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Abstract

We discuss a novel minimal model for binocular rivalry (and more generally
perceptual dominance) effects. The model has only three state variables, but
nonetheless exhibits a wide range of input and noise-dependent switching.
The model has two reciprocally inhibiting input variables that represent per-
ceptual processes active during the recognition of one of two possible states
and a third variable that represents the perceived output. Sensory inputs
only affect the input variables.

We observe, for rivalry-inducing inputs, the appearance of winnerless
competition in the perceptual system. This gives rise to behaviour that con-
forms to well-known principles describing binocular rivalry (Levelt’s proposi-
tions, in particular proposition IV: monotonic response of residence time as
a function of image contrast) down to very low levels of stimulus intensity.

Key words: Binocular rivalry, perception, heteroclinic cycle, winnerless
competition.

1. Introduction

One of the perceptual phenomena that have intrigued researchers over
the years is that of “binocular rivalry”- when the stimuli presented to the
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two eyes are different, perception alternates between the two stimuli roughly
every few seconds [7]. The stimulus contrast is known to affect the pre-
dominance (average proportion of time spent perceiving one stimulus) and
the dominance length/residence time (average time interval perceiving that
stimulus). An influential synopsis of the influence of stimulus contrast on the
dynamics of rivalry was proposed by Levelt [19] in his four propositions:

(I) “increase of the stimulus strength in one eye will increase the predom-
inance of the stimulus”;

(II) “increase of the stimulus strength in one eye will not [affect] dominance
length for the same eye”;

(III) “increase of the stimulus strength in one eye will increase the alterna-
tion frequency”; and

(IV) “increase of the stimulus strengths in both eyes will increase the alter-
nation frequency.”

To account for the empirical data on the role of stimulus properties in
binocular rivalry [19, 4, 5], as well as on its neurophysiological correlates
[9, 11, 18, 29], a number of models have been put forward, most of which
have been based on a reciprocal inhibition architecture, whereby the parts
of the system that code for the two competing percepts suppress each other
[3, 10, 14, 15, 16, 20, 30]. Dominance switching is typically instantiated
via slow negative feedback (e.g. population adaptation or synaptic depres-
sion variables). This negative feedback reduces inhibition exerted by the
dominant side over the suppressed one. Some of the modelling efforts have
been directed at the Levelt propositions outlined above. For example, Laing
and Chow [15] developed a population rate model (derived from a network
model of Hodgkin-Huxley type neurons) containing two populations of neu-
rons coding the competing percepts with reciprocal inhibitory connections
between the two populations. In the model, the activity of the populations
is sustained by recurrent excitation and reduced by population adaptation
variables; the model also incorporates synaptic depression variables, which
modulate the strength of recurrent excitation and that of reciprocal (mutual)
inhibition between the competing populations. Laing and Chow [15] reported
the model to be consistent with all Levelt’s propositions, along with other
empirical phenomena.
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However, recently Shpiro et al. [26] showed that the Laing and Chow
model and other models based on mutual inhibition do not always conform
to Levelt’s propositions. In particular, [26] set out to examine the models’
behaviour in relation to proposition IV (see above). Four models were sub-
jected to scrutiny: the Laing and Chow model [15], two modified versions
of this model (one without population adaptation and one without synaptic
depression), and the model by Wilson [30]. Although the latter is mathemat-
ically different from the Laing and Chow model, the two share some impor-
tant qualitative features: mutual inhibition between the model components
representing the competing stimuli and the presence of a slow population
adaptation process that is essential for the switching of dominance. Shpiro
et al. [26] examined dominance durations for different stimulus contrasts,
while also varying the values of the inhibition strength parameter. In addi-
tion, they assessed the effects of noise on the contrast-dominance duration
relationship, the role of recurrent excitation (by omitting its term in the mod-
ified Laing and Chow models) and the effects of having a separate inhibitory
population (present in the Wilson model and absent in the Laing and Chow
model and its modifications).

The principal result was that none of the four models showed a mono-
tonic dependence between stimulus contrast and dominance durations. The
most common behaviour across models and inhibition strengths can be sum-
marised as follows. For high stimulus contrast values, dominance duration
decreased with increasing stimulus contrast as posited by Levelt’s propo-
sition IV (we will henceforth adopt Shpiro et al.’s terminology and refer
to this as decreased duration, or DD, behaviour). For intermediate stimu-
lus contrast values, no switching occurred, with one population active and
other inactive indefinitely (“Winner Takes All” behaviour). For low stimulus
contrast values, dominance durations increased with increasing stimulus con-
trast (increased duration, or ID, behaviour [26]). The “Winner Takes All”
mode for intermediate stimulus contrast values was not found when the cross-
population inhibition parameter had low values or when random white noise
was introduced. However, the non-monotonic dependence between stimulus
contrast and dominance duration was still observed (ID behaviour for lower
contrasts and DD behaviour for higher contrasts). The presence of recurrent
excitation (in the Laing and Chow model [15]) or that of a separate inhibitory
population (in the Wilson model [30]) did not seem to influence the (non-
monotonicity of the) relationship between stimulus contrast and dominance
durations.
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Another important finding of Shpiro et al. [26] concerned asymmetric
input to the two eyes, which is relevant for Levelt’s propositions I-III (see
above). For the range of stimulus contrasts for which models showed DD
behaviour, Shpiro et al. found that increasing stimulus contrast for one eye
reduced dominance durations for the other eye’s percept, without affecting
the dominance durations of the stimulus whose contrast was changed (con-
sistent with propositions I-III). However, for the range of stimulus contrasts
associated with ID behaviour, the effect of increasing stimulus contrast for
one eye was inconsistent with propositions I-III, leading to an increase in
dominance durations for the same eye’s percept.

The non-monotonic contrast-dominance relationship in all four models
led [26] to highlight the mismatch between models and Levelt’s propositions,
particularly proposition IV. Our main contribution here is to produce a sim-
ilarly motivated minimal model that nevertheless does produce “Levelt IV”-
type (DD) behaviour all the way down to arbitrarily small stimulus con-
trasts. The model also shows behaviour compatible with propositions I-III
in conditions of asymmetric stimulus contrast. This is achieved by means of
“Winnerless Competition” between perceptual states.

1.1. Winnerless competition models for cognitive processes

Models of neural dynamics tend to be variational (i.e. they have an
energy landscape that is explored by the dynamics). However, there is no
a priori reason why they should be, other than this leading to an elegant
understanding of their dynamics in terms of minimization on the landscape.
In particular, there may be novel dynamical mechanisms for neural processes
that do not fit into the energy landscape paradigm. A particular example
of non-variational dynamics called “Winnerless Competition” (WLC) [22,
23, 24] was introduced by Rabinovich, Huerta and co-workers to explain
a variety of switching-type responses and sequence generation for low-level
neural microcircuits. Such dynamical models have robust attractors that are
composed of a network of unstable states of saddle type connected by their
unstable manifolds. The individual saddles appear to attract for a certain
time, but any small components in the unstable directions grow, leading to
eventual “switching” between saddles. In terms of nonlinear dynamics, such
attractors have been studied for some time as heteroclinic networks and there
is an extensive literature on their robustness, their stability (attractiveness)
[12, 13, 24] and structure [1, 21].
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Although WLC has been primarily developed for low level modelling (with
few exceptions, e.g. [24]), it may be very useful for the modelling of higher
level cognitive processes [2]. This paper presents a case study of a model
for binocular rivalry that is built on winnerless competition principles. The
model’s architecture shares some common characteristics with the models
discussed above. It contains two components which represent neuronal pop-
ulations each of which responds to one of the two stimuli. Based on single-
cell neurophysiological data showing more dominance switching responses in
binocular cells in areas V4 and MT [18], we are inclined to assume that these
model components are not groups of monocular cells in the Lateral Genicu-
late Nucleus or the primary visual cortex, but populations of binocular cells
in higher visual areas that code the perceptual features present in a given
stimulus (which happens to be presented to one eye). However, they could
equally represent competing groups of monocular neurons, which would be
more consistent with recent neuroimaging evidence of low-level inter-ocular
competition in binocular rivalry [9, 29]. As in the models discussed above
[15, 30], in our model the neuronal populations corresponding to the two
stimuli compete via reciprocal inhibition; like these models, ours also incor-
porates an adaptation process, which leads to saturation of activity in the
two populations. However, unlike the above-mentioned models, our model
also contains a third, “arbitration”, component. It could represent either
a neuronal population that synthesises the inputs from modules specialised
for particular stimuli/configurations, or the difference in activity between
such specialised modules. In either case, the dynamics of the “arbitration”
component underlies the perceptual state experienced (and reported) by the
subject.

2. A simple winnerless competition model of binocular rivalry

We consider a simple model in R3 of the perceptual processes involved in
binocular rivalry, with connectivity as illustrated in Figure 1. In this model
we consider three dynamical variables that model the underlying population
dynamics:

• The variables x (resp. y) represent an activity pattern associated with
the stimulus presented to the left (resp. right) eye.

• The variable p represents the activity in the “arbitration” component,
which underlies the reported perceptual state.
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Figure 1: A simple network that can resolve binocular rivalry using winnerless competition.

We assume in the absence of x or y input that the dynamics of p has two
stable states, one where the left eye is dominant and one where the right
eye is dominant. We assume that the dynamics of x, y are usually at rest
but, depending on input and currently perceived state, they can undergo
a dynamical process (such as edge detection or comparison with a stored
pattern) to attempt to recognize that particular pattern. If there is an input
Ix, Iy that indicates the presence of one of the “perceivable” states associated
with x, y, then this results in growth of that variable.

In particular, if the input does not conform with the currently perceived
pattern (represented by the current value of p) then the system dynamics will
switch between the two possible states as shown schematically in Figure 2.
The system we consider is:

ṗ = h(p) + x2(1 − p) + y2(−1 − p) + ηp

ẋ = f(p, x, y) + Ixx + ηx

ẏ = g(p, x, y) + Iyy + ηy

(1)

In (1) the quantities Ix, Iy are inputs to the system for x, y while the
ηp, ηx, ηy represent independent biased Wiener noise inputs. These consist of
a constant bias µp, µx, µy added to an unbiased white noise with amplitude
(i.e. variance growth per unit time) σp, σx, σy respectively. We take

h(p) = −p(p − 1)(p + 1)
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Figure 2: Schematic diagram showing the dynamics of the system for an input invoking
binocular rivalry with 0 < Ix, Iy and µx = µy = µp = 0. There are two saddle states on
the axis x = y = 0 that are only unstable to perturbations in one of the directions x, y
respectively. Typical initial conditions (not contained in one of the planes x = 0 or y = 0)
approach the loop of unstable manifolds from (p, x, y) = (−1, 0, 0) to (p, x, y) = (1, 0, 0)
and back.

to represent the dynamics of p on the subspace x = y = 0. One can write
h(p) = −V ′(p) where V (p) = 1

4
p4 − 1

2
p2 represents a twin well potential with

equal minima at p = ±1 as shown in Figure 3.
The dynamics of x, y are determined by the functions

f(p, x, y) =
[

(0.5 − p)(p + 1) − x2 − y2
]

x

g(p, x, y) = f(−p, y, x).
(2)

The p-dependent terms in (2) are chosen such that for Ix > 0, p = −1 has an
instability to increasing x while similarly for Iy > 0, p = 1 has an instability
to increasing y. On the other hand, if Ix < 0 (resp. Iy < 0) this stabilizes
p = −1 (resp. p = 1) which means that the model (1) can represent a number
of different modes of dynamical behaviour. The remaining terms in f from
(2) translate into a “generic” accommodation term −x3 and a cross-inhibition
term −y2x.

2.1. The dynamics of the model

When the input recognition systems x = y = 0 are not excited, the
dynamics of p is that of the twin-well potential flow, as illustrated in Figure 3.
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Figure 3: Schematic diagram showing the p dynamics under a condition of binocular
rivalry. In the case x = y = 0 the dynamics of the perception variable p as governed by a
variational equation with potential V (p) and remains at one of two possible bistable states.
However, the two transverse variables x and y can induce a change of the state from one
to the other. Note that the dynamics of the system is variational for p on x = y = 0 but
is not variational away from this subspace.

In the absence of noise, and for Ix = Iy, µx = µy and µp = 0 the model (1)
has a symmetry

(p, x, y) 7→ (−p, y, x).

For ηx = ηy = 0 the model has two invariant subspaces x = 0 and y = 0,
but this is only approximate for other parameter values. For these idealised
parameters there are three equilibria in x = y = 0: a left dominant LD
resting state (p, x, y) = (1, 0, 0), a right dominant RD resting state (p, x, y) =
(−1, 0, 0) and an indeterminate unstable UD resting state (p, x, y) = (0, 0, 0).
These states may or may not be stable to transverse x, y dynamics and this
can easily be determined by examining the linearized stability: in fact LD
becomes unstable to y perturbations if Iy > 0 while RD becomes unstable
to x perturbations if Ix > 0.

Figure 4 shows bifurcations of steady states in the model for symmetric
inputs I = Ix = Iy that is rivalrous for I > 0. Observe that the LD,RD
states are bistable for I < 0. For the range 0 < I < 0.5 the only attracting
dynamics of the model is that of winnerless competition; a robust heteroclinic
cycle with alternation between LD and RD states. There is a transition to a
stable indeterminate state (0, x, x) for I > 0.5; in fact there is still a robust
heteroclinic cycle for all I > 0 but this is no longer attracting for I > 0.5.
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Figure 4: Bifurcation diagram showing steady branches of the noise-free system (1,3)
with input I = Ix = Iy , for µp = µx = µy = 0. Solid and dashed lines denote stable
and unstable solutions, respectively. In the marked region (0 < I < 0.5) there is robust
winnerless competition dynamics: see Figure 5. In this region, addition of small but non-
zero µp µx and µy gives an attracting periodic orbit showing switching between p = 1 and
p = −1 states with period typically in Figure 6.

The dynamical behaviour under WLC is shown in Figures 2 and 5. For an
open set of initial conditions, trajectories move towards the unstable states
LD and RD and their unstable manifolds; as time progresses they will switch
between the two states, spending progressively longer at each state in turn.
One can interpret the qualitative dynamics of (1) for WLC as follows: The
p dynamics in the absence of inputs x, y is that of a twin-well potential with
minima at p = −1 and p = 1, and a separating saddle at p = 0 (see Figure 3).
Recognition by the left eye (activity of x) will push the p dynamics towards
p = 1 while activity of y will push it towards p = −1. In the case where µx,y

non-zero and σp,x,y = 0, this is an attracting periodic orbit whose period is
plotted in Figure 6.

We choose “standard parameters” as follows

µx = µy = 10−4, µp = 0, σx = σy = 5 × 10−5, σp = 0.02, (3)

where we recall that ηp,x,y denotes a biased Wiener noise with mean µp,x,y and
amplitude (variance growth per unit time) σp,x,y. For such parameters (with
non-zero µx,y) we find that the WLC behaviour is replaced by an approxi-
mately periodic switching between LD and RD states, with mean switching
period close to that for the noise-free case shown in Figure 6.
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Figure 5: Dynamics of the system (1) in the absence of noise, for µx = µy = µp = 0 and
Ix = Iy = 0.4. There is an alternation between the two saddle states LD (1, 0, 0) and RD
(−1, 0, 0), with a progressive slowing down typical of an attracting heteroclinic cycle.
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Figure 6: Period of the stable “alternating” WLC periodic orbit for the noise-free system
(1) with rivalry-inducing input I = Ix = Iy , for µx = µy = 0.0001 and µp = 0. Observe
the decreasing dominance times (DD) for increasing input.
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2.2. Scalings and quantitative properties of the system

One can understand the behaviour near a robust heteroclinic cycle such
as Figure 2 in the presence of symmetry breaking perturbations [25] or noise
[28] by considering a singular perturbation of the heteroclinic cycle. Any
noise/symmetry breaking will have most effect when the trajectory is close
to one of the equilibria on the cycle, so we proceed by constructing a return
map. For clarity, in this section we assume at first that both mean input and
noise can be ignored.

Consider a small neighbourhood of p = 1 and for some ǫ > 0 small, but
significantly larger that the mean inputs, we take Poincare sections

H in+ = {(1 + q0, ǫ, y0)}, Hout+ = {(1 + q′0, x0, ǫ)},

H in− = {(−1 + q1, x1, ǫ)}, Hout− = {(−1 + q′1, ǫ, y1)}
(4)

where ǫ is fixed and qi, xi, yi are variables that parametrize the Poincaré
sections. We obtain an approximate return map φ+ : H in+ → Hout+ from
the linearized flow





q̇
ẋ
ẏ



 =





−2 0 0
0 −1 + Ix 0
0 0 Iy









q
x
y



 +





µq

µx

µy



 .

The q variable decouples from the linearization and does not affect the pas-
sage time, meaning we need to consider only the x, y components starting at
(1 + q0, ǫ, y0) ∈ H in+. We simplify the return map calculation by scaling to
ǫ = 1, so that

x(t) =

(

1 −
µx

1 − Ix

)

exp((−1 + Ix)t) +
µx

1 − Ix
,

y(t) =

(

y0 +
µy

Iy

)

exp(Iyt) −
µy

Iy
.

(5)

Hence the first passage time from H in+ to Hout+ is to leading order

Tx =
1

Iy

ln

(

1 + µy/Iy

y0 + µy/Iy

)

and we exit at a point (1 + q′0, x0, 1) ∈ Hout+ where

x0 =

(

1 −
µx

1 − Ix

) (

1 + µy/Iy

y0 + µy/Iy

)(−1+Ix)/Iy

+
µx

1 − Ix
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if we assume Ix, Iy ≪ 1 then to first order we have

x0 = (1 − µx)

(

1 + µy/Iy

y0 + µy/Iy

)

−1/Iy

+ µx.

Similarly the map from H in− to Hout− is characterised to lowest order by

y1 = (1 − µy)

(

1 + µx/Ix

x1 + µx/Ix

)

−1/Ix

+ µy.

We approximate the global maps from Hout+ to H in− and from Hout− to
H in+ by linear scalings y0 = Ky1 and x1 = Kx0 to first order.

If there is no noise present (σx = σy = σp = 0) and the quantities
xi, yi, Ix, Iy, µx, µy are small, then the transition time Tx (resp Ty) past the
p = 1 (resp p = −1) state can be estimated: we have x0 ∼ ex = Kµx and
y1 ∼ ey = Kµy so that

Tx =
1

Iy
ln

(

1 + µy/Iy

ey + µy/Iy

)

Ty =
1

Ix
ln

(

1 + µx/Ix

ex + µx/Ix

)

.

(6)

The expression for Tx only depends on input Iy, and shows DD behaviour
over a wide range of inputs down to Iy = 0. Closer examination indicates
that for Iy larger that µy the scaling is Tx ∼ 1/Iy, while as Iy → 0, Tx tends
to a large (but finite) limit.

3. Levelt’s propositions I-IV for the model

Numerical simulations of the model show that it conforms with Levelt’s
propositions I-IV over a wide range of rivalrous inputs Ix, Iy > 0. Time-
stepping simulations of the model were undertaken on MATLAB using a fixed
timestep 4th order Runge-Kutta integrator followed by an Euler stochastic
step. The statistics of individual cases and statistics where checked using
XPPAUT [8]. Figure 7 shows time series obtained from the model with
standard parameters (1,3) on changing inputs Ix and Iy. A transient of 400
timesteps is excluded. In the figure we vary Ix ∈ (0.1, 0.2, 0.4) (columns left
to right) and Iy ∈ (0.1, 0.2, 0.4) (rows top to bottom). In all cases one finds
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an approximately periodic switching between p = −1 and p = 1, where the
variation is mostly caused by the presence of noise in the system.

Figure 8 shows the durations of residence in the p = −1 and p = 1
times for a typical case (Ix, Iy) = (0.1, 0.2). Observe the presence of two
distributions with unequal mean. The variation of the mean residence times
in the LD, RD states are shown as bar graphs in Figure 9 for the parameter
values used for Figure 7. For a higher level of noise input, Figure 10 shows
in a longer run in with Ix = Iy = 0.1 in (a,b); details in caption. Note
that the distribution (c) of residence times in (b) spreads broadly around
the mean value, and there is no evidence of correlation between residence
times as illustrated by the rapid decay of autocorrelation R(k) in (d). The
distribution profile in (c) is shown along with best fits to both Γ and log-
normal distributions1.

From Figure 9 we observe the conformity of the model to Levelt I-IV for
this range of parameter values. Examining the graph for p = −1 (LD state)
mean residence times clearly shows a strong dependence on the left input
such that reducing the contralateral (right) input intensity Ix increases the
mean time spent in the LD state, where there is only very weak dependence
on ipsilateral (left) input intensity Iy. This conforms with propositions I-
III. Finally, the diagonal also increases as Ix = Iy is reduced indicating
conformance to proposition IV.

Levelt’s propositions I-IV can also be found from the approximate asymp-
totic formulae (6). Firstly, note that the asymptotic formulae are such that
the dependence of the residence time is purely on the contralateral input
(Levelt proposition II). Secondly, for fixed ex, ey, µx, µy note that Tx is a
decreasing function of Iy (Levelt proposition III) and one can identify two
regimes. Clearly the same holds for Ty dependence on Ix and µx.

4. Conclusions

The model seems to be one of the simplest ones where Levelt’s propo-
sitions I-IV can be easily and controllably observed. As a low dimensional
model it does not contradict the known mutual-inhibition architecture thought

1Best fit to a Γ distribution y = (x/a0)
a1 exp(−a2x) has a0 = 17.48, a1 =

29.88, a2 = 0.5298 with Theil U-coeff 0.120547 best fit to log-normal distribution y =
(a0/x) exp(−((ln(x)− a1)/a2)

2) has a0 = 9660, a1 = 57.74, a2 = 0.2477 with Theil U-coeff
0.102357. Best fit to normal distribution has Theil U-coeff 0.1545.
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Figure 7: Time series showing t evolution of p for a range of Ix and Iy for the model
(1,3) after transients have decayed. The perceived output p alternates between −1 and
1 while the other transverse variable are only non-zero during a transition. Columns:
Ix = 0.1, 0.2, 0.4 from left, Rows: Iy = 0.1, 0.2, 0.4 from top. Mean residence times near
p = 1 and p = −1 are shown in Figure 9.
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Figure 8: Distribution of residence times in the p = −1 and p = 1 states for an extended
run with (Ix, Iy) = (0.1, 0.2). Note that the mean residence time is clearly smaller for the
x-preferred state p = 1. Other details are as in Figure 7.

to be responsible for rivalry effects. In particular, it is a model where propo-
sitions I-IV can exist over a large range of rivalry-inducing 0 < Ix, Iy.

The model predicts stable equilibrium dynamics for non-rivalrous inputs
Ix > 0, Iy < 0 (p = 1 stable) and Ix < 0, Iy > 0 (p = −1 stable) and for
inputs that correspond to “Winner Takes All” bistable states Ix < 0, Iy < 0;
see Figure 4. It would be interesting to extend the model in a number of
ways, such as describing conditions under which the model might depart
from Levelt’s propositions I-IV (e.g. ID/DD phenomena) [26] and investi-
gating additional phenomena such as dependence of “false return times” and
“transition times” of Brascamp et al. [6] on inputs.

4.1. Interpretation and relation to neurophysiologically-based models

Unlike other models in the literature [26, 15, 30], we do not claim that
our model is directly based on a neural substrates; rather it is a minimal
low-dimensional model that explains several of the effects of binocular ri-
valry in terms of the dynamical paradigm of WLC. However, we note that
the behaviour of x, y has nonlinear saturation (i.e. adaptation) of their activ-
ity via x3, y3 and reciprocal inhibition via xy2, yx2 and so one can interpret
the variables in a neurally plausible manner by considering the variables in
(1) as measures of population activity. One intriguing correspondence be-
tween the dynamics of x, y and empirical data is that either of them reaches
maximum whilst in transition to, rather than during, the dominance interval
of the respective percept (e.g. x is maximal immediately before dominance
switches to the left eye), see Figure 5. In electrophysiological recordings,
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RD right dominated (p = −1) state, over a range of inputs Ix, Iy. Other details are as in
Figure 7.
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Figure 10: Dynamics of switching between p = −1 and p = 1 states for a long run with
symmetric input Ix = Iy = 0.1, µx = µy = µp = 0 and higher noise; σx = σy = 0.001 and
σp = 0.1. (a) shows part of a timeseries of switching, (b) gives a sequence of successive
residence times in either state, (c) shows a frequency histogram (N = 800) of the data in
(b) while (d) plots the dependence of the autocorrelation of the data in (b) against shift k.
Observe the spread of residence times about the mean in (c) with good fits to both Γ and
log-normal distributions, and the independence of residence times exhibited by immediate
decay of correlation to the noise floor, consistent with empirical data [17], in (d).
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rivalry-sensitive cells also show maximal spike rates right before the domi-
nance switches to the cell’s preferred stimulus. [18].

4.2. Other applications for WLC models

There are other cognitive dynamical effects (perceptual rivalry) that gen-
eralise the idea of binocular rivalry; these could similarly be modelled using
the system (1) for suitable parameters. As noted in [24] WLC models and
closely related “stable heteroclinic sequence” (SHS) dynamics may be a use-
ful paradigm for understanding many forms of cognitive dynamics, including
higher-order cognitive processes such as decision making. It has also been
suggested [24] that SHS may be responsible for fluctuations seen in cortical
resting states.

The model presented here suggests a model for rivalry with more than
two percepts, generalising from bi-stability to multi-stability. One can make
the p dynamics more rich, including an attractor for each percept and in-
troduce an extra “transverse” variable associated with each attractor. This
transverse variable can be used to introduce transitions between percepts in
the presence of rivalrous inputs. Figure 11 illustrates this idea schematically;
by analogy with (1) the transverse variable depends on sensory inputs while
the “perception space” depends only on the transverse variables and initial
condition.
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