor; see [8, 17] for a discussion of various
such concepts. On the other hand, in many cases one is not interested in the fine details of
dynamics, just on the statistical properties of the convergence. This gives rise to the concept
of statistical attractor or statistical limit set introduced by Ilyashenko [1].

In this paper, we show, in Theorem 2·3, that the statistical attractor can be defined using
the notion of essential ω-limit set of trajectories previously defined in [2]. We also examine
the convergence (or otherwise) of (Birkhoff) time averages of observables along trajector-
ies. This clearly depends on two properties – firstly, the nature of the attractors – secondly,
the nature of the particular observable considered. For example, systems with heteroclinic
attractors admit non-convergent time averages [9] (for more about non-convergence of time
averages see [13, 18, 20–22]). Trajectories for which time averages of “some” observables
do not exist are called historical by Ruelle [19]; typical time-averaged observables do not
converge to a constant, and therefore the system retains information about its past. In other
words, the system does not admit a pointwise SRB measure in the terminology of [6]; we
call such systems non-ergodic. For instance, consider the so-called Bowen’s example, a dy-
namical system with an attracting heteroclinic cycle as shown in Figure 1. For a typical con-
tinuous observable, the time average of the observable along a typical trajectory oscillates
without converging to a constant [9]. Although it is known that time averages of observables
may not converge for non-ergodic systems, the question as to precisely which observables
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Fig. 1. Bowen’s example: An attracting heteroclinic cycle that consists of two hyperbolic equilibria p1, p2
and two heteroclinic trajectories q1 and q2. A typical trajectory in the region bounded by the heteroclinic
cycle converges to the heteroclinic cycle.

have convergent time averages was not previously studied. We give an answer to this, in
Theorem 2·5 by proving that time averages of a typical trajectory depend only on the time
averages of trajectories in the statistical attractor.

In Section 2, we state the main results of the paper, namely Theorem 2·3 and Theorem
2·5. In Section 3, the statistical attractor is defined in analogy to the Milnor attractor and
the relation between Milnor attractors and statistical attractors is discussed. In Section 4, we
consider the following question: Given a dynamical system, which observables have con-
vergent time averages for almost all trajectories or for a positive measure subset of initial
conditions? We prove that this is determined by the behavior of the observable on the stat-
istical attractors of the system. Finally, in Section 5, we speculate as to how the results in
this paper may be sharpened and discuss a particular application of our results to a system of
coupled oscillator dynamics where one can find robust non-ergodic behavior (an attracting
heteroclinic network) but an important observable (the average frequency difference) still
exists.

Notation. We will use � to denote Lebesgue (resp. Riemannian) measure on R
n (resp.

on a compact manifold X ). All subsets will be assumed to be measurable (Borel) unless
otherwise stated. For two subsets A and B, we will write as in [4] A =◦ B to mean �((A \
B) � (B \ A)) = 0, and A ⊃◦ B to mean �(B \ A) = 0.

2. Main results

We consider throughout a continuous flow (or semiflow) γt on a compact manifold X . For
a trajectory passing through the point x ∈ X , the ω-limit set of x is defined as follows:

ω(x) =
∞⋂

T =0

(⋃
t>T

γt x

)
.

It follows that ω(x) is closed, connected, non-empty, flow-invariant and it consists of the
accumulation points of sequences {γTk x} where {Tk} → ∞.

Another type of limit set for a trajectory, that is called essential ω-limit set, is defined in
[2] for maps and in [3] for flows. The essential ω-limit set of a trajectory can be thought as
the set of points in the ω-limit set whose arbitrary small neighborhoods are visited with a
non-vanishing frequency. For an open set U ⊂ X and a finite orbit {γt x}0�t�T , the frequency
of the orbit being in U can be represented by the function

ρ(x, U, T ) = �({t : 0 � t � T, γt x ∈ U })
T

. (2·1)
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We will give a slightly different definition of ωess to that in [3] and show in Theorem 4·3
that these definitions are equivalent.

Definition 2·1 (essential ω-limit set). Let γt be a continuous flow on a compact manifold
X . For z ∈ X , let Uz be the set of open neighbourhoods of z. The essential ω-limit set is
defined as

ωess(x) =
{

z ∈ X : lim sup
t

ρ(x, U, t) > 0, ∀U ∈ Uz

}
. (2·2)

If z ∈ ωess(x) then, for all U ∈ Uz , there exist arbitrary large values of T for which
γT x ∈ U . Hence,

ωess(x) ⊂ ω(x). (2·3)

Milnor defines the likely limit set �likely as the smallest closed subset that contains the
ω-limit sets of almost all trajectories [17]. Similarly, Ilyashenko defines the statistical limit
set �stat (also called statistical attractor in the literature) as the smallest closed subset for
which almost all trajectories spend almost all time near �stat [1].

Definition 2·2 (statistical limit set [1, 12]). Let ρ be defined as in (2·1). The statistical
limit set �stat is the smallest closed subset of X for which any open neighbourhood U of
�stat satisfies limt ρ(x, U, t) = 1 for almost all x ∈ X .

Using the concept of essential ω-limit set, one can characterize the statistical limit set as
follows:

THEOREM 2·3. The statistical limit set is the smallest closed subset that contains the
essential ω-limit sets of almost all trajectories.

This implies that one can define statistical attractors in an analogy to Milnor attractors [17]
by replacing the ω-limit set with the essential ω-limit set (see Section 3).

For example, consider Bowen’s example in Figure 1. The phase space X is assumed to
be the union of the heteroclinic cycle and the region bounded by the heteroclinic cycle.
For almost all points in X , except the points on the heteroclinic cycle and the unstable
equilibrium s, the ω-limit set is the whole cycle, whereas the essential ω-limit set is the union
of two equilibria p1 and p2. Therefore, the likely limit set of the system is the heteroclinic
cycle while the statistical limit set is {p1, p2}.

Remark 2·4. As pointed out by a referee, for a point z ∈ ωess(x), there can exist U ∈ Uz

such that lim inft ρ(x, U, t) = 0. Clearly, the set ωmin(x) := {z ∈ X : lim inft ρ(x, U, t) >

0, ∀U ∈ Uz} may be of interest for an alternative definition of attractor. For example,
consider the modified Bowen’s example studied by Kleptsyn [16], namely the heteroclinic
cycle shown in Figure 1 where p1 is non-hyperbolic with exponential contraction and p2

is hyperbolic. For this example, as shown below, ωess(x) = {p1, p2} and ωmin(x) = {p1}
for a typical initial point x ∈ X , which suggests that ωmin may be related to the minimal
attractor1 introduced by Ilyashenko (the point p1 for the modified Bowen’s example). How-
ever, there is no reason to assume that ωmin(x) is non-empty in general, and in addition,

1 In [16], the minimal attractor is defined as the complement of the union of open sets U that satisfy
1
T

∫ T
0 �(γ−t (U )) dt → 0 as T → ∞
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the minimal attractor is a set-wise definition. These suggest that the relationship between
minimal attractor and ωmin may be non-trivial. In order to see that ωess(x) = {p1, p2} and
ωmin(x) = {p1}, let τn,1(x) and τn,2(x) denote the period of time spent by the orbit γt x in
some neighbourhoods of p1 and p2, respectively, on the nth turn (the first turn starting from
the first entrance of the trajectory to the neighbourhood of p1). By [16, Proposition 1] a
typical trajectory asymptotically spends comparable periods of time near p1 and p2, namely
τn,2(x)/τn,1(x) → c � 0 as n → ∞. Therefore, ωess(x) = {p1, p2}. However, [16, equa-
tions 1 and 2] imply that τn+1,1(x)/τn,1(x) → ∞ as n → ∞. Hence, for a sufficiently small
open neighbourhood U2 of p2, lim inft ρ(x, U2, t) = 0, but for all open neighbourhoods U1

of p1, lim inft ρ(x, U1, t) > 0. Namely, ωmin(x) = {p1}.
Our second main result is on the time averages of continuous observables along typical

trajectories. We will prove the following in Section 4:

THEOREM 2·5. If time averages of an observable f have the same limit for all trajector-
ies in the statistical limit set, then time averages of f exist for almost all trajectories.

Remark 2·6. Batchourin gives a similar result to Theorem 2·5 for the trajectories of
the induced dynamics on the space of Borel probability measures: “Weak time aver-
ages of continuous functions depend only on their restrictions to the minimal attractor1”.
[11, Theorem 1]

3. Statistical attractors

In this section, we define statistical attractors analogously to Milnor attractors [17];
namely, we say a closed set is a statistical attractor if it is the smallest closed subset that
contains the essential ω-limit set of almost all points in a given positive measure subset of
X . If one replaces the term “essential ω-limit set” with “ω-limit set”, one obtains the defin-
ition for Milnor attractors. Both of these attractors can be defined using the following set
valued set functions:

Definition 3·1. For a given subset Y of X , the likely limit set of Y and the statistical limit
set of Y are defined, respectively, as follows:

�M(Y ) : =
⋂

V =◦Y

(⋃
x∈V

ω(x)

)
(3·1)

�S(Y ) : =
⋂

V =◦Y

(⋃
x∈V

ωess(x)

)
. (3·2)

LEMMA 3·2. Let ζ be any map from X to the set of closed subsets of X. Let {Ui } be a
countable base for X. Consider two subsets A, Y ⊂ X; then the following statements are
equivalent:

(a) Ac = ⋃{Ui : Ui � ζ(x) = � for �-a.e. x ∈ Y };
(b) A = ⋂

V =◦Y

(⋃
x∈V ζ(x)

)
;

(c) A is the smallest closed subset of X that contains ζ(x) for almost every point in Y .
In other words, there exists a full measure subset W of Y such that A = ⋃

x∈W ζ(x),
and for any other W ′ ⊂ Y with W ′ =0 Y , A ⊂ ⋃

x∈W ′ ζ(x).
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Proof. (a) ⇔ (b): We need to show that U c := ⋃{Ui : Ui � ζ(x) = � for almost every x
in Y.}c = ⋂

V =◦Y (
⋃

x∈V ζ(x)). We show the contrapositives for both inclusions: “⊂” Assume

that x �
⋂

V =◦Y (
⋃

x∈V ζ(x)), then there exists V =◦ Y such that x �
⋃

x∈V ζ(x). Then,

there exists an open neighbourhood U ∈ {Ui } of x such that U �
⋃

x∈V ζ(x) = �. Hence,
U �ζ(x) = � for almost all x in Y , namely x � U c. “⊃” Assume x � U c, that is, there exists
an open neighbourhood U ∈ {Ui } of x such that U �ζ(x) = � for almost all x in Y . Hence,
U �

⋃
x∈V ζ(x) = � for some V =◦ Y . Since U is open, we have U �

⋃
x∈V ζ(x) = �.

Thus, x �
⋂

V =◦Y (
⋃

x∈V ζ(x)). (b) ⇒ (c): (b) implies that A is closed and contained in
any closed subset that contains ζ(x) for almost every x in Y . Therefore, we only need to
show that A ⊃ ⋃

x∈V ζ(x) for some V ⊂ Y with V =◦ Y . From (a), for each Ui ∈ {Ui }
with Ui ⊂ U , there exists Vi ⊂ Y with Vi =◦ Y and Ui �

⋃
x∈Vi

ζ(x) = �. Let W
be the intersection of such (at most countably many) Vi ’s. Hence, W ⊂ Y , W =◦ Y and
ζ(W ) ⊂ U c. (c) ⇒ (b): this follows from the statement of (c).

By Lemma 3·2, �M(Y ) (resp. �S(Y )) is the smallest closed subset of X that contains
the ω-limit set (resp. essential ω-limit set) of almost every point in Y . Now, we can define
statistical attractor in analogy to the definition of Milnor attractor as follows:

Definition 3·3 (Milnor attractor and statistical attractor). Let �M and �S be defined as in
Definition 3·1. A subset A of X is called a Milnor attractor if there exists a subset V ⊂ X ,
V �0 � such that A = �M(V ). A is called statistical attractor if there exists a subset
V ⊂ X , V �0 � such that A = �S(V ).

Note that the maximal Milnor attractor �M(X), that is, the smallest closed subset that
contains the ω-limit sets of almost all points in X is the likely limit set �likely. Similarly,
by Theorem 2·3, the maximal statistical attractor �S(X) is equal to the statistical limit set
�stat. In other words, Definition 3·3 covers the previous definition of a statistical limit set,
introduced by Ilyashenko [1] as a special case (the latter also called the “statistical attractor”;
see [11, 16]).

Proof of Theorem 2·3. By definition, z � ωess(x) if and only if there exists an open
neighborhood of U of z such that limt ρ(x, U, t) = 0. In other words, for any open U ,
ωess(x) � U = � if and only if limt ρ(x, U, t) = 0. In addition, Definition 2·2 implies
that �c

stat = ⋃{U ⊂ X : U is open and limt ρ(x, U, t) = 0 for �-a.e. x ∈ X}. Therefore,
�c

stat = ⋃{U ⊂ X : U is open and ωess(x) � U = � for �-a.e. x ∈ X}. Thus, the statement
follows from Lemma 3·2.

We say a Milnor (statistical) attractor is minimal if it does not strictly contain any other
Milnor (statistical) attractor. Note that both Milnor attractors and statistical attractors are
closed and invariant under the flow. We can define the Milnor basin and statistical basin for
a subset A as follows:

BM(A) = {x ∈ X | ω(x) ⊂ A} (3·3)

BS(A) = {x ∈ X | ωess(x) ⊂ A}. (3·4)

LEMMA 3·4. Let �M , �S, BM and BS be defined as in (3·1), (3·2), (3·3) and (3·4), re-
spectively. Then the following statements hold, where A, Yi , Y are Borel subsets of X :
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(i) BM(A) ⊂ BS(A) for any subset A of X;
(ii) �S(Y ) ⊂ �M(Y ) for any subset Y of X;

(iii) �M(Y2) ⊂ �M(Y1) and �S(Y2) ⊂ �S(Y1) if Y1 ⊃◦ Y2;
(iv) BM(�M(Y )) ⊃◦ Y and BS(�S(Y )) ⊃◦ Y for any subset Y ;
(v) �M(BM(A)) ⊂ A and �S(BS(A)) ⊂ A for any subset A of X;

(vi) �M(BM(A)) = A if A is a Milnor attractor, while �S(BS(A)) = A if A is a statistical
attractor.

Proof. (i) and (ii) follow from (2·3). For the remainder of the results, we give the proofs
for Milnor attractors; proofs for the statistical versions will be similar. (iii) From Lemma 3·2,
there exists W1 ⊂ Y1 with �(W1) = �(Y1) such that �M(Y1) = ⋃

x∈W1
ω(x). Let W2 :=

W1 � Y2, then W2 ⊂ Y2 and �(W2) = �(Y2). Hence, �M(Y2) ⊂ ⋃
x∈W2

ω(x) ⊂ �M(Y1).

(iv) From Lemma 3·2, there exists W ⊂ Y with W =◦ Y such that �M(Y ) = ⋃
x∈W ω(x).

Therefore, BM(�M(Y )) ⊃ W . This implies �(Y \ BM(�M(Y ))) � �(Y \ W ) = 0. Hence
BM(�M(Y )) ⊃◦ Y . (v) Consider x ∈ �M(BM(A)). If BM(A) has zero measure then (v)
is trivial. Hence, we assume BM(A) has positive measure. Choose a subset V ⊂ BM(A)

with V =◦ BM(A). Then x ∈ ⋃
y∈V ω(y). Since for all y ∈ BM(A), ω(y) ⊂ A, we have⋃

y∈V ω(y) ⊂ A. Hence, x ∈ A. Finally, for (vi), assume A is a Milnor attractor. Then A
is closed and therefore (v) implies �M(BM(A)) ⊂ A. We will show that �M(BM(A)) ⊃ A.
Since A is a Milnor attractor, there exists a positive measure subset V such that A = �M(V ).
By Lemma 3·2, there exists W ⊂ V such that �M(V ) = ⋃

x∈W ω(x). Hence, for all x ∈ W ,
ω(x) ⊂ A, therefore, W ⊂ BM(A). From (iii), this implies A = �M(V ) = �M(W ) ⊂
�M(BM(A)).

Milnor attractors and statistical attractors can be related to each other as shown in
Lemma 3·4. However, they are not in one-to-one correspondence as we will see in Ex-
ample 3·7 below. Nevertheless, we show that for each Milnor attractor there is a smaller
statistical attractor, and for each statistical attractor there is a larger Milnor attractor:

THEOREM 3·5. Suppose that γt is a continuous flow on a compact manifold X.

(a) If A is a Milnor attractor for the flow, then AS = �S(BM(A)) is a statistical attractor
contained in A with BS(AS) ⊃◦ BM(A).

(b) If A is a statistical attractor for the flow, then AM = �M(BS(A)) is a Milnor attractor
that contains A with BM(AM)) ⊃◦ BS(A).

Proof. If A is a Milnor attractor, then BM(A) has positive measure and therefore
�S(BM(A)) is a statistical attractor. From Lemma 3·4(iv), BS(AS) = BS(�S(BM(A))) ⊃◦
BM(A). It remains to show that AS ⊂ A. From Lemma 3·4(ii) and (vi), AS = �S(BM(A)) ⊂
�M(BM(A)) = A. The proof for (b) is similar.

The simplest examples where statistical attractors are different than Milnor attractors are
systems such as Bowen’s example mentioned in Section 1 that admits a heteroclinic cycle.
We discuss two other illustrative examples for the remainder of this section.

Example 3·6. The heteroclinic cycle illustrated in Figure 2 arises as a minimal Milnor
attractor of the flow given by

ẋ = kx + (ax2 + by2 + cz2)x

ẏ = ky + (ay2 + bz2 + cx2)y (3·5)

ż = kz + (az2 + bx2 + cy2)z
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Fig. 2. Example 3·6 showing a trajectory converging towards an attracting heteroclinic cycle on the bound-
ary of the positive orthant of R

3. The ω-limit set of each point except p4 in the interior of the orthant
{x, y, z > 0} is the whole cycle. Due to the symmetry, there exist seven symmetric copies of this cycle in
the other regions that are attracting almost all points in their interiors and therefore are Milnor attractors.
Similarly, there are eight statistical attractors each of which consists of three fixed points contained in a
heteroclinic cycle. There is a one-to-one correspondence between Milnor attractors and statistical attractors
in this example.

p21p

q1

3
4

2q

q
q

Fig. 3. An invariant set {p1, p2, q1, q2, q3, q4} containing seven Milnor attractors and three statist-
ical attractors. The Milnor attractors are two homoclinic cycles {p1, q1} and {p2, q4}, the heteroclinic
cycle {p1, q2, p2, q3} and various combinations of these, namely {p1, p2, q1, q2, q3}, {p1, p2, q2, q3, q4},
{p1, p2, q1, q4} and {p1, p2, q1, q2, q3, q4}. The statistical attractors are {p1}, {p2}, and {p1, p2}. Hence,
in this example there is no one-to-one correspondence between Milnor attractors and statistical attractors.

where the parameters are chosen such that k > 0, a < 0 and b < −c < 0 [7, 10]. The
system admits the rotation symmetries (x, y, z) → (z, x, y) and the reflection symmetries
(x, y, z) → (±x, ±y, ±z). The reflection symmetries mean that each orthant is invariant
and there exist symmetric copies of this cycle that attract almost all initial conditions in
each orthant. These are clearly minimal Milnor attractors. On the other hand, the statistical
attractor in the positive orthant consist of the equilibria p1, p2, and p3 only and in each
region there is a different minimal statistical attractor that consist of three equilibria each of
which is a symmetric copy of p1, p2, and p3.

In Example 3·6, there is a one-to-one correspondence between Milnor attractors and stat-
istical attractors. The following example shows that this is not always the case.

Example 3·7. Figure 3 shows the phase portrait of a flow with a Milnor attractor that
contains seven smaller Milnor attractors. Three of them are minimal Milnor attractors: one
heteroclinic cycle ({p1, q2, p2, q3}) and two homoclinic cycles ({p1, q1} and {p2, q4}). The
statistical limit set consists of two points p1 and p2 each of which is a minimal statistical
attractor. There are two minimal statistical attractors but three minimal Milnor attractors.
As a result, unlike Example 3·6, there is no one-to-one correspondence between Milnor
attractors and statistical attractors in this case.
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4. Convergence of time averages

It is known that time averages of trajectories asymptotic to a heteroclinic cycle (or more
generally non-ergodic attractors) do not converge in general [9, 20]; they show histor-
ical behavior in the terminology of Ruelle [19]. However, for a particular system and ob-
servable it may be non-trivial to check that an average converges or not; e.g. [18]. We
will show that, in order to prove the convergence of the time average or otherwise, one
only needs to consider the values of the observable on the statistical attractors of the
flow.

In this section, we attempt to precisely characterize those observables whose time av-
erages converge for a given statistical attractor. Our main theoretical result will be The-
orem 4·2, for which we first need to develop some notation. In terms of applications, we
give two corollaries that have more easily checkable assumptions.

Consider the measures μx,T = (1/T )
∫ T

0 δγt x dt where T > 0 and δx is the Dirac measure.
Note that

μx,T (U ) = ρ(x, U, T ). (4·1)

For each f ∈ C(X) we have
∫

X f dμx,T = (1/T )
∫ T

0 f (γt x) dt . Define a functional

on C(X)∗ by ϕx,T : f → ∫
X f dμx,T . Then, |ϕx,T | = sup‖ f ‖=1 |(1/T )

∫ T
0 f (γt x)dt | �

sup‖ f ‖=1 ‖ f ‖ � 1. Since the unit (| · |)-ball in C(X)∗ is weak∗ compact (Alaoglu’s theorem),
the set of accumulation points of ϕx,T as T → ∞ in the weak∗ topology of C(X)∗, namely,

Θ(x) =
⋂
T >0

{ϕx,T̃ : T̃ > T } (4·2)

is non-empty and bounded, where the closure is in the weak∗ topology. The Riesz Repres-
entation Theorem implies that for each ϕ̃ ∈ Θ(x) there exists a unique Borel probability
measure μ(ϕ̃) such that

ϕ̃( f ) =
∫

X
f dμ(ϕ̃). (4·3)

The set of such measures {μ(ϕ̃) : ϕ̃ ∈ Θ(x)} can also be written as

�(x) =
⋂
T >0

{μx,T̃ : T̃ > T }, (4·4)

where the closure is under the weak topology of measures. We say a sequence of measures
{μk} converges weakly to the measure μ (μk ⇀ μ) if and only if limk

∫
f dμk = ∫

f dμ for
every continuous function f [5]. Since Θ(x) is non-empty, �(x) is also non-empty. We can
use Θ(x) and �(x) to classify the behavior of time averages of continuous observables as
follows.

LEMMA 4·1. For every f ∈ C(X),

⋂
T >0

{
1

T̃

∫ T̃

0
f (γt x) dt : T̃ > T

}
= {ϕ( f ) : ϕ ∈ Θ(x)}, (4·5)

where Θ(x) is defined in (4·2).

Proof. We prove equality in two stages. “⊂” Let f̄ ∈ R be a limit point of
(1/T )

∫ T
0 f (γt x) dt as T → ∞. Then, there exists a sequence {tk} → ∞ such that

(1/tk)
∫ tk

0 f (γt x) dt = ∫
X f dμx,tk = ϕx,tk ( f ) → f̄ . By Alaoglu’s theorem, there exists
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a subsequence {tnk } such that {ϕx,tnk
} converges to some functional ϕ̃ in weak∗ topology.

That is, for each f ∈ C(X), ϕx,tnk
( f ) → ϕ̃( f ). Therefore, f̄ = ϕ̃( f ). It is clear that

ϕ̃ ∈ Θ(x). “⊃” Let f̄ = ϕ̃( f ) for some ϕ̃ ∈ Θ(x). By the definition of Θ(x), there
exists a sequence {tk} → ∞ such that ϕx,tk ( f ) → ϕ̃( f ) for any f ∈ C(X). Therefore,
(1/tk)

∫ tk
0 f (γt x) dt → f̄ .

Using (4·3), we can rewrite (4·5) as

⋂
T >0

{
1

T̃

∫ T̃

0
f (γt x) dt : T̃ > T

}
=

{∫
X

f dμ : μ ∈ �(x)

}
. (4·6)

We can now state the main result of this section:

THEOREM 4·2. Let γt be a continuous flow on a compact metric space X and x(t) ⊂ X
be an orbit with x0 = x(0). Let f : X → R be a continuous function. Then the following
limit

lim
T →∞

1

T

∫ T

0
f (γt x0) dt = f̄ (4·7)

exists, if and only if, ∫
X

f dμ = f̄ for all μ ∈ �(x0). (4·8)

Proof. This follows as a special case of Lemma 4·1 where the sets on both sides of (4·6)
reduce to single points.

Theorem 4·2 means that the time average of a given observable exists if and only if the
observable has a constant integral with respect to all measures in �(x). We now show the
relation between �(x) and the essential ω-limit set ωess(x).

THEOREM 4·3. Let γt be a continuous flow on a compact manifold X and �(x) be
defined as in (4·4). Then, for all x ∈ X,

ωess(x) =
⋃

μ∈�(x)

supp μ. (4·9)

This theorem implies that our definition of essential ω-limit set is equivalent to the
original definition in [3]. Note that Definition 2·1 is in some sense simpler in that
it does not depend on measure theoretical notions such as weak convergence. It also
makes the relation between the concepts essential ω-limit set and statistical attractor
clearer.

To prove Theorem 4·3 we use the following lemmas:

LEMMA 4·4. Let � be any set of measures on X. Then z ∈ ⋃
μ∈� supp μ if and only if

for every open neighbourhood U of z, there exists a μ ∈ � such that μ(U ) > 0.

Proof. (‘only if’) Assume that there exists a sequence {zk} → z such that for all k, zk ∈
supp μk where μk ∈ �. Then, for each open neighbourhood U of z there exists K > 0 such
that zK ∈ U . Choose an open neighbourhood V of zK such that V ⊂ U . Since μK (V ) > 0,
then μK (U ) > 0. (‘if’) Assume that given any open neighbourhood U of z there exists a
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μ ∈ � such that μ(U ) > 0. Hence, supp μ � U ��, that is, there exists a z̄ ∈ U such that
z̄ ∈ supp μ. This implies that z ∈ ⋃

μ∈� supp μ.

The following result we quote from [5, Theorem 2·1] without proof.

LEMMA 4·5. Let μ and μk , k = 1, 2, . . . be Borel probability measures. The following
statements are equivalent:

(i) μk ⇀ μ, (i.e. μk converges weakly to μ);
(ii) lim inf μk(U ) � μ(U ) for every open set U;

(iii) lim sup μk(F) � μ(F) for every closed set F.

Proof of Theorem 4·3 (’⊃’) Assume z ∈ ⋃
μ∈�(x) supp μ. From Lemma 4·4, for each

open neighbourhood U of z, there exists a μ ∈ �(x) such that μ(U ) > 0. Note that
μ ∈ �(x) implies there exists a sequence {Tk} → ∞ such that μx,Tk ⇀ μ. Hence, from
Lemma 4·5 and equation (4·1), lim infk ρ(x, U, Tk) = lim infk μx,Tk (U ) � μ(U ) > 0.
Therefore, lim supt ρ(x, U, t) > 0, and from Definition 2·1, z ∈ ωess(x). (’⊂’) As-
sume that z ∈ ωess(x) and U is an arbitrary open neighbourhood of z. Let U ′ and
F be open and closed neighbourhoods of z, respectively, that satisfy U ′ ⊂ F ⊂ U .
From Definition 2·1, lim supt ρ(x, U ′, t) > 0 since z ∈ U ′ and U ′ is open. Then,
lim supt ρ(x, F, t) � lim supt ρ(x, U ′, t) > 0. Therefore, there exists a sequence {tk} → ∞
such that limk ρ(x, F, tk) = limk μx,tk (F) > 0. By compactness, there exists a subsequence
{tkm } → ∞ such that μx,tkm

converges weakly to a measure μ ∈ �(x). From Lemma 4·5,
lim supm μx,tkm

(F) � μ(F). Hence, μ(U ) � μ(F) � lim supm μx,tkm
(F) = limk μx,tk (F) >

0. Finally, Lemma 4·4 implies z ∈ ⋃
μ∈� supp μ.

Using the Ergodic Decomposition Theorem [15, Theorem 4·1·12] one can restrict the con-
dition on measures in Theorem 4·2 to ergodic measures supported on the essential ω-limit
set. Let E(X) denote the set of ergodic γt -invariant probability measures supported in X .
Namely, E(X) = {μ ∈ M(X) : supp(μ) ⊂ X}, where M(X) is the set of invariant ergodic
measures of the flow (X, γt). Since the supports of the measures in �(x) are contained in
ωess(x), the Ergodic Decomposition Theorem implies

�(x) ⊂ conv(E(ωess(x))). (4·10)

Using this, we can conclude in the following result that the time average of an observable
along a trajectory depends only on the time averages of trajectories in the essential ω-limit
set.

THEOREM 4·6. Suppose that γt is a continuous flow on a compact manifold X. As-
sume that, for a given continuous function f : X → R, there exists a constant f̄ ∈
R such that, for all y ∈ ωess(x0), limT →∞(1/T )

∫ T
0 f (γt y) dt = f̄ . Then the limit

limT →∞(1/T )
∫ T

0 f (γt x0) dt exists and equal to f̄ .

Proof. Let μ be an ergodic measure supported on ωess(x0), namely μ ∈ E(ωess(x0)). From
a corollary of Birkhoff Ergodic Theorem [15, Corollary 4·1·4], there exists a point y ∈
ωess(x0) such that limT →∞(1/T )

∫ T
0 f (γt y) dt = ∫

f dμ. Then, by assumption,
∫

f dμ =
f̄ . Let F denote the set of accumulation points of (1/T )

∫ T
0 f (γt x0) dt as T → ∞. From

(4·6) F = {∫X f dμ : μ ∈ �(x0)}. Using (4·10), we conclude

F ⊂ conv

({∫
X

f dμ : μ ∈ E(ωess(x0))

})
= conv({ f̄ }) = { f̄ }.
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Finally, these results are related to statistical attractors in the following way: If an observ-
able f has a constant time average along all trajectories in a statistical attractor, then there
is a positive measure subset of initial states for which time averages of f exists. Both the
following corollary and the second main result, Theorem 2·5, in Section 2 follow directly
from Theorem 4·6.

COROLLARY 4·7. If A is a statistical attractor and limT →∞(1/T )
∫ T

0 f (γt x) dt = f̄ for

all x ∈ A. Then, for all x ∈ BS(A), limT →∞(1/T )
∫ T

0 f (γt x) dt exists and equal to f̄ .

5. Discussion

This paper has introduced the idea of a “non-maximal” statistical attractor associated
with a basin of attraction and has related it to Milnor attractors. There are clearly many open
questions as to the decomposition of statistical attractors and the subtleties of their relation
to Milnor attractors or other types of attractor, though we should clearly indicate that in
many cases (in particular those of ergodic attractors) the notions coincide. Nonetheless, for
systems with symmetries and/or invariant subspaces non-ergodic attractors may be robust,
giving a large and relevant class of systems where the distinction is non-trivial.

Moving on to the question of which observables will give convergence of time averages
even to non-ergodic attractors, in Theorem 4·2 we give a necessary and sufficient condition
for convergence of an averaged observable on a specific trajectory. Theorem 4·6 relates the
convergence of averages to statistical attractors by giving a sufficient condition for conver-
gence. An open question is how much one can weaken the assumptions on this theorem
to give necessary and sufficient conditions. Clearly, for the special case of heteroclinic at-
tractors (where the statistical attractors are just finite sets of points) this is much easier than
for more general non-ergodic attractors where there may be quite wild behavior of a small
number of trajectories.

To finish with, we present an application of Theorem 4·6 to an example system with an
attracting non-ergodic heteroclinic network. We show that an observable of relevance can be
demonstrated to converge.

5·1. Example of a non-trivial convergent average for a non-ergodic attractor

Consider the dynamics on T
3 = {φ1, φ2, φ3} generated by the ODE

φ̇1 = g(φ1, φ2 − φ3, 0) − g(0, φ1, φ2 − φ3)

φ̇2 = g(φ2, φ1 + φ3, 0) − g(0, φ1 + φ3, φ2) (5·1)

φ̇3 = g(φ3, φ1 + φ3, φ2) − g(0, φ1 + φ3, φ2) + 2 sin φ1,

where we set

g(x, y, z) + h(x − y) + h(x − z),

h(x) = −sin(x + 1.4) + 0.3 sin(2x) − 0.1 sin(3x).

Note that the subspaces φ1 = 0 and φ2 = 0 are invariant under the dynamics. One can verify,
using numerical simulation and examination of the flows in invariant subspaces, that there is
an attracting heteroclinic network (a type of heteroclinic ratchet [14]) contained within these
subspaces (see Figure 4). This heteroclinic network consists of a heteroclinic cycle between
the equilibria p1 and p2 that winds in −φ3 direction. Therefore, when lifted to R

3, a typical
trajectory converging to the attractor has φL

3 → −∞ (φL denotes the lifted trajectory).
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Fig. 4. A heteroclinic attractor ({p1, p2, q1, q2}) for the system (5·1). (a) Schematic illustration of the
attractor in T

3 = {φ1, φ2, φ3} lifted to R
3. (b) The φ3 component of a trajectory converging to the attractor;

note that a lift of this component will be unbounded, but it grows so slowly that its average converges to
zero.

However, one can use Theorem 4·6 to show that (1/T )
∫ T

0 φ3dt converges to zero, as
follows. Let Lγ f : X → R be the Lie derivative of the function f along the flow φ, that
is Lγ f (x) = (d/dt) f (γt x)|t=0. Consider the function f̃ (φ) = φ3. Let φ̃(t) be a trajectory
converging to the heteroclinic attractor in Figure 4. That is, ω(φ̃(t)) = {p1, p2, q1, q2} and
ωess(φ̃(t)) = {p1, p2}. Then, from Theorem 4·6 we have

lim
T →∞

φL
3 (T )

T
= lim

T →∞
1

T

∫ T

0
Lγ f̃ (φ(t)) dt. (5·2)

exists and equal to zero since Lγ f̃ is zero at fixed points p1 and p2.

We remark that system (5·1) can be seen as the phase difference equations for a system of
four coupled phase oscillators, θi ∈ T

1 = [0, 2π),

θ̇1 = ω + g(θ1, θ2, θ3) + 2 sin(θ1 − θ3)

θ̇2 = ω + g(θ2, θ1, θ4) (5·3)

θ̇3 = ω + g(θ3, θ1, θ2) + 2 sin(θ1 − θ3)

θ̇4 = ω + g(θ4, θ1, θ2).

with a heteroclinic ratchet in the terminology of [14]. The reduction to (5·1) follows on
setting φ1 := θ1 − θ3, φ2 := θ2 − θ4 and φ3 := θ3 − θ4.

Heteroclinic ratchets are attractors on an N -torus that include heteroclinic cycles wind-
ing in one direction but no other heteroclinic cycles winding in the opposite direction.
Even though there is no winding for the trajectories in the heteroclinic ratchet in the spe-
cified direction, trajectories near the heteroclinic ratchet may wind in this direction re-
peatedly. Therefore, one may expect that average frequency of windings may not converge,
but Theorem 4·6 implies that it converges to zero. Assuming that the system consists of
coupled oscillators, this convergence to zero implies a frequency synchronization between
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oscillators, although the phase differences grow unboundedly. The example here contrasts
to those in [14] where arbitrary small noise or detuning between the natural frequencies of
oscillators is needed to observe ratcheting of a nearby trajectory, and shows that ratcheting
of oscillators introduced in [14] can occur even without noise or detuning.
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