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Abstract 
Understanding the ecology and life history of marine turtle populations is 

fundamental for their effective conservation, especially for those that are harvested 

for food. This thesis presents a collection of six chapters that progress from the 

applied to the pure; conservation and management in the first chapters through to 

animal ecology in the latter. A variety of contemporary and multidisciplinary 

techniques are utilised to explore the structure, populations dynamics and ecology of 

two marine turtle species, the green turtle (Chelonia mydas) and the hawksbill turtle 

(Eretmochelys imbricata), under harvest in the Turks and Caicos Islands (TCI), 

Caribbean. The work first focuses on the structure of TCI’s small-scale fishery and 

the demographics of turtles landed and incorporates nesting seasonality, adult take, 

satellite tracking and genetic structure to suggest evidence-based legislative 

amendments. As part of the study of this fishery, this work reports on how the 

harvest might increase prevalence of disease in green turtles. As an exploration into 

the ecology of turtle stocks found in TCI, the work then describes and compares in-

water immature and adult sex ratios, genetic differentiation and sex biased dispersal. 

Finally, stomach content and habitat matching, and stable isotope analyses provide 

insights into the foraging ecology and suggested keystone roles of sympatric green 

and hawksbill turtles.  
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List of Tables and Figures 
 

Chapter 1: Marine turtle harvest in a mixed small-scale fishery: 
Evidence for revised management measures 

 
Table 1. Annual harvest estimates of green and hawksbill turtles landed at South 

Caicos (SC), Providenciales and Grand Turk between 1 December 2008 – 30 

November 2010 (Total survey period =730 days). The Turks and Caicos Islands 

(TCI) estimate is the sum of each island estimate. 95% confidence intervals (CI) are 

percentiles of the distribution of bootstrapped estimates. Data are from direct 

dockside observations. ‘Interpolated no. turtles captured concurrently at SC’ 

represents the number of turtles (count plus interpolated) captured at South Caicos 

at the same time as observations were made at Providenciales or Grand Turk. 

These values are used in calculating the island harvest estimates (see Methods 

section 2.4 for details).  

 

Table 2. Comparative reported, legal and substantial (>100) annual turtle harvest 

estimates from several nations in the Wider Caribbean. Harvest estimates for other 

Caribbean nations can be found in Brautigam and Eckert (2006), Fleming (2001), 

and Godley et al. (2004b).* denotes a historical quota. 

 

Figure 1. Map and location of the Turks and Caicos Islands. Pie charts show the 

proportion of the estimated annual harvest of hawksbill turtles (light grey) and green 

turtles (dark grey) at each surveyed island and are scaled relative to the estimated 

harvest of both species combined (see Table 1 for values). 

 

Figure 2. Size-class (CCL, cm) histograms of curved carapace length of A) hawksbill 

(n= 312) and B) green turtles (n=453) sampled during the 2 year study (December 

2008 to November 2010). Turtles sampled from in-water surveys (light grey) and 

harvested turtles (black) are combined from all islands. Minimum legal size limit 

(51cm CCL) is shown with a dashed line, and likely minimum breeding sizes (see 
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text) are indicated with arrows. Photos show juvenile hawksbill (A) and green turtles 

(B) (courtesy of T. Stringell and P. Richardson respectively). 

 

Figure 3. Hawksbill (light grey) and green turtle (dark grey) interpolated monthly 

landings at South Caicos during A) year 1: 1 December 2008 - 30 November 2009, 

and B) year 2: 1 December 2009 - 30 November 2010. Fishing CPUE (kg.boat days-

1) for lobster (filled circles and solid line) and conch (open circles and dashed line) 

export fisheries at South Caicos are superimposed. 

 

Figure 4. Green turtle (dark grey) and hawksbill turtle (light grey) harvest at each of 

4 categories of conch and lobster fishery seasons at South Caicos. Closed and 

Open categories refer to both fisheries together. ‘Conch Open’ represents periods 

when the conch fishery is open and lobster fishery closed, and vice versa for 

‘Lobster Open’. Data from December 2008 to November 2010 (24 months). 

 
Chapter 1: Supplementary Information 

 
Figure S1. Dockside survey coverage (days) of South Caicos, Grand Turk and 

Providenciales. 

 

Figure S2. Turtle edible mass and total weight relationships. Equation on left refers 

to green turtles (black filled circles, n=7) and the equation on right for hawksbill 

turtles (grey filled circles, n=12). Slope and intercept values were used to calculate 

the edible mass from the total harvest. The dashed line (y=x) is shown for 

comparison. 

 

Figure S3. Interpolated sum of hawksbill turtles (A) and green turtles (B) harvested 

in South Caicos by day of the week. Year 1: 1 December 2008 – 30 November 2009 

(light grey); Year 2: 1 December 2009 – 30 November 2010 (black). 

 

Figure S4. Hawksbill (light grey) and green turtle (dark grey) interpolated monthly 



 11 

landings during A) year 1: 1 December 2008 - 30 November 2009, and B) year 2: 1 

December 2009 - 30 November 2010. Fishing catch (metric tonnes; circles) and 

effort (boat days; triangles) for lobster (filled symbols and solid line) and conch (open 

symbols and dashed line) export fisheries at South Caicos are superimposed. 

Figure S5. The number of hawksbill (A and B) and green turtles (C and D) harvested 

per month during the 2-year study period against lobster and conch CPUE (kg.boat 

days-1) at South Caicos. Lines indicate marginally significant negative binomial GLM 

fits and 95% confidence intervals (A, P=0.05; B, P=0.08; C, P=0.06; D lines not 

shown, P=0.22). Point shape and colour represent fishing season and survey year 

factors. 

 
 

Chapter 2: Vulnerability of adult marine turtles in a contemporary 
turtle fishery: Recommendations for legislative change 

 

Table 1. Deployment statistics of adult turtles satellite tagged in TCI: two female 

green turtles (CmF) and five adult hawksbills (two females [EiF] and three males 

[EiM]). Data derived from location classes (LCs) A, B, 1-3. Minimum convex 

polygons (MCP) calculated from LCs 1-3.  

 

Table 2. Haplotype frequency for hawksbill (Ei) and green turtle (Cm) adults 

captured in the TCI fishery and from in-water surveys, and hatchlings from individual 

nests. Frequencies are separated by sex (M=Male, F= Female, U= Undetermined). 

See Stringell et al. in prep. (Chapter 4) for comparisons with regional haplotype 

frequencies. 

 

Figure 1. Spatial distribution of hawksbill (A) and green turtle (B) nesting activity. 

Magnitude of nests recorded is shown by increasing circle size. Locations where 

only non-nesting emergences were observed are indicated by squares. Survey 

locations where no turtle activity was observed are shown with triangles. Data are 

summed over the two-year survey period. Numbers in bold refer to the following 

locations:  1-Salt Cay, 2-Cotton Cay, 3-Pinzon Cay, 4-Eastern Cay, 5-Gibbs Cay (2 

beaches), 6-Weis Cay, 7-Indian Cay, 8-Long Cay, 9-Pine Cay, 10-Dellis Cay. 
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Numbers in parentheses indicate the number of survey beaches at each location, 

otherwise each label represents a single beach. 

 

Figure 2. Nesting activity of hawksbill turtles (A) and green turtles (B) in TCI. Black 

bars indicate number of nests and hatched nests of inferred lay date. Non-nesting 

emergences are shown as white bars. Survey effort (C) is the number of nesting 

surveys (n=162) by month. Triangles indicate when one or two adult turtles were 

captured during CMR (inwater and nesting surveys; two hawksbill turtles were 

captured in Sep and Oct), and squares indicate turtles captured by fishers (two in 

November). Data are summed by month and survey locations over the two-year 

study period.  

 
Figure 3. Locations and home ranges - minimum convex polygons (thick straight 

black lines), kernel density estimates (shading) with 90% volume contours (thin 

curved black lines) - of seven satellite-tracked turtles: Panel A shows the two green 

turtle (Chelonia mydas, Cm) migration tracks away from TCI territorial waters (see 

Richardson et al. 2010 for information on CmF1), two female green turtles (B-C: 

CmF1 and CmF2) and five hawksbill turtle (D-H) (Eretmochelys imbricata, Ei: 

Females EiF1-2 and males EiM1-3). Crosses (+) indicate nesting position for each 

nesting female (Barbuda: CmF1 (A); TCI: EiF1-2 (D-E), CmF2 (C)). White circles 

indicate foraging locations - Argos location classes 1, 2, 3 for each turtle up to the 

time of writing (04 February 2013). Locations are not displayed for the internesting 

periods of turtles EiF1-2 or CmF2 (see text for further detail).  

 

Figure 4. Proportion of hawksbill turtle (open circle, n=108) and green turtle (filled 

circle, n=155) populations of TCI, as determined from size distribution of harvested 

turtles (Stringell et al 2013; Chapter 1), potentially excluded from the fishery with 

various size limits (CCL; curved carapace length, cm). The proportion excluded from 

the fishery is inclusive of those already excluded by the TCI minimum size limit 

(51cm). The maximum size limit for Cayman Islands is 60cm. The average minimum 

nesting size for the region is 78cm for the hawksbill turtle (Witzell 1983) and 97cm 

for the green turtle (Hirth, 1997). 

 

 



 13 

Chapter 3: Fisher choice may increase prevalence of 
green turtle fibropapillomatosis disease 

 

Table 1. Results of interviews about fibropapillomatosis (FP) with 28 participants, of 

which 21 (75%) are currently practicing turtle fishers. See Table S1 for full 

questionnaire. Questions asked of the future were only to current fishers. 

 

Figure 1. Green turtle showing externally visible signs of fibropapillomatosis (FP). 

This image was shown to fishers during interviews. 

 

Figure 2. Map of Turks and Caicos Islands (TCI) showing locations (pies) where 

green turtles were harvested. Size of pies indicates the relative percentage of the 

total harvest (<5, <10, <20, and >20%; n=233 turtles) during 25 months of survey 

(Nov 2008 to Dec 2010). Shaded pies indicate areas where we also conducted 

capture-mark-recapture (CMR) surveys and the prevalence of fibropapillomatosis 

(black) in turtles caught in these surveys is shown. White circles indicate locations 

where turtles were harvested but where no CMR surveys were conducted. 

 

Figure 3. Curved carapace length (CCL, cm) of green turtles captured during 

capture-mark-recapture surveys (A) and in the fishery (B), showing external signs of 

fibropapillomatosis (FP) (stacked black bars) or no FP (grey bars). Dots in (A) 

indicate FP prevalence within each size-class and the dashed line indicates a 3-

order polynomial fit (R2=0.84) of FP prevalence by size.  

 

Chapter 3: Supplementary Information 
 

Table S1. Semi-structured questionnaire used to interview fishers and guide 

discussions on occurrence of fibropapillomatosis. Figure 1 of main text and a map of 

TCI was shown to participants during the interview. 

 

Figure S1. The relationship between curved carapace length (CCL, cm) and weight 

(kg) of turtles with fibropapillomatosis (FP; black, n=32) and without FP (white, 

n=207) captured and released during in-water capture-mark-recapture surveys from 
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Nov 2008 to Dec 2010. 

 
Figure S2. Curved carapace length of turtles captured in capture-mark-recapture 

surveys without fibropapillomatosis (FP; left panel, n=207) and with FP (right panel, 

n=32). The top nine locations have no recorded FP prevalence. Box plots indicate 

median, interquartile ranges and outliers. 

 

 

Chapter 4: Female biased sex ratios of marine turtles: 
Insights from life-stages and origin 

 
Table 1. Pairwise FST values between Atlantic/Mediterranean rookeries and TCI 

rookeries (TCI.R: hawksbill turtles, n=22; green turtles, n=4) and TCI mixed stocks 

(green turtle juvenile males (JM, n=17) and other immature turtles (Imm, n=68) and 

immature hawksbills (Imm, n=118). Data based on hawksbill turtle (A) and green (B) 

turtle haplotype frequencies. Hawksbill haplotypes are long sequences (740bp), 

green turtle haplotypes are 481bp. * denotes significant Exact test at P < 0.05. Bold 

= significant at FDR corrected P values for pairwise comparisons (hawksbill FDR31, 

P=0.0124; green turtle FDR47, P=0.0113). 

 
Table 2. Mean ± standard deviation (SD) and range of testosterone and oestradiol-

17" blood hormone concentrations (pg/ml) in hawksbill and green turtles of different 

life-stages and sexes. Known sex was determined via gonad morphology/histology 

or external secondary sex features. Total range includes these plus turtles of 

unknown sex where only blood samples were taken. 

 
Figure 1. Hawksbill (A) and green turtle (B) rookeries (black circles) used in the 

MSA.  Location labels are listed in Table 1. Arrows in B indicate generalised surface 

currents applicable for both maps. Brazil (BRZ) rookery indicated on inset of A. 

Cyprus (CYP) and Turkey (TKY) rookeries indicated on Mediterranean inset of B. Pie 

charts indicate % female (black) at rookeries where primary sex ratio data exist. 

Hawksbill turtles: approx. 90% at Bahia, Brazil (Godfrey et al. 1999) and Buck Island 

US Virgin Islands (USV Wibbels et al. 1999); approx. 63% at Antigua (Mrosovsky et 
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al. 1992, Glen & Mrosovsky 2004); 26% female at Guadeloupe (GU Kamel & 

Mrosovsky 2006). Green turtles: 54-68% at Suriname (SUR: Mrosovsky et al. 1984, 

Godfrey et al. 1996); 70.2% at Poilao Guinea Bissau (GBP Rebelo et al. 2011); 79% 

at Cyprus (Kaska et al. 1998, Broderick et al. 2000), 92% at Turkey (Broderick et al. 

2000, Casale et al. 2000); 75-87% at Ascension Island (ASCI Broderick et al. 2001, 

Godley et al. 2002, Pintus et al. 2009); 54% average from Tortuguero, Costa Rica 

(CR Standora & Spotila 1985, Spotila et al. 1987, Horikoshi 1992). 

 

Figure 2. Hawksbill turtle (A) and green turtle (B) testosterone concentration (log 

pg/ml) plotted against curved carapace length (CCL, cm). Filled circles indicate 

individuals of known sex derived from gross morphology or histology of gonads: 

females (black), males (grey). Empty circles are turtles of unknown sex (no 

observations of gonads). Maximum or minimum testosterone concentrations 

observed in known sex individuals (dashed lines: colour scheme as before) are used 

to construct threshold values for determining sex in unknown sex individuals 

(between the dashed lines, sex determination is infeasible). See Table 2 for ranges 

of testosterone concentrations for each species, relative to life-stage and sex. 

 
Figure 3. Sex ratios of hawksbill (dark grey) and green turtle (light grey) for the 

different life-stages. Recruits (R) <35cm curved carapace length (19.6-34.1cm in 

hawksbill, 25.1-34.4cm in green turtles), Juveniles (J) 35-65cm, sub-adults (SA) 65-

97cm in green turtles and 65-78cm in hawksbills, foraging adults (A), breeding adults 

(B) are here defined as >78cm in hawksbills and >98cm in green turtles (see main 

text). Numbers above bars indicate sample size. Dashed line indicates equal sex 

ratio. Sex ratio data in hawksbill turtles: R, 1M:15F; J, 8M:77F; SA,1M:10F; A, 

5M:9F; B, 6M:2F; Green turtles: R, 4M:17F; J, 41M:89F; SA, 8M:18F; *No adult 

green turtle sex ratios are shown because only a single female was captured in each 

case. 

 
Figure 4. Growth rates in female hawksbill turtles (A) and female and male green 

turtles (B, C). Data are from known sex individuals, as determined by gross 

morphology or histology of gonads, or via testosterone concentrations in blood 

plasma. Lines indicate GLM fit and 95% CI. Curved carapace length (CCL) of final 

recaptures ranged between 30.6 and 72.4cm in female hawksbill turtles (2 recruits, 
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18 juveniles, 1 sub-adult; a single male hawksbill turtle recruit [30cm CCL, growth 

rate 4.18cm/yr] is not shown); between 29.6 and 61.7cm in female green turtles (5 

recruits, 19 juveniles), and between 33.3 and 66.5cm in male green turtles (1 recruit, 

11 juveniles, 1 sub-adult).  

 
Figure 5.  Contribution estimates of Atlantic and Mediterranean source rookeries to 

TCI foraging aggregations as determined by Bayesian Mixed Stock Analyses using 

rookery size as weighted priors. Contributions to the immature (Imm) hawksbill stock 

(n=118) were estimated using 740bp haplotype data. Green turtle mixed stocks 

consist of Juvenile males (JM, C; n=17) and all other immature turtles (Imm, B; 

n=68). See supplementary Table S3 for values. 
 

Chapter 4: Supplementary Information 
 
Table S1. Haplotype frequencies using long sequence lengths (740bp) at hawksbill 

rookeries and mixed stocks used in the Mixed Stock Analyses. TCI foraging groups 

that make up the mixed stock are also listed. N denotes the number of samples in 

each group. Haplotype diversity (h) and nucleotide diversity (!) was calculated in 

Arlequin 3.5 (Excoffier & Lischer 2010), the latter using a Tamura 3-parameter 

substitution model (Tamura 1992).  
 
Table S2. Haplotype frequencies using short sequence lengths (481bp) at green 

turtle rookeries and mixed stocks used in the Mixed Stock Analyses. TCI foraging 

groups that make up the mixed stock are also listed. N denotes the number of 

samples in each group. Haplotype diversity (h) and nucleotide diversity (#) was 

calculated in Arlequin 3.5 (Excoffier & Lischer 2010), the latter using a Tamura 92 3-

parameter substitution model. Rookery size (females pa) is calculated from number 

of nests (Seminoff 2004, Mortimer & Donnelly 2008). 

 
Table S3. Hawksbill (A) and green turtle (B) Mixed Stock Analyses foraging ground 

centric mean contributions ± 95% CIs using models with rookery (source size) 

weighted priors. Rank contribution and source size shown in parenthesis. Hawksbill 

long sequence length (740bp) haplotypes were used for the TCI immature mixed 

stock. Green turtle 481bp sequence length haplotypes were used for the TCI 
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immature and juvenile male mixed stocks. See Table S2 for rookery abbreviations. 

 
Table S4. Comparison of testosterone thresholds and estimated sex ratios in 

immature turtles from TCI.  For this comparison, sex was assigned solely through 

testosterone concentrations, even if turtles were of known sex. Turtles of known sex 

that also had paired testosterone samples (green turtles [Cm], n=55; hawksbill turtle 

[Ei], n=26) were used to establish the misclassification rate, the difference in 

numbers of turtles accurately determined and the effect on sex ratio. Unknown sex 

turtles were those whose testosterone concentrations fell between threshold values. 

 
Figure S1. Hawksbill turtle (A) and green turtle (B) log oestradiol-17" against log 

testosterone concentrations (pg/ml). Filled circles indicate known sex individuals 

from gross morphology or histology of gonads: females (black), males (grey). 

Unknown sex (no observations of gonads) are empty circles.  

 
Figure S2. Hawksbill turtle (A) and green turtle (B) log oestradiol-17" (E2) 

concentration (pg/ml) against curved carapace length (CCL, cm). Filled circles 

indicate known sex individuals from gross morphology or histology of gonads: 

females (black), males (grey). Unknown sex (no observations of gonads) are empty 

circles. Immature green turtle E2 concentrations (pg/ml) ranged from 3.18 to 151.96 

in known males (n=15) and 2.33 to 419.77 in known females (n=38). No blood 

samples were collected from adult green turtles. In immature hawksbills, E2 ranged 

from 3.18 to 8.00 in known males (n=3) and 3.18 to 40.75 in known females (n=11) 

and in adult females 25.18 to 191.22 (n=3), and adult males from 8.00 to 154.60 

(n=7). 

 

Figure S3. Hawksbill turtle (A) and green turtle (B) log testosterone: oestradiol-17" 

(T:E2) ratios against curved carapace length (CCL, cm). Filled circles indicate known 

sex individuals, females (black), males (grey), from gross morphology or histology of 

gonads. Immature hawksbill turtle T:E2 ratios (unlogged) ranged from 89.9 to 378.0 

in known males (n=3) and 2.7 to 64.7 in known females (n=11), and from 9.6 to 

3109.2 in adult males (n=7) and 1.1 to 98.2 in adult females (n=3). Immature green 

turtle ratios ranged from 6.3 to 366.3 in known males (n=15) and 0.5 to 19.9 in 

known females (n=38). No blood samples were collected from adult green turtles. 
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Chapter 5: Taxonomic distinctness in the diet of 
two species of marine turtle 

 
Table 1. Frequency (proportion of turtles in which present) and average (±SD and 

range) proportion of biomass of taxonomic diet groups found in stomach content 

samples of green turtles (n=92) and hawksbill turtles (n=45). 

 
Figure 1. Map of Turks and Caicos Islands (TCI) and location in Wider Caribbean 

Region (inset, DR=Dominican Republic). Numbers indicate the following survey 

sites: 1=Man-o-War, 2=Ocean Hole, 3=Southern Bush, 4=Larmer Creek, 

5=Jacksonville, 6=Eastside, 7=Nuisance Point, 8=Tuckers Reef, 9=Shark Alley, 

10=Harbour, 11=Long Cay, 12=Six Hills, 13=Middle Reefs, 14=Fish Cay, 

15=Ambergris, and 16=Ambergris Airport. See supplementary Table S1 for further 

information on sites, habitats and sampling effort. 

 
Figure 2. Average relative percentages (± 1 SD, error bars) of taxonomic diet groups 

found in reef (A) or seagrass (B) habitat photoquadrats (abundance: n=736) and 

hawksbill (A) and green (B) turtle stomach samples (biomass: n=137). Habitats are 

represented by black bars and turtle species by pale grey.  

 

Figure 3. Non-metric multidimensional scaling ordination of stomach content with 

vector overlay of most contributing species (R>0.5 Spearman’s correlation; derived 

from SIMPER analysis). Stomach content biomass data are standardised, square 

root transformed Bray-Curtis similarities. Three hawksbill turtle outliers (not shown) 

lie outside of plot boundary to the northeast and were dominated by Sidonops 

neptuni in their diet.  

 

Figure 4. Species diversity measures of stomach content samples against hawksbill 

turtle size (CCL, cm). (A) species richness, (B) Simpson’s index (calculated on 

biomass), (C) average taxonomic distinctness, (D) variation in taxonomic 

distinctness. 
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Figure 5. Species diversity measures of stomach content samples against green 

turtle size (CCL, cm). (A) species richness, (B) Simpson’s index (calculated on 

biomass), (C) average taxonomic distinctness, (D) variation in taxonomic 

distinctness. 

 

Figure 6. Average (A) and variation (B) in taxonomic distinctness of stomach 

contents from two turtle species (n=45 hawksbill turtles, n=92 green turtles). Lines 

indicate the median and upper and lower 95% probability intervals of taxonomic 

distinctness created from randomised draws of sublists of 2 to 20 species from a 

regional master list of 565 species. Weighting of Linnaean tree step lengths was 

guided by taxon richness of the master list and frequencies of species found in the 

habitat surveys were used to weight the selection of the random species. 

 

Chapter 5: Supplementary Information 
 

Table S1. Summary of TCI sampling sites, their habitats and descriptions with tidal 

state and height (m) (tidal phase indicated by S = Springs, N = Neaps) and sampling 

water depth at time of sampling. Grid references and map code refers to Figure 1. 

The number of photoquadrat pictures taken (n=1061) and analysed (n=736) after 

analysis of species area curves and number of species identified from these are 

given. Seagrass density (m-2) at eight location/habitats estimated by rank (where 1 is 

sparse and 5 is dense) and quantified using validated photoquadrat shoot counts. 

 
Table S2. Species in diets of green turtles (n=92) and hawksbill turtles (n=45). 

Frequency (proportion of stomachs in which present), average biomass proportion ± 

SD, and max. proportion (min. was zero in all cases) of species across stomach 

samples. Bold species represent those found in >10% of stomach samples. Asterisk 

denotes trace amount (<0.01 by proportion). Comparison studies that found same 

top prey species by weight are indicated next to taxon name: 1-Mortimer (1981); 2-

León and Bjorndal (2002); 3-Santos et al. (2011); 4-Seminoff et al. (2002); 5-Van 

Dam and Diez (1997); 6-Bjorndal (1997); 7-Rincon-Diaz et al. (2011); 8-Bjorndal 

(1980). Table is split into three parts for clarity. Parts A and B represent herbivorous 

diet items. 
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Table S3. Rapid assessment of habitats: biological characteristics measured using 

the SACFOR abundance scale (see http://jncc.defra.gov.uk/page-2684), substrate 

type (%), physical characteristics ranked 1-5 (5= high relief, many patches, high 

density, unstable sediment, many crevices, deep sediment). 

 
Table S4. Classification of habitats surveyed. Dense = >1 individuals m-2 for solitary 

species, or >50% cover for algae/seagrass. Based on the classification scheme 

outlined by Mumby and Harborne (1999). 

 
Figure S1. Non-metric multi dimensional scaling ordination of habitat photoquadrats 

and vector overlay of most contributing species (R>0.5 Spearman’s correlation; 

derived from SIMPER analysis). 

 
Figure S2. Average (A) and variation (B) in taxonomic distinctness of habitat 

quadrats. Lines indicate the median and upper and lower 95% probability intervals of 

taxonomic distinctness created from randomised draws of sublists of 2 to 20 species 

from a regional master list of 565 species. See supplementary text for details. 

 
Figure S3.  Trellice plot of relative percentage biomass of five main diet groups 

(brown, green and red algae, seagrasses and sponges) found in stomach content 

indicates no apparent relationship exists with turtle carapace size class. Hawksbill 

turtles (Eretmochelys imbricata, ei) top panel, green turtles (Chelonia mydas, cm) 

bottom panel. 
 
 

Chapter 6: Isotopic niche separation, ontogenetic shifts and 
diet in sympatric marine turtles 

 

Figure 1. Biplot of $13C and $15N stable isotope values (‰) for hawksbill turtle (A, 

n=108) and green turtle (B, n=108) blood plasma samples (circles). Filled circles are 

turtles for which we also had stomach content samples (n=45 hawksbills and n=92 

greens). Diet sources (±SD) are bluegreen algae (bl), red algae (r), green algae (g), 



 21 

brown algae (b), seagrasses (sg), sponges (sp), cnidarians (c), and other 

invertebrates (i).  
 

Figure 2. Inter-species isotopic niche metrics for hawksbill turtle (A, C) and green 

turtle (B, D) blood plasma samples. Standard convex hulls (joining the extreme most 

means of the turtle size classes: smallest, 20-30cm, ! , largest, 90-100cm, CCL) for 

the all-size population are shown for illustration of one possible iteration of the total 

niche width (A, B), and various Bayesian Layman niche metrics are given (C, D): 

$15N range - dNR; $13C range - dCR; total area - TA; mean distance to centroid - CD; 

mean nearest neighbour distance - MNND; standard deviation of nearest neighbour 

distance – SDNND (see Layman et al. 2007 for details on metrics). The Bayesian 

metrics can be compared between the turtle species. 

 

Figure 3. Size frequency histogram of hawksbill (dark grey) and green turtles (light 

grey) sampled in this study. Sizes are curved carapace length (CCL) taken from 

turtles that were sampled for blood plasma tissue for use in stable isotope analysis 

(n=108 for each species). 

 

Figure 4. Size (CCL, cm) and $13C isotope ratios for blood plasma (A, n=108; B, 

n=108), red blood cells (C, n=107; D, n=123) and scute (E, n=121; F, n=120) tissues 

from hawksbill turtles (Ei) and green turtles (Cm). Significant GAMs shown with R2
adj 

values of fit: Green turtle: Plasma, F4.9=5.95, P<0.0001, n=108; Blood, F3.6=37.58, 

P<0.0001, n=123; Scute, F3.5=25.95, P<0.0001, n=120. Hawksbill scute: F1.9=26.14, 

P<0.0001. 

 

Figure 5. Size (CCL, cm) and $15N isotope ratios for blood plasma (A, n=108; B, 

n=108), red blood cells (C, n=107; D, n=123) and scute (E, n=121; F, n=120) tissues 

from hawksbill turtles (Ei) and green turtles (Cm). Significant GAMs shown with R2
adj 

values of fit: Green turtle: Plasma, F4.8=7.01, P<0.0001; Blood, F4.2=29.05, 

P<0.0001; Scute, F4.6=23.33, P<0.0001. Hawksbill scute: GAM d15N, F1=7.11, 

P=0.009. 

 

Figure 6. Intra-species isotopic niche space for hawksbill turtle (A, C) and green 

turtle (B, D) blood plasma tissue across turtle size classes (cm, CCL). Standard 
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ellipse areas are sample-size corrected (SEAc: A, B). Corresponding Bayesian 

standard ellipse areas (SEAb) are shown for each size class (C, D) and can be 

compared among sizes and turtle species. Medians of SEAc (cross) and mode of 

SEAb (dot) are overlaid on the box plots of SEAb, which represent the 50%, 75% 

and 95% credible intervals from dark to light grey. 

 
Figure 7. Mixing model contribution proportions across turtle size classes (cm, CCL). 

Proportions of sponges to hawksbill turtle diet (A, C), and seagrasses to green turtle 

diet (B, D) are derived from plasma tissue. Top panel (A, B) shows results from 

models with uninformative (uniform) priors and bottom panel (C, D) with priors based 

on relative percentage of diet composition in stomach content samples (taken from 

Stringell et al. in prep., Chapter 5). Box plots represent the 50%, 75% and 95% 

credible intervals from dark to light grey. 

 

Chapter 6: Supplementary Information 
 

Table S1. Mean ± SD of stable isotope values (‰) by turtle species, tissue type and 

size class (CCL). Shaded values indicate average across sizes and total sample 

size. 

 

Table S2. Taxonomic diet source groups used in the SIAR mixing models and their 

mean ±SD carbon and nitrogen isotopes (‰). The number of taxa and samples for 

each source group are given. 

 

Figure S1. Biplot of $13C and $15N stable isotope values (‰) for hawksbill turtles (Ei: 

A, C) and green turtles (Cm: B, D) and two tissues: red blood cells (squares; A, B) 

and scute (triangles; C, D). Filled symbols are those turtles that also had stomach 

content samples (n=45 hawksbills and n=92 greens; see Stringell et al. in prep., 

Chapter 5). Diet sources (±SD) are bluegreen algae (bl), red algae (r), green algae 

(g), brown algae (b), seagrasses (sg), sponges (sp), cnidarians (c), and other 

invertebrates (i).  

 

Figure S2. Convex hulls (joining the extreme most means of turtle size classes: 
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CCL, cm) of the all-size turtle populations from three tissue types: Top panel, plasma 

(A, B); middle panel, red blood cells (C, D); bottom panel, scute (E, F). Left panel, 

hawksbill turtles (Ei: A, C, E); right panel, green turtles (Cm: B, D, F).  

 

Figure S3. Sample-size corrected Standard Ellipse Areas (SEAc) for turtle size 

classes (CCL, cm) and three tissue types: Top panel, plasma (A, B); middle panel, 

red blood cells (C, D); bottom panel, scute (E, F). Left panel, hawksbill turtles (Ei: A, 

C, E); right panel, green turtles (Cm: B, D, F).  

 

Figure S4. Diet source contributions to green turtle blood plasma samples across 

turtle size classes (CCL, cm). Data are from SIAR mixing models. Each panel 

represents one of eight sources: bluegreen algae, red algae, green algae, brown 

algae, seagrasses, sponges, cnidarians, and other invertebrates. 

 

Figure S5. Diet source contributions to hawksbill turtle blood plasma samples across 

turtle size classes (CCL, cm). Data are from SIAR mixing models. Each panel 

represents one of eight sources: bluegreen algae, red algae, green algae, brown 

algae, seagrasses, sponges, cnidarians, and other invertebrates. 
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Introduction 
Fishing affects almost every marine ecosystem. Small-scale fisheries (SSF) 

contribute to more than half of the world’s marine and inland fish catch, nearly all of 

which is used for human consumption (FAO 2010). With SSF dominating coastal 

seas (Stewart et al. 2010), the impact on biodiversity can be large (Peckham et al. 

2007, Soykan et al. 2008, Mangel et al. 2010, Alfaro-Shigueto et al. 2011). 

Numerous species are overexploited and greatly reduced (Myers & Worm 2003, 

Pauly et al. 2005, FAO 2010) and marine turtles are no exception.  

 For centuries, marine turtles have been a source of meat, eggs, shell, oil and 

leather and their reduction from historical abundances is widely documented, 

particularly in the Caribbean region (Jackson et al. 2001, McClenachan et al. 2006). 
Marine turtles are sensitive to exploitation due to their complex life history traits, 

including natal philopatry, a broad distribution of life-stages across extensively 

disbursed habitats, extended period to sexual maturity and multi-decadal generation 

times (Crouse et al. 1987, Crowder et al. 1994, Heppell & Crowder 1996, 

FitzSimmons et al. 1997). Moreover, conservation of such wide-ranging species can 

involve a multitude of stakeholders and nations that have differing regulatory and 

management frameworks, and cultural, traditional and economic values (Frazier 

2002, Blumenthal et al. 2007, Hawkes et al. 2012). Knowledge of critical population 

parameters, such as in-water sex ratios, size/life-stage and genetic population 

structure, contributes to the understanding of population dynamics of marine turtles 

and evidence-based sustainable management. Gaining this knowledge, however, is 

difficult because of the need to sample turtles at sea. Utilising legal turtle fishery 

landings to sample turtles, complemented with surveys at sea, provides an ideal 

opportunity to explore some of these population aspects that would otherwise be 

difficult to obtain. 

 One of the few remaining Caribbean nations that permit the harvest of marine 

turtles for local domestic consumption is the UK Overseas Territory of the Turks and 

Caicos Islands (TCI). It is thought that TCI has the largest legal and regulated marine 

turtle fishery in the UK Overseas Territories (Richardson et al. 2009). Despite these 

regulations the fishery is unmonitored and, until now, there has been no robust 

quantitative assessment of the size and structure of the fishery. Here, green 

(Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles are landed for 
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consumption. Current TCI turtle fishery legislation is out-dated; it allows the capture 

of any turtle species at sea with a minimum size of 20inches (51cm) carapace length 

and 20lbs (9kg) or more in weight (Richardson et al. 2006). Such regulations were 

inherited from fisheries legislation where minimum landing size is commonly used. 

But for long-lived species such as marine turtles, protection of large juveniles and 

reproductive adults is critical to their recovery (Crouse et al. 1987, Crowder et al. 

1994, Heppell & Crowder 1996). Of particular conservation concern is the capture of 

adult hawksbills in TCI, given their critically endangered status (Mortimer & Donnelly 

2008).  

 Exploitation of nesting females from natal rookeries can quickly cause 

population declines (Bell et al. 2006, McClenachan et al. 2006, McGowan et al. 

2008, Kittinger et al. 2013) and protection of nesting rookeries has consequently 

been one of the tenets of marine turtle conservation. In the Caribbean, there has 

been a call for a renewed conservation focus on remnant nesting populations, 

especially for the hawksbill turtle (McClenachan et al. 2006, Mortimer & Donnelly 

2008). Genetic characterisation of small and unsampled turtle rookeries in the Wider 

Caribbean Region is advocated to further elucidate their importance in stock 

connectivity and their potential to maintain regional genetic diversity (Leroux et al. 

2012, Shamblin et al. 2012). The magnitude, seasonality and genetic structure of the 

green and hawksbill turtle rookeries of TCI are poorly known. They are thought to be 

remnants of past populations that were subject to regular harvest (Richardson et al. 

2009). The legal turtle fishery here may still be a threat to existing populations and 

affect the recovery of both species.  

 It is thought that emerging infectious diseases of wildlife are increasing 

globally with consequences to human, animal and ecosystem health (Cohen 2000, 

Daszak et al. 2000, Ward & Lafferty 2004, Jones et al. 2008). Harvesting may alter 

disease prevalence and mortality directly or indirectly (Choisy & Rohani 2006) and 

when this results in an increase in the disease, may present a serious threat to 

wildlife or resource conservation, particularly in the management of species of 

conservation concern. Fibropapillomatosis (FP), a disease characterised by external 

and internal tumours, has been found in most species of marine turtle, primarily 

green turtles (Herbst 1994). It is one of the most significant neoplastic diseases in 

reptiles (Herbst 1994) and has become a global pandemic (Williams et al. 1994). FP 
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is present in green turtles of TCI, and the influence of the turtle harvest on FP 

disease dynamics is unknown. 

 For species with temperature-dependent sex determination (TSD), a better 

understanding of sex ratios in wild populations and the factors affecting survivorship 

of the sexes is crucial for supporting effective conservation strategies, especially 

given predicted scenarios of climate warming. In marine turtles, which exhibit TSD, a 

greater proportion of female hatchlings are produced at higher nest temperatures 

and female biased ‘primary’ sex ratios (pertaining to hatchlings) are common (see 

Hawkes et al. 2009 for review). Under current climate change scenarios, it is 

predicted that widespread feminisation of primary sex ratios and a critically reduced 

proportion of males could hinder population maintenance (Hawkes et al. 2007, 

Hawkes et al. 2009, Poloczanska et al. 2009, Witt et al. 2010, Fuentes et al. 2011). 

Studies of juvenile marine turtles captured at sea reveal variation in “secondary” sex 

ratios (pertaining to post hatchling stages) across sites, but most are also female 

biased. However, some studies show 1:1 or even male biased adult sex ratios 

(Chaloupka & Limpus 2001, Stewart & Dutton 2011, Wright et al. 2012), despite 

female-biased sex ratios in rookeries or immature life stages. This shift from highly 

skewed female biased primary sex ratios to 1:1 or “Fisherian” ratios (Fisher 1930) in 

adult stages is an elusive question in marine turtle biology; causes of this marked 

difference are unknown.  

 Maternally inherited mitochondrial DNA (mtDNA) has been widely used to 

assess marine turtle population structure among rookeries and foraging 

aggregations (see Bowen & Karl 2007, Lee 2008 for reviews). Turtles from different 

and disbursed rookeries may converge and recruit to mixed origin feeding grounds in 

shallow coastal waters (Musick & Limpus 1997). Mixed stock analysis (MSA) 

methodology using mtDNA markers enables groups of individuals in mixed feeding 

aggregations to be linked to their rookeries of origin (Bolker et al. 2007). Knowledge 

of mixed stock composition and origin may have profound conservation implications 

for ‘shared’ resources under harvest (Moncada et al. 2012).  

 Green turtles as herbivores and hawksbill turtles as spongivores are thought 

to have key ecological roles in seagrass and coral reef ecosystems, and their 

overexploitation has been implicated in detrimental ecosystem changes (Jackson 

1997, Bjorndal & Jackson 2003). Understanding the foraging ecology of ‘keystone’ 
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species (Paine 1969) is vital to inform effective conservation of the ecosystems in 

which they function. However, studying trophic role in marine vertebrates is 

challenging, and for marine turtles, until recently, has been primarily limited to data 

from stomach content, which represents only a ‘snapshot’ of feeding and may not 

adequately reflect diet that is assimilated into bodily tissues over time (Duffy & 

Jackson 1986, Barrett et al. 2007). Stable isotope analysis (SIA), however, offers 

insights into foraging ecology because stable isotope ratios of heavy to light isotopes 

in consumer tissues represent diet integration over short to long time frames 

(depending on the tissue) and can reliably indicate trophic position (typically from 

nitrogen isotope ratios, δ15N) and spatial resource use (typically from carbon isotope 

ratios, δ13C) (Hobson 1999, Post 2002). In marine turtles, stable isotope ratios have 

been used successfully to identify foraging habitats and diets (for examples see 

Godley et al. 1998, Hatase et al. 2002, Wallace et al. 2009, McClellan et al. 2010, 

Dodge et al. 2011, Lemons et al. 2011).  

 Carr (1986, 1987) proposed that marine turtles undergo habitat shifts at 

differing life-stages and described how rarely sampled early stage juvenile turtles 

inhabiting offshore epipelagic habitats (the “lost years”) later recruit to coastal waters 

to feed benthically. Recent SIA research confirmed this likely ontogeny in green 

turtles and indicated that diet shifted from an omnivorous diet during the first three to 

five years of their lives to a largely herbivorous diet in later years (Reich et al. 2007, 

Arthur et al. 2008). Similar SIA studies, however, have not been carried out for 

hawksbill turtles, although they may also undergo ontogenetic shifts as they recruit to 

coastal feeding grounds and develop spongivorous diets (Witherington et al. 2012).  
The University of Exeter and the Marine Conservation Society were invited by 

the TCI Government to study the marine turtle fishery as part of a two-year 

collaborative project. The aims of this study were first to define the magnitude and 

seasonality of the fishery (Chapter 1) and the nesting population (Chapter 2). The 

work set out to genetically characterise the TCI rookeries and, using satellite 

telemetry, establish the degree of residence in adult turtles of TCI waters. These first 

chapters propose recommendations for fishery management: the introduction of 

maximum size limits, and a closed season on hawksbill turtle take during the lobster 

fishing season. An absence of FP in the green turtle fishery but prevalence in turtles 

surveyed at sea, and how harvest might increase the disease in wild populations are 
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explored in Chapter 3. Chapter 4 focuses on the genetic structure and sex ratios of 

the mixed aggregations of foraging turtles in TCI. Sex is determined using circulating 

blood hormone concentrations (Owens et al. 1978) and calibrated with direct 

observations and histology of gonads from butchered turtles. Using mtDNA and 

Bayesian MSA, the probable origin of juveniles is elucidated and sex ratio shifts 

among life-stages are explored. In the last two companion chapters, the foraging 

ecology of the two study species is explored using stomach content analysis and 

SIA: diet in stomach content samples from the turtle fishery is analysed using a 

technique novel to marine turtle research (taxonomic distinctness: Clarke & Warwick 

1998, 2001) (Chapter 5); and niche separation (isotopic niche metrics: Jackson et al. 

2011), ontogenetic shifts and diet composition (isotope mixing models: Parnell et al. 

2010) are examined using carbon and nitrogen isotope ratios (Chapter 6). 
 The results of this work provide a baseline for future monitoring by the TCI 

Government and recommends specific changes to the legislation that may aid the 

recovery of the turtle species in TCI. The Government is currently incorporating the 

suggested amendments into the TCI fishing ordinance.  As such, it is hoped that this 

work will contribute to the conservation of the species, not just in TCI but the Wider 

Caribbean.  
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Abstract 
Small-scale fisheries (SSF) account for around half of the world’s marine and inland 

fisheries, but their impact on the marine environment is usually under-estimated 

owing to difficulties in monitoring and regulation. Successful management of mixed 

SSF requires holistic approaches that sustainably exploit target species, consider 

non-target species and maintain fisher livelihoods. For two years, we studied the 

marine turtle fishery in the Turks and Caicos Islands (TCI) in the Wider Caribbean 

Region, where the main export fisheries are queen conch (Strombus gigas) and the 

spiny lobster (Panulirus argus); with fin-fish, green turtles (Chelonia mydas) and 

hawksbill turtles (Eretmochelys imbricata) taken for domestic consumption. We 

evaluate the turtle harvest in relation to the other fisheries and recommend 

legislation and management alternatives. We demonstrate the connectivity between 

multi-species fisheries and artisanal turtle capture: with increasing lobster catch-per-

unit-effort (CPUE), hawksbill turtle catch increased whilst green turtle catch 

decreased. With increasing conch CPUE, hawksbill catch declined and there was no 

demonstrable effect on green turtle catch. We estimate 176-324 green and 114-277 

hawksbill turtles are harvested annually in TCI: the largest documented extant legal 

hawksbill fishery in the western Atlantic. Of particular concern is the capture of adult 

hawksbill turtles. Current legislation focuses take on larger individuals that are key to 

population maintenance. Considering these data we recommend the introduction of 

maximum size limits for both species and a closed season on hawksbill take during 

the lobster fishing season. Our results highlight the need to manage turtles as part of 

a broader approach to SSF management. 
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Introduction 
Small-scale fisheries (SSF) are estimated to account for more than half of the world’s 

marine and inland fish catch (FAO, 2010). The majority of the world’s fishers are 

located in developing countries and operate using small boats of <12m in length 

(FAO, 2010). The terms ‘small-scale’ and ‘artisanal’ are often used interchangeably. 

However, SSF are generally commercial fisheries even when they retain traditional 

aspects (Chuenpagdee et al., 2006). Definitions aside, ‘small-scale’ does not 

necessarily mean small impact (McCluskey and Lewison, 2008; Alfaro-Shigueto et 

al., 2010); catch by individual fishers might not always be substantial, but fleets can 

be large and have considerable impacts on coastal wildlife (Alfaro-Shigueto et al., 

2011; Mangel et al., 2010; Peckham et al., 2007; Soykan et al., 2008). With SSF 

dominating the global coastal shelf (Stewart et al., 2010), environmental impact is 

likely to be concentrated in coastal areas that are already likely to be subject to other 

human pressures (Dunn et al., 2010).  

SSF are generally managed by biologically based control measures for single 

species, e.g. catch quotas, gear restrictions, effort limits, fishing seasons. Most SSF, 

however, operate as multi-species or mixed fisheries (Salas et al., 2007) and as 

such single-species based management approaches tend to fail, having indirect 

effects on other fisheries and fisher behaviours (Béné and Tewfik, 2001). Multi-

species or ecosystem-based management approaches that assess multiple 

biological stocks and their interactions and account for the complexities of fisher 

behaviours, fleet dynamics, socioeconomic drivers and maintain livelihoods are 

needed for mixed SSF (Andrew et al., 2007; Béné and Tewfik, 2001; FAO, 2010; 

Fanning et al., 2011). Knowledge of the dynamics of the whole SSF is key to 

managing healthy coastal ecosystems and supporting communities that rely on 

them. 

Understanding the impacts of SSF on coastal ecosystems, however, is 

hindered by a paucity of quantitative information on catches, fishery effort and 

employment in SSF because of their complexity and the generally poor institutional 

capacity in developing countries to collect relevant data (Dunn et al., 2010; FAO, 

2010; Salas et al., 2007). This, in turn, hinders the formulation of appropriate policies 

and management in the SSF sector (Andrew et al., 2007; FAO, 2010). 
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In this paper, we assess a multi-species SSF in the Turks and Caicos Islands 

(TCI), a UK Overseas Territory (UKOT) in the Wider Caribbean Region (WCR). We 

examine the artisanal take of two sympatric sea turtle species, the green turtle 

(Chelonia mydas) and hawksbill turtle (Eretmochelys imbricata), alongside two of the 

most important and valuable fisheries in the Caribbean - the Queen Conch 

(Strombus gigas) and the Spiny Lobster (Panulirus argus) (FAO, 2007).  

A minor artisanal fin-fish fishery also exists in TCI for local consumption, and 

is likely to develop in the coming years; reliable information on this fishery is absent 

at present and is therefore unable to be assessed here. Lobster and conch 

represents almost all of the TCI fishery export, principally to USA markets 

(Department of Environment and Maritime Affairs - TCI, unpublished data; FAO, 

2007). Lobster catch-per-unit-effort (CPUE: kg/fisher/day) has been steadily 

declining in the Caribbean (Tewfik and Béné, 2004) and despite claims that the TCI 

conch fishery is at maximum sustainable yield (currently 760 metric tonnes; FAO, 

2007), signs of overfishing have been reported since the early 1990s (Medley and 

Ninnes, 1999; Ninnes, 1994).  

The fisheries operate together as a multi-species or mixed SSF, catching 

lobster, conch, fin-fish and sea turtles during single trips. The mixed SSF is 

characterised by artisanal free-diving fishers usually operating in crews of two or 

three from ca. 6m fibreglass powerboats. Most catch is landed at various fish 

processing plants within the TCI, with a relatively small quantity being marketed 

directly to local restaurants for local consumption. Green and hawksbill sea turtles 

are also mostly harvested for personal consumption, and although the TCI turtle 

fishery can be considered artisanal and incidental to the lobster and conch fisheries, 

it is thought to be the largest regulated and legitimate turtle fishery in the UKOTs 

(Richardson et al., 2009), and possibly second, in magnitude, only to Nicaragua 

(Lagueux et al., 2003).  

The current TCI sea turtle fishery legislation (Fisheries Protection Ordnance, 

1998: see Richardson et al., 2006, 2009 for reviews) permits the harvest of both 

species >51cm length and >20lbs in weight below the low-water mark (i.e. at sea) 

There is no closed season and fishers are legally entitled to remove an unlimited 

number of turtles larger than these minimum size limits at any time of the year. 

These regulations do not adequately safeguard the survivorship of large juvenile 
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(sub-adults) and reproductive adults, the vital life stages in population maintenance 

for long-lived and late-maturing species (Carr et al., 1982; Crouse et al., 1987; 

Crowder et al., 1994; Heppell and Crowder, 1996, Chaloupka, 2002). Minimum size 

limits such as these focuses take on large individuals and may impede turtle 

population recovery, even in small but highly regulated turtle fisheries, e.g. Cayman 

Islands (Bell et al., 2006). The Cayman Islands recently adopted a maximum size 

limit of 60cm (Cayman Islands Government, 2008), the first protection measure of its 

kind in the WCR (Dow et al., 2007). Clearly, in the TCI, a biologically relevant 

management measure is also needed that discourages the capture of large juveniles 

and adult turtles in both species. 

 There is a paucity of up-to-date published information on contemporary small-

scale marine turtle fisheries, data from which inform relevant management practices. 

Current data on the size and structure of this fishery are scarce (Richardson et al., 

2009; Rudd, 2003). With recent turtle fishery closures in the neighbouring Bahamas 

(Fisheries Resources (Jurisdiction and Conservation) Regulations, 2009) and in 

Trinidad and Tobago (Protection of Turtle and Turtle Eggs (Amendment) 

Regulations, 2011), and a prevailing protectionist approach to marine turtle 

conservation within the WCR (see Brautigam and Eckert, 2006; Fleming, 2001; 

Eckert, 2010), there is a clear need to better contextualise and manage the TCI turtle 

fishery. At the invitation of the local government, we undertook a two-year study to 

assess the harvest of marine turtles in TCI. Here we set out to gather data that would 

inform meaningful suggested changes to current management of the turtle fishery. 
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Material and methods 
Study site 
The Turks and Caicos Islands (TCI) is a UK Overseas Territory in the WCR, situated 

at the southern end of the Bahamas (21° 45N, 71° 35W). Intensive monitoring was 

carried out at South Caicos, the main fishing centre of the TCI, with regular visits 

made to the two most populated islands of Grand Turk and Providenciales (Figure 

1). 

 
Study species 
The green turtle (Chelonia mydas) and hawksbill turtle (Eretmochelys imbricata) are 

listed as endangered and critically endangered respectively (IUCN, 2010). Although 

the TCI turtle fishery is regulated by the Fisheries Protection Ordnance (1998), this 

legislation only protects turtle eggs and nesting females on the beaches and turtles 

at sea that are smaller than 20 inches (51cm) carapace length (Richardson et al., 

2006).  

The spiny lobster (Panulirus argus) fishery opens on the 1st August each year 

and is locally known as “the big grab” when maximum landings are made followed by 

a gradual decline until closure, usually on 31st March (Tewfik and Béné, 2004). No 

quota system operates for this fishery.  

The queen conch (Strombus gigas) fishing season runs from 15 October to 15 

July or until the export quota (currently 1.6 million lb. / 0.72 million kg) is reached. 

The queen conch is listed in Appendix II of the Convention on International Trade in 

Endangered Species of Wild Fauna and Flora (CITES) and in order for TCI to 

engage in international trade, the fishery must be managed sustainably. 

 
Monitoring the artisanal turtle fishery and SSF 
Collaboration with fishers facilitated direct counts of hawksbill and green turtles 

landed for local consumption at key fish landing sites, e.g. fish processing plants and 

public boat docks or jetties. Several, but not all personal jetties used by one or two 

fishermen were opportunistically monitored. During a two-year survey period (1 

December 2008 - 30 November 2010) dockside observations were made for 544 

days at South Caicos, 77 days at Grand Turk and 68 days at Providenciales (Table 

1, supplementary Figure S1). A typical dockside observation would last for about 4 
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hours, usually in the afternoon between 14:00 and sunset or until the last boat had 

returned to dock. Only counts of turtles that were butchered are included in the 

analyses; any that were landed and returned to the sea, e.g. perhaps because they 

were undersize and intercepted by government enforcement officers, were excluded. 

Associated information about butchered landings, e.g. location, method of and 

reason for capture, was obtained by informally interviewing fishers. Monthly export 

fishery records of catch (kg) and effort (boat days) of lobster and conch were 

collected by government enforcement officers on workday afternoons at the fish 

processing plants of South Caicos. 

 
Turtle harvest estimation 
We surveyed key landing sites in South Caicos (n=4) on 75% of days during the 

survey period (Table 1, supplementary Figure S1). To compile a complete dataset of 

turtle harvest for each species in South Caicos and to preserve any structure in 

harvest seasonality and yearly differences that might exist in the South Caicos data, 

missing values (days with no dockside coverage) were manually interpolated in a 

hierarchical manner, as follows: 1) We took the mean number of butchered landings 

for a particular day of the week for each month in each year. 2) If, however, there 

were fewer than two days of observations for a particular day of the week in each 

month, we used the mean number of butchered landings for that day of the week 

during its quarterly period of that year. 3) If, however, there were fewer than two 

days (for that particular day of the week) on which data were recorded during its 

quarterly period of that year (e.g. Sundays during parts of the year), we extended the 

search and took the mean number of butchered landings for that day of the week 

during its half-year period of that year. This routine ensured an interpolated mean 

was obtained for each missing value. Interpolations were carried out in MATLAB v. 

2008a. Other interpolation methods were trialled, e.g. linear interpolation and cubic-

splines, but these did not preserve the inherent seasonality. The harvest at South 

Caicos is estimated as the sum of interpolated values and direct counts.  

 We surveyed the key landing sites on Providenciales (n=3) and Grand Turk 

(n=1) for 9% and 11% of the survey period respectively (Table 1, supplementary 

Figure S1), so interpolating missing values for these data was not appropriate. 

Instead, the data from South Caicos were used to inform the likely harvests at these 

other islands. Harvest estimates for these two additional sites were calculated by 
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dividing the sum of turtles landed there by the sum of the proportions of interpolated 

harvest at South Caicos on the 68 and 77 days of survey at Providenciales or Grand 

Turk respectively. The estimated TCI harvest is the sum of the three island 

estimates. All 95% confidence intervals of harvest estimates were taken from the 

percentiles of the distribution of 10,000 randomised estimates, and calculated using 

R v 2.13 (R Development Core Team, 2011).  

 
Size classes of the harvest 
Carapace length of 765 animals (green turtles n=453; hawksbill turtles n=312) from 

the fishery and our in-water surveys was measured to the nearest mm using a 

flexible tape measure along the carapace mid-line from the nuchal notch to the 

longest caudal tip (Curved Carapace Length – CCL, Bolten, 1999). The size of 

harvested turtles combined from throughout TCI was compared (Mann-Whitney U 

test) to those captured during our in-water catch-mark-recapture surveys (see 

Richardson et al., 2009 for details of in-water survey methods and context). We 

considered that adult carapace size was 97cm for green turtles, and 78cm for 

hawksbill turtles, based on mean minimum sizes of nesting females recorded in the 

region (Hirth, 1997; Witzell, 1983).  

Harvested turtles were weighed prior to slaughter (green turtles n=120; 

hawksbill turtles n=79) using Kern digital scales for turtles under 50kg (± 0.05kg) or 

Salter analogue scales for those weighing over 50kg (± 0.5kg). Where turtle weight 

was unknown but size was measured (n=39 green turtles, n=29 hawksbills), CCL 

was converted to weight using power curve parameters (weight = 8.0x10-5.CCL3.07, 

r2=0.98 for green turtles and 6.0x10-5.CCL3.14, r2=0.93 for hawksbills). For each 

species, total annual landing biomass was estimated using an Horvitz-Thompson-

like estimator (Horvitz and Thompson, 1952) by dividing the sum weight of the 

observed and converted harvest by the proportion of these to the estimated annual 

TCI harvest (i.e. green turtles: 159 of 239=0.665; hawksbill turtles: 108 of 

167=0.647). Confidence limits were calculated by multiplying the average harvested 

(observed and converted) turtle weight ±1.96.SE by the estimated annual TCI 

harvest ±95% CI. Edible mass (kg of meat etc.) of a subsample of green turtles (n=7) 

and hawksbill turtles (n=12) was measured by weighing body parts that were going 

to be consumed. Edible mass was plotted against total body weight and the 

parameters from the line of best fit used to estimate edible mass of green (n=159) 
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and hawksbill turtles (n=108) of known and converted weight. The edible mass of the 

annual harvest was calculated as above, by scaling up the average and 95% 

confidence limits of edible mass to the annual harvest estimates.  

 
Seasonality of turtle harvest 
Yearly, monthly and daily patterns of interpolated totals of green and hawksbill turtles 

landed at South Caicos were assessed statistically against the null hypotheses that 

there are no patterns in turtle catch. Research year, month and day of week were 

included as fixed factors with their two-way interactions in three-way crossed 

Permutational Analyses of Variance (PERMANOVAs) using PERMANOVA+ in 

PRIMER v6 (Anderson et al., 2008). Models were carried out on Euclidean distance 

with 9999 permutations of residuals under a reduced model and Type III (partial) 

sums of squares.  

 
Small-scale fishery interactions 
We compared mean turtle catch at South Caicos with lobster and conch fishing 

seasons, survey year and their interactions using two-way PERMANOVAs. Fishing 

seasons were categorised as: both fisheries open, both fisheries closed, lobster 

fishery open (conch closed), and conch fishery open (lobster closed). We used 

generalised linear models (GLMs) with negative binomial errors (using the MASS 

package in R: Venables and Ripley, 2002). Interpolated monthly totals of hawksbill 

and green turtle landings were used as response variables (n=24) and related to 

explanatory variables: survey year, fishing season, conch and lobster fishery CPUE, 

and catch in the other turtle species. CPUE (kg.boatday-1) was used as an 

explanatory variable because catch and effort were strongly collinear (Pearson's 

correlation: Lobster r =0.92; Conch r = 0.96). Minimally adequate GLMs were derived 

by model simplification and Information Criterion (IC) model selection (Akaikes (AIC) 

and Bayesian (BIC)) following stepwise deletion and sequential Chi-squared 

likelihood-ratio tests. Model residuals were checked for autocorrelation and 

conformity to assumptions. 
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Results 
Turtle harvest estimation 
We recorded 194 green turtles and 109 hawksbill turtles landed at the South Caicos 

docks during 544 days of observation in this 2-year study; turtles were landed year-

round on 32% (173 of 544) of the observation days. By interpolating the missing 

days when data were not gathered (186 days over two years), we estimate that 119 

(95% CI: 98 - 140) green and 65 (95% CI: 53 - 77) hawksbill turtles are harvested in 

South Caicos annually (Table 1). At Providenciales, turtles were landed on 18% (12 

of 68) of the days of observation and we estimate the annual harvest to be 38 (95% 

CI: 0 – 109) green and 72 (95% CI: 26 – 177) hawksbill turtles. For Grand Turk 

where turtles were landed on 21% (16 of 77) of the days of observation, an estimate 

of 82 (95% CI: 38 – 128) green and 30 (95% CI: 11 – 61) hawksbill turtles are 

harvested annually (Table 1; Figure 1). The total annual TCI harvest is estimated at 

239 (95% CI: 176 - 324) green turtles, and 167 (95% CI: 114 – 277) hawksbill turtles.  

 
Size classes of the harvest 
Harvested turtles were significantly larger (CCL) than those captured during our in-

water surveys (Figure 2 a & b) (green turtles: n=453, W=12949, P<0.0001; 

hawksbills: n=312, W=4194, P<0.0001). Although harvested green turtles during the 

2-year study were all below the estimated minimum breeding size recorded at 

nearby nesting grounds (>98cm Hirth, 1997), 11% (n=12) of harvested hawksbill 

turtles were within the size of breeding individuals (>78cm Witzell, 1983). Fifty 

percent (n=77) of harvested green turtles and 33% (n=36) of harvested hawksbill 

turtles were below the current legal size limit of 51cm CCL; this does not include 

those released alive by government enforcement officers, as records of these were 

not always kept, and illegal size-classes may have been underreported.  

 Harvested turtles that were weighed ranged between 2.4-67.1kg (n=120) and 

between 5.0-93.0kg (n=79) for green turtles and hawksbills respectively. The mean 

weight (including those converted from CCL) of harvested green and hawksbill 

turtles was 18.8kg (SE=1.2, n=159) and 23.8kg (SE=1.9, n=108) respectively and 

represents 66.5% and 64.7% of the estimated green turtle and hawksbill harvest. 

Approximately 4.48 (between 2.90-6.82) metric tonnes of green turtles and 3.98 

(between 2.30-7.61) metric tonnes of hawksbill turtles were therefore landed 



 53 

annually. There was a linear relationship between edible mass and total weight (r2 = 

0.96, hawksbills; r2 =0.85, green turtles: supplementary Figure S2). The mean 

proportion of edible mass for green turtles and hawksbills was 0.67 and 0.52 

respectively and smaller turtles yielded proportionally more edible mass than larger 

turtles (supplementary Figure S2). This artisanal fishery produced between 1.91-4.29 

(mean 2.88) metric tonnes of green turtle edible mass and between 1.14-3.87 (mean 

2.00) metric tonnes of hawksbill edible mass. 

 
Seasonality of harvest 
Fewer hawksbills were landed in South Caicos in the second year (Pseudo-F1=5.76, 

Pperm=0.017) and the harvest differed significantly by month (Pseudo-F11=3.68, 

Pperm=0.001) and day of the week (Pseudo-F6=5.01, Pperm=0.001). The structure in 

hawksbill harvest is driven by low catches on Sundays (see supplementary Figure 

S3a) and high catches in March, June and August (Figure 3) and contributes to the 

seasonality consistently between years: 2-way interactions were not significant. 

Numbers of green turtle captures were not significantly different between years but 

there was significant structure by month (Pseudo-F11=2.24, Pperm=0.015) and day of 

week (Pseudo-F6=2.28, Pperm=0.04) which were not consistent between years: all 2-

way interactions were significant (Pperm<0.05) (supplementary Figure S3b).  

 
Small-scale fishery interactions 
Hawksbill catch was higher when the lobster fishery was open and the conch fishery 

closed than in other levels of season (Figure 4: PseudoF3=4.49, Pperm=0.009) and 

there was no significant effect of year or interaction. Green turtle catch was largely 

driven by significant differences between seasons in the first year when highest 

catch occurred with the conch fishery open and lobster fishery closed (season: 

PseudoF3=6.82, Pperm=0.007). This pattern was not consistent across years (year; 

PseudoF1=12.84, Pperm=0.003; interaction: PseudoF3=5.76, Pperm=0.007) and in year 

two no apparent differences occurred between seasons.  

 In both years, peak lobster CPUE (kg.boatdays-1) occurred at the opening of 

the lobster fishery (1 August) and declined and stabilised until it closed on 31 March 

(Figure 3 a & b; see supplementary Figure S4 for separate catch and effort plots). 

Parsimonious GLM models indicated that as lobster CPUE increased so did 

hawksbill catch (GLM: &2 LR1=3.73, P=0.05), but green turtle catch declined (GLM: 
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&2 LR1=3.56, P=0.06) (supplementary Figure S5). In 2009 (Year 1: Figure 3a), the 

conch export fishery closed on 6 April because the quota was reached. In this year 

both fisheries therefore closed at around the same time and remained so for four 

months until August. A large peak in green turtle catch in April 2009 was coincident 

with this closure. In 2010 (Year 2: Figure 3b) the conch export quota was not 

reached and the fishery remained open until 15 July creating a period of only two 

weeks when both fisheries were closed. No corresponding peak in turtle catch of 

either species was observed during this time. There is a suggestion that with 

increasing conch CPUE hawksbill catch declines (GLM: &2 LR1=3.09, P=0.08) but no 

evidence of a relationship with green turtle catch (GLM: &2 LR1=1.53, P=0.22) 

(supplementary Figure S5). 
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Discussion 
The mixed SSF of TCI is characterised by the targeted fishing of lobster and conch 

for the export market and the opportunistic catch of several hundred green and 

hawksbill turtles each year for domestic consumption. Our work in TCI illustrates the 

connectivity between multi-species fisheries and artisanal turtle capture, and the 

need to manage turtles as part of a broader approach to SSF management. 

Seasonality of the turtle harvest appears to be driven primarily by fishery 

interactions. For example, hawksbill catch is apparently positively dependent on 

increasing lobster CPUE and inversely related to increasing conch CPUE, and green 

turtle landings decrease with increasing lobster CPUE. This is almost certainly a 

result of the different habitats in which these species are found: lobster and hawksbill 

turtles are most commonly associated with reef habitat, and conch and green turtles 

with shallow seagrass habitats. Peak hawksbill landings occurred in August and 

coincided with the opening of the lobster fishing seasons, and in 2009, peak green 

turtle landings coincided with the closure of both lobster and conch fisheries, 

demonstrating the potential impact that these fisheries have on marine turtle catch. 

Our study is the first, of which we are aware, that empirically relates lobster and 

conch fishing to sea turtle capture. Hawksbill catch, in particular, is significantly 

dependent on the catch and effort of these fisheries and legislative measures need 

to embrace this dependency in order to be effective.  

 
Size classes of the harvest: maximum size limits  
From our data, the capture of large juveniles and adult turtles is of conservation 

concern, in particular for the hawksbill turtle given its critically endangered status 

(IUCN, 2010) and remnant state of nesting populations in the WCR (Blumenthal et 

al., 2009; Bowen et al., 2007). Eleven percent (n=12) of hawksbills landed in TCI’s 

fishery were of adult size (>78cm Witzell, 1983) (Figure 2b) and foraging adult 

hawksbills are known to be present in TCI waters year-round since nesting activity 

has been observed throughout the archipelago in every month of the year (Stringell 

et al., in prep, Chapter 2). Capture of large hawksbill turtles is likely to be driven by 

fisher choice and effort allocation, for example, they are easier to catch than green 

turtles because they are generally less likely to quickly flee from interaction with 
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humans and are frequently encountered at rest under reef ledges where fishermen 

dive for lobsters (Authors’ pers. obs.).  

 Despite being the largest green turtle fishery of the UK OTs (Godley et al., 

2004b), there were few large juveniles and no adults captured in the two years of our 

survey period. The paucity of adult green turtles in the harvest is most likely to be a 

result of a combination of fisher choice and turtle behaviour; fishermen may be 

unwilling to pursue large, fast swimming adult green turtles because they are difficult 

to catch and handle, are possibly costly to catch with respect to fuel used, and 

presumably compete for boat space with more desirable or profitable catches. 

Additionally, the scarcity of adults in the harvest may be due to low abundance of 

foraging adults, and the limited time of the year when breeding adults are present in 

TCI waters: the green turtle nesting season in TCI is seasonal (May-October) 

(Stringell et al., in prep, Chapter 2). Together with the recovery of major green turtle 

nesting rookeries in the region (see Broderick et al., 2006, for review), the impact of 

the TCI fishery on regional green turtle populations is of less concern than that of 

hawksbills. 

 Our in-water surveys tended to catch smaller turtles on average than the 

fishery, probably because our sampling is restricted by safety and logistical 

constraints to shallower habitats where smaller turtles are typically found 

(Blumenthal et al., 2010): fishermen often fish on outer reefs and in deeper water 

habitats. These data probably reflect size-class partitioning in the taxa, where 

increasing body size is coupled with increasing depth (Musick and Limpus, 1997). 

Nevertheless, it is clear that fishers most frequently select juvenile turtles of 

approximately 20kg (or 55cm CCL) and this may be due to several factors: 

abundance of these size classes and rates of encounter, capture effort, and fisher 

choices - taste, processing time and optimal yield of edible mass. Our data suggest 

that turtles of this size yield proportionally more edible mass than larger turtles 

(supplementary Figure S2), and that proportionally more of the green turtle is 

consumed than that of the hawksbill. The take of juveniles of this size for both 

species, however, is likely to be absorbed by the population dynamics without 

detriment to the populations involved (Heppell and Crowder, 1996; Chaloupka, 

2002). 

Moncada et al. (1999) reports that 7% of hawksbill turtles captured in Cuba’s 

historic turtle fishery were sexually mature at 61-65cm straight carapace length and 
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100% at >81cm. We propose an upper size limit of 24 inches (61cm) shell length for 

both green and hawksbill turtles, similar to that of the Cayman Islands and 

deliberately precautionary to protect the age classes of most conservation concern: 

large juveniles and adults of both species (Crouse et al. 1987, Crowder et al. 1994, 

Heppell and Crowder 1996). The suggested size limit received 88% (n=66) support 

from the 75 fishers interviewed in September 2011 (Authors, unpublished data). 

Additionally, because TCI fishers still use imperial measures, it would be relatively 

practical in terms of compliance and enforcement. Although, approximately 50% of 

green turtles and 33% of hawksbills landed in the fishery were undersize (Figure 2) - 

implying either a disregard, a misunderstanding or a sense of biological 

inappropriateness (e.g. Raakjær Nielsen, 2003) of the present minimum size limits - 

consultations with fishers to generate understanding of proposed turtle fishery 

measures indicated almost unanimous support for maintaining a minimum size limit 

and introducing a maximum size limit (Richardson, unpublished data). 

 

Seasonality of harvest: closed season  
The day-to-day structure of turtle harvest likely reflects the general weekly fishing 

pattern of the mixed fishery and is likely driven by cultural influences e.g. Christianity, 

such that there are low catches of hawksbill turtles on Sundays. The seasonality 

results of this study indicate that time-based management controls will affect turtle 

species differently. The presence of all hawksbill size-classes in TCI waters 

throughout the year, hawksbill nesting dynamics and the effect of TCI’s lobster 

fishery provide support for a closed season as an appropriate and additional 

integrated measure that would optimally safeguard threatened hawksbill stocks in 

the region. Regional peak nesting periods for hawksbill turtles (Beggs et al., 2007; 

McGowan et al., 2008; Moncada et al., 1999) broadly coincided with peak landings 

of the species, but not for green turtles (Bell et al., 2006; McGowan et al., 2008; 

Troeng and Rankin, 2005). Breeding/nesting adult hawksbills are present in TCI 

waters throughout the year including the peak reproductive season in October, and 

breeding/nesting green turtles are present seasonally around August (Author’s 

unpublished data). The capture of adult turtles during their reproductive seasons is of 

conservation concern because their removal reduces the ability for the natal 

population to be maintained (Heppell and Crowder, 1996; Chaloupka, 2002), and is 

regulated against in several extant turtle fisheries of the WCR by implementing 
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harvest restrictions during these periods (e.g. Bell et al., 2006; McGowan et al., 

2008; Richardson et al., 2006). 

 We therefore suggest prohibition on all take of hawksbill turtles during the 

eight-month lobster open season (August to March inclusive). This would more-or-

less align TCI legislation with that of other UKOTs in the WCR (Richardson et al., 

2006). Additionally, the greatest market demand is largely for green turtles and thus 

a reduction in take of hawksbill turtles through a closed season is unlikely to 

significantly increase the take of green turtles. However, although the nesting season 

of May to October presents an obvious time period for a potential closed season on 

green turtles in order to protect breeding/nesting adults, breeding size adults are 

rarely taken in the harvest (see also Richardson et al., 2009). A closed season on 

green turtle capture during this period may not be necessary in terms of fishery 

protection, and is unlikely to be supported by fishers (Campbell et al., 2009). At this 

time, we do not propose a closed season on green turtle take, and the introduction 

of, and compliance with the proposed maximum size limit (see later) should protect 

breeding adults from the fishery.  

 
Turtle harvest estimation  
The artisanal marine turtle fishery in TCI is the largest of the UK OTs (Godley et al., 

2004b), and our work confirms it as currently the largest documented legal and 

extant hawksbill turtle fishery in the western Atlantic (Brautigam and Eckert, 2006; 

Fleming, 2001; Godley et al., 2004b; Richardson et al., 2009). Our harvest estimates 

are of the few derived by direct observations (Table 2) while most regional estimates 

are nearly a decade old, and come from fisher interviews, market surveys and 

logbooks, and as such, may be less accurate (Lunn and Dearden, 2006). For 

example, previous harvest estimates for TCI that used fisher interviews (Fletemeyer, 

1983; Godley et al., 2004a; Richardson et al., 2009) had wider uncertainty (Table 2). 

These studies also showed much higher median estimates, which may suggest a 

reduced take since these times, but is more likely simply a result of differing 

sampling effort and technique. Although we are confident in our harvest estimates, 

we acknowledge that these are likely to be conservative and minimum estimates 

because not all fishing docks, especially personal jetties, could be systematically 

surveyed. For example, fishers at North Caicos, Middle Caicos, and Salt Cay 

undoubtedly contribute further to the annual harvest, although the fishing 
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communities here are not nearly as large as those of the three main islands 

surveyed. Additionally, we know that some fishers butcher turtles at sea (Authors’ 

unpublished data), and there is likely to be an unknown level of foreign poaching in 

TCI waters, especially from neighbouring Dominican Republic (Fleming, 2001; 

Richardson et al., 2009); these catches are not included in our estimates because 

we cannot confidently ascertain the extent of these practices.  

 
Quota management  
The fishing community understands the concept of quota because the conch fishery 

is quota managed via Total Allowable Catch (Béné and Tewfik, 2001). However, 

implementing, administering, enforcing and monitoring turtle catch compared to 

quota would require considerable capacity – something that is unlikely to be tenable 

in a limited fisheries department in TCI (Forster et al., 2011). A licensing system with 

personal quota, like the Cayman Islands (Bell et al., 2006), may be an option given 

that all fishermen apply for fishing licences annually, but declaring compliance with 

personal quota would be unlikely. Supporting biological evidence for turtle quota is 

not currently available and the impact of such quota on other fisheries is unknown. 

Therefore, at present we do not advocate quota-based management control 

measures. Further work is needed to address this possibility.  

 
Closure of the turtle fishery  
In many cases where turtle fisheries have been closed, population recovery has 

resulted (Balazs and Chaloupka, 2004; Beggs et al., 2007; Broderick et al., 2006; 

McGowan et al., 2008; Troeng and Rankin, 2005). However, in several WCR states, 

e.g. Anguilla (Godley et al., 2004b), Montserrat (Richardson et al., 2006), BVI 

(McGowan et al., 2008), monitoring the biological and social consequences of 

moratoria or fishery closure has been fiscally challenged and not based on detailed 

study of the turtle fishery itself or as part of a wider multispecies SSF. This is also the 

case for recent turtle fishery closures in the Bahamas (Fisheries Resources 

(Jurisdiction and Conservation) Regulations, 2009), and Trinidad and Tobago 

(Protection of Turtle and Turtle Eggs (Amendment) Regulations, 2011). Our work 

with the fishing community over the study period found that communities throughout 

the TCI strongly contest a ban on turtle catch/fishing, expressing particular concern 

over their removal of artisanal/traditional rights to consume turtles. Compliance with 
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a fishery closure that was unacceptable to the local community, would present 

significant enforcement challenges (Raakjær Nielsen, 2003; Campbell et al., 2009; 

Silver and Campbell, 2005). A fishery closure may also criminalise fishers and drive 

turtle harvest ‘underground’ and increase butchering at sea, making future additional 

monitoring of catch rates impossible. Furthermore, a permanent closure of the turtle 

fishery may impact other fisheries, for example, by increasing the capture of lobster, 

conch, and fin-fish for personal consumption. Further work is needed to establish 

convincing evidence that, in place of other control measures, a closure of the turtle 

fishery would be biologically relevant and socially acceptable. 

 
Conclusions 
In the WCR, the majority of fishers and fisheries are from the SSF sector (Salas et 

al., 2007). It is therefore important to recognise and mitigate the potential 

environmental impacts of SSF in this region, consider the complex socio-ecological 

system associated with SSF (Ostrom, 2009; Liu et al 2007), and to follow the 

building trend to develop ecosystem-based management strategies that promote 

sustainability (Belgrano & Fowler 2011). Our results indicate that incorporating the 

interactions of turtle harvests with mixed SSFs is important to the management of 

turtle fisheries. We demonstrate that the turtle fishery in TCI is closely tied with the 

mixed SSF, which is strongly influenced by fisher behaviour, choices and their social 

environment, an aspect frequently disregarded in fishery management and resource 

exploitation (Hilborn et al., 1995; Ostrom, 2009). We present empirical biological 

evidence that supports simple management measures already used by other turtle 

fisheries in the WCR: the introduction of maximum size limits for both species and a 

closed season on hawksbill take during the lobster fishing season. These measures 

are suggested in addition to the existing provisions and are currently being 

considered by the TCI Government as part of a revision of the Fisheries Protection 

Ordnance.  

Future work could explore a variety of management aspects and tools 

applicable to this SSF, e.g. Total Allowable Catch quotas for sea turtles and their use 

in an adaptive management framework, financial management tools such as fines 

and incentives, multi-species and multi-scale marine management, knowledge use in 

fisheries management, integrated coastal zone management, spatial management 

(MPAs for sea turtles), and adaptive governance and participatory strategies. A full 
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discussion of these is beyond the scope of this paper and outwith the data. However, 

work is currently underway to facilitate a culture of compliance with the new 

suggested management measures. Work with fishers and other stakeholders in TCI 

to explore co-management or community-based management options sensu 

Campbell et al. (2009), has been set up to integrate fishing community concerns and 

opinion in the design and proposed implementation of recommended turtle fishery 

management measures, including those mentioned here. It is envisaged that 

stakeholder participation will be key to effective sustainable management of these 

resources. If these and other measures are incorporated, TCI will become one of the 

most highly regulated sea turtle fisheries in the WCR and one that has strongly 

involved the relevant stakeholders in fishery reform.  
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Table 1. Annual harvest estimates of green and hawksbill turtles landed at South Caicos (SC), Providenciales and Grand Turk 
between 1 December 2008 – 30 November 2010 (Total survey period =730 days). The Turks and Caicos Islands (TCI) estimate is 
the sum of each island estimate. 95% confidence intervals (CI) are percentiles of the distribution of bootstrapped estimates. Data 
are from direct dockside observations. ‘Interpolated no. turtles captured concurrently at SC’ represents the number of turtles (count 
plus interpolated) captured at South Caicos at the same time as observations were made at Providenciales or Grand Turk. These 
values are used in calculating the island harvest estimates (see Methods section 2.4 for details).  

 

 

No. 

survey 

days 

No. 

survey 

days 

when 

turtles 

landed 

Green turtles 

 

Hawksbill turtles 

 Observed 

count from 

all survey 

days 

 

Interpolated 

total (count + 

interpolated) 

Interpolated 

no. turtles 

captured 

concurrently 

at SC  

Annual estimate  

and 95% CI 

Observed 

count from 

all survey 

days 

Interpolated 

total (count + 

interpolated) 

Interpolated 

no. turtles 

captured 

concurrently 

at SC 

Annual estimate  

and 95% CI 

South Caicos 544 173 194 237.02 - 119 (98-140) 109 129.31 - 65 (53-77) 

Providenciales 68 12 8 - 25.12 38 (0-109) 13 - 11.62 72 (26-177) 

Grand Turk 77 16 16 - 23.14 82 (38-128) 7 - 14.89 30 (11-61) 

TCI - - 218 - - 239 (176-324) 129 - - 167 (114-277) 
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Table 2. Comparative reported, legal and substantial (>100) annual turtle harvest 
estimates from several nations in the Wider Caribbean. Harvest estimates for other 
Caribbean nations can be found in Brautigam and Eckert (2006), Fleming (2001), 
and Godley et al. (2004b).* denotes a historical quota. 

 

Country 
Green 

turtle 

Hawksbill 

turtle 

Year of 

survey 

Method of 

survey 
Source 

TCI 176-324 114-277 2008-2010 Direct survey Present study 

 

TCI 236-1128 184-907 2001-2004 Fisher interview Godley et al. (2004a), 

Richardson et al. (2009) 

 

British Virgin 

Islands 

150-450 50-150 2001-2004 Fisher interview Godley et al. (2004b) 

 

 

Cuba  280* 500* 1997* Fishery statistics Carrillo et al. (1999) 

Fleming (2001) 

 

St Vincent 

and the 

Grenadines 

 

148-214 251-347 1995-1999 Fisher interview Grazette (2002) in 

 Brautigam and Eckert (2006) 

 

Grenada 488 294 2001 Fisher interview 

/ market survey 

 

Grazette et al. (2007) 

Nicaragua 11,000 180-280 1993-2002 Direct survey Lagueux et al. (2003) 
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Figure 1. Map and location of the Turks and Caicos Islands. Pie charts show the 
proportion of the estimated annual harvest of hawksbill turtles (light grey) and green 
turtles (dark grey) at each surveyed island and are scaled relative to the estimated 
harvest of both species combined (see Table 1 for values). 
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Figure 2. Size-class (CCL, cm) histograms of curved carapace length of A) hawksbill 
(n= 312) and B) green turtles (n=453) sampled during the 2 year study (December 
2008 to November 2010). Turtles sampled from in-water surveys (light grey) and 
harvested turtles (black) are combined from all islands. Minimum legal size limit 
(51cm CCL) is shown with a dashed line, and likely minimum breeding sizes (see 
text) are indicated with arrows. Photos show juvenile hawksbill (A) and green turtles 
(B) (courtesy of T. Stringell and P. Richardson respectively). 
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Figure 3. Hawksbill (light grey) and green turtle (dark grey) interpolated monthly 
landings at South Caicos during A) year 1: 1 December 2008 - 30 November 2009, 
and B) year 2: 1 December 2009 - 30 November 2010. Fishing CPUE (kg.boat days-

1) for lobster (filled circles and solid line) and conch (open circles and dashed line) 
export fisheries at South Caicos are superimposed. 
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Figure 4. Green turtle (dark grey) and hawksbill turtle (light grey) harvest at each of 
4 categories of conch and lobster fishery seasons at South Caicos. Closed and 
Open categories refer to both fisheries together. ‘Conch Open’ represents periods 
when the conch fishery is open and lobster fishery closed, and vice versa for 
‘Lobster Open’. Data from December 2008 to November 2010 (24 months). 
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Chapter 1: Supplementary Information 

 
 
Figure S1. Dockside survey coverage (days) of South Caicos, Grand Turk and 
Providenciales. 
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Figure S2. Turtle edible mass and total weight relationships. Equation on left refers 
to green turtles (black filled circles, n=7) and the equation on right for hawksbill 
turtles (grey filled circles, n=12). Slope and intercept values were used to calculate 
the edible mass from the total harvest. The dashed line (y=x) is shown for 
comparison. 
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Figure S3. Interpolated sum of hawksbill turtles (A) and green turtles (B) harvested 
in South Caicos by day of the week. Year 1: 1 December 2008 – 30 November 2009 
(light grey); Year 2: 1 December 2009 – 30 November 2010 (black). 
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Figure S4. Hawksbill (light grey) and green turtle (dark grey) interpolated monthly 
landings during A) year 1: 1 December 2008 - 30 November 2009, and B) year 2: 1 
December 2009 - 30 November 2010. Fishing catch (metric tonnes; circles) and 
effort (boat days; triangles) for lobster (filled symbols and solid line) and conch (open 
symbols and dashed line) export fisheries at South Caicos are superimposed.  
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Figure S5. The number of hawksbill (A and B) and green turtles (C and D) harvested 
per month during the 2-year study period against lobster and conch CPUE (kg.boat 
days-1) at South Caicos. Lines indicate marginally significant negative binomial GLM 
fits and 95% confidence intervals (A, P=0.05; B, P=0.08; C, P=0.06; D lines not 
shown, P=0.22). Point shape and colour represent fishing season and survey year 
factors. 
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Abstract 
Fishing has played a dominant role in almost every marine ecosystem, and caused 

widespread declines in stock abundance. The reduction of sea turtle populations 

from historical levels is widely known; they are particularly sensitive to exploitation 

because of life-cycle traits such as longevity and natal philopatry. The take of nesting 

females is a key conservation concern and globally has led to concentrated efforts to 

protect this life stage. In the Turks and Caicos Islands (TCI, UK Caribbean Overseas 

Territory), the legislation provides protection to nesting turtles when they are on the 

beach but in the water they are subject to regulated take. Here, adults of both green 

(Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles are harvested in the 

TCI, and the hawksbill fishery is estimated to be one of the largest in the western 

Atlantic. There is a clear need to better contextualise this fishery in order to improve 

regulation and provide more effective protection for breeding adults. We undertook a 

two-year study and a combination of nesting beach and in-water surveys, molecular 

analysis, satellite tracking and collation of fisheries landing data to investigate the 

seasonality and structure of breeding populations of green and hawksbill turtles in 

the TCI. We estimate that the current nesting populations in TCI have greatly 

diminished since the 1980s, perhaps as a result of the legal take of adults. Using 

these multiple lines of evidence, we highlight the inadequacies of the current 

regulations in TCI and recommend specific legislative changes employed elsewhere 

that could improve the management of this traditional turtle fishery and protect 

breeding adults.  
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Introduction 
Fishing has played a dominant role in almost every marine ecosystem, with 

numerous species overexploited and greatly reduced (Myers & Worm 2003, Pauly et 

al. 2005, FAO 2010). Sea turtles are no exception, and their reduction from historical 

abundances is widely known, particularly in the Caribbean region (Jackson et al. 

2001, McClenachan et al. 2006).  

 Sea turtles are sensitive to exploitation because they are late maturing, exhibit 

natal philopatry, lay eggs on land and, in most species, their life-cycle involves 

migrations and distinct life stages where habitats and locations are partitioned 

(Crouse et al. 1987, Crowder et al. 1994, Heppell & Crowder 1996, Fitzsimmons et 

al. 1997). This results in genetically differentiated populations that occupy broad 

marine regions - often entire ocean basins - and cross international boundaries 

(Bowen & Karl 2007). Conservation of such wide ranging species is, therefore, 

complex and may often involve a multitude of stakeholders and nations that have 

differing regulatory and management frameworks, and cultural, traditional and 

economic values (Frazier 2002, Blumenthal et al. 2007, Hawkes et al. 2012). Despite 

this complexity, management at the country level rather than multilateral agreements 

has been suggested as one of the most important steps towards regional 

conservation (Moncada et al. 2012). 

 Exploitation of nesting females from natal rookeries can quickly cause 

population declines (Bell et al. 2006, McClenachan et al. 2006, McGowan et al. 

2008, Kittinger et al. 2013) and protection of nesting rookeries has consequently 

been one of the tenets of sea turtle conservation and has led to recovery in some 

exploited populations (Bjorndal et al. 1999, Troëng & Rankin 2005, Dutton et al. 

2005, Broderick et al. 2006, Richardson et al. 2006, Beggs et al. 2007, Marcovaldi et 

al. 2007, Chaloupka et al. 2008, Allen et al. 2010). There are, however, many 

rookeries that have not been entirely extirpated but remain small, particularly in the 

Caribbean where there is a call for a renewed conservation focus on remnant 

nesting populations, especially for the hawksbill turtle (Eretmochelys imbricata) 

(McClenachan et al. 2006, Mortimer & Donnelly 2008). Indeed, Leroux et al. (2012) 

call for the genetic characterisation of smaller and unsampled hawksbill rookeries in 

the Wider Caribbean Region and suggest that all hawksbill rookeries be treated as 

distinct management units, because of their potential to maintain regional genetic 



82 

diversity. Similarly, Shamblin et al. (2012) call for further investigation of small, 

remnant green turtle rookeries in the Caribbean to further elucidate their importance 

in regional stock demographic connectivity.  

 In some Caribbean nations, legislation regulating the remaining legal turtle 

fisheries provides minimum size limits that prohibit take of juveniles and permit take 

of larger size classes (Fleming 2001, Brautigam & Eckert 2006, Richardson et al. 

2006). Such regulations were inherited from fisheries legislation where minimum 

landing size is commonly used, but for long-lived species such as marine turtles, 

protection of large juveniles and reproductive adults is critical to their recovery (Carr 

et al. 1982, Crouse et al. 1987, Crowder et al. 1994, Heppell & Crowder 1996). Four 

of the six UK Overseas Territories in the Wider Caribbean Region still permit the take 

of turtles (Godley et al. 2004). Of these, the Cayman Islands has recently amended 

its legislation to protect larger turtles by establishing a maximum size limit and an 

extended closed season (Cayman Islands Government 2008, Blumenthal et al. 

2010). In the British Virgin Islands, Montserrat and the Turks and Caicos Islands, 

minimum size limits remain in the national legislation regulating these turtle fisheries 

(Richardson et al. 2006).  

 The Turks and Caicos Islands (TCI) turtle fishery is regulated by the Fisheries 

Protection Ordinance (Government of the Turks and Caicos Islands 1998). This 

legislation prohibits the take of any turtle above the low-water mark (i.e. nesting 

females) and prohibits the possession, purchase or sale of ‘laid’ turtle eggs (see 

Richardson et al. 2006 for review). The minimum size limit at which it is legal to 

harvest green and hawksbill turtles is ‘20 inches in length measured from the neck 

scale to the tail piece’ or a weight of at least 20 lbs. Turtles of other species can only 

be taken if they weigh at least 20 lbs. There is no closed season and fishers are 

legally entitled to remove an unlimited number of turtles larger than these minimum 

size limits if caught at sea at any time of the year.  

Currently, little is known about the magnitude or seasonality of the green turtle 

(Chelonia mydas) and hawksbill turtle rookeries of the TCI, but they are thought to 

be remnants of past populations that were subject to regular harvest (Richardson et 

al. 2009). The legal turtle fishery that exists here may still be a threat to existing 

populations and be impacting recovery of both species. TCI’s hawksbill fishery is 

thought to be one of the largest in the western Atlantic and the take of breeding 

adults is a conservation concern (Stringell et al. 2013, Chapter 1).   
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 There is a clear need to better understand the dynamics of the nesting 

populations in order to inform future management of the traditional turtle fishery in 

the TCI. At the invitation of the local government, we set out to gather data with a 

view to making empirically based recommendations. We undertook a two-year study 

to examine seasonality and structure of breeding in green and hawksbill turtles 

nesting in the TCI and assess these patterns in relation to the fishery. In this 

multidisciplinary study, we combine observations of the magnitude and spatio-

temporal patterns of marine turtle nesting activity, the presence of adults in TCI 

waters through captures by the fishery, from in-water surveys and satellite tracking 

and genetically characterise the sea turtle rookeries of TCI using mitochondrial DNA. 
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Methods 
Study Site 

The Turks and Caicos Islands (TCI) are located at the southeastern end of the 

Bahamas chain (21° 45N, 71° 35W). The low-lying archipelago consists of eight 

main islands and numerous smaller cays, covering approx. 950km2 at low-tide. The 

majority of the human population lives on the three islands of Grand Turk, 

Providenciales and South Caicos. The economy of TCI is driven principally by 

tourism, offshore finance and fishing. The spiny lobster (Panulirus argus) and queen 

conch (Strombus gigas) make up the majority of the fisheries for the export market 

(Béné & Tewfik 2001, Tewfik & Béné 2004). Sea turtles are captured largely 

opportunistically and usually for personal consumption, although there is limited 

directed take for commercial sale and export is prohibited (Richardson et al. 2009). 

The islands surround a shallow, sandy and productive habitat which is generally 

fringed by mangroves and creeks, and provides a rich complex of regionally 

significant foraging habitat for juvenile and adult sea turtles (Richardson et al. 2009), 

including some from other Caribbean states (Van Dam et al. 2008, Richardson et al. 

2010, Hawkes et al. 2012). Most outlying cays and ocean facing beaches appear to 

be suitable for nesting habitat and they are mostly fringed with coral reefs.  

 

Nesting surveys 

During a two-year period from 5 December 2008, 162 surveys were carried out 

opportunistically at 34 beaches around the islands (Figure 1). Due to the logistical 

constraints and distances involved in covering the archipelago, frequent and regular 

nesting surveys of all locations were not possible. Instead, surveys were designed to 

offer approximate rather than absolute insights into magnitude and spatio-temporal 

nesting patterns and, therefore, represent minimum counts. Several sites (e.g. Bush 

Cay, Fish Cay, East Caicos), previously considered key nesting sites (Richardson et 

al. 2009), were visited relatively frequently (usually every month). Beaches were 

searched on foot, except for a few occasions when boat-based beach passes were 

carried out and landings were made when signs of turtle activity were observed. 

Adult tracks were counted and classified as nesting or non-nesting emergences, and 

identified to species following standard protocols (Schroeder & Murphy 1999). 

Hatchling tracks were also recorded and nest contents excavated to confirm species 
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and obtain tissue vouchers for molecular analysis. Tracks and nest contents were 

aged as accurately as possible and if hatched nests could not be matched to laying 

events, we estimated the date the clutch was laid (by subtracting the average 

incubation period in days: hawksbill: 67 ±8.8days, n=7; green 62 ±2.5 days, n=4; this 

study).  After data were collected, tracks were erased, nests marked and 

photographed, and locations and GPS positions recorded.  

 Using Marine Turtles Time Series (MTTS) software version 3.1.9 (Girondot 

2010), which fits a negative binomial distribution to temporal data of nest counts, we 

estimated the annual number of clutches laid by each species. To provide a 

comparison to historical estimates of the number of females nesting annually 

(reported in Fletemeyer 1983), we divided the annual nest counts by the regional 

average number of nests/season/female (=3 nests/female Seminoff 2004, Mortimer 

& Donnelly 2008) recorded elsewhere. 

 

Adults from the fishery and in-water surveys 

Over the two-year study, intensive monitoring of the TCI marine turtle fishery was 

carried out at South Caicos, Grand Turk and Providenciales. We directly observed 

hawksbill and green turtles landed for local consumption at fish landing sites, fish 

processing plants and local boat docks or jetties. For more comprehensive detail 

regarding the turtle fishery see Stringell et al. (2013) (Chapter 1). An extensive in-

water capture-mark-recapture programme was also carried out during the study 

period where turtles were captured via a combination of “free-diving” and “rodeo-

style” methods (Ehrhart & Ogren 1999) from surveys by boat at locations frequented 

by fishermen (see Richardson et al. 2009 for methods). 

 Curved carapace length (CCL, notch-tip: Bolten 1999) was measured in turtles 

captured in the fishery and from in-water surveys. Hawksbill turtles of >78cm CCL 

and green turtles of >97cm were considered potential adults based on regional 

average minimum sizes of nesting females (Witzell 1983, Hirth 1997). Here, reported 

minimum straight carapace lengths (SCL) were converted to CCL using the following 

corrections, based on measurements of 284 hawksbill turtles and 386 green turtles 

sampled during the two-year survey: CCL=1.067 x SCL - 0.0074 (hawksbill turtles; 

R2=0.99), and CCL=1.0675 x SCL - 0.3636 (green turtles; R2=0.99). Animals 

captured in the fishery that were of this potential adult size were examined to 

determine sex and stage of maturity through gross examination of the gonads (e.g. 
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by observing presence of follicles, corpora lutea, corpora albicantia and thick walled 

oviduct in mature females; and presence of cylindrical testes, pendulous epididymi 

and well developed accessory ducts in mature males: Miller & Limpus 2003) and 

secondary sexual characteristics (long prehensile tails and strongly curved claws are 

characteristic of sexually mature males, and a soft, or decornified, plastron develops 

in sexually active males during the breeding season: Wyneken 2001). We used 

these fishery-based minimum sizes at maturity to classify adult-sized turtles captured 

during our in-water research, where no internal examination of gonads was possible. 

Turtles that were verified as mature or larger than the minimum size at maturity were 

hereafter classified as adults. 

 

Satellite tracking 
As part of a larger study, we attached Sirtrak Kiwisat 101 satellite transmitters to two 

adult female green turtles and five adult hawksbill turtles (two females, three males) 

captured in TCI waters (five by fishermen, two by the survey team). The transmitters 

were attached directly to the highest point of the carapace using two-part epoxy after 

biometric measurements and samples were taken. The transmitters and attachment 

were painted with anti-fouling paint. All transmitters used in this study were 

programmed with a 24 hour-on duty-cycle, and were controlled by a saltwater switch. 

 Location data were received from Service Argos and the online Satellite 

Tracking and Analysis Tool (STAT: Coyne & Godley 2005) was used to manage the 

data. A speed filter was used that removed locations suggestive of minimum travel 

speeds greater than 5 km.h–1. Argos location class data A, B and 1-3 were examined 

to determine the duration of tracking, nesting and internesting activities, and site 

residency. Positional data and movements were reconstructed using only location 

classes 1-3. Nesting emergences were determined from interpretation of the 

telemetry data, using the location class, distance from shore, depth and temporal 

criteria described in Tucker (2010) and, where possible, used in combination with 

ground-truthing via subsequent beach patrols. Migration tracks were discriminated 

and separated from site residence / foraging ranges by displacement distances from 

point of release and visual assessment. Foraging site location centroids were 

determined by calculating the mean latitude and longitude values from resulting 

residence site location data. To assess internesting and foraging home ranges 

(areas that accommodate all regular activities of individuals: Hawkes et al 2011), 
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gaussian kernel density estimates, 90% volume contours and minimum convex 

polygons (MCP) were calculated from foraging location classes 1-3 using Hawth’s 

Tools in ArcGIS 9.2 (ESRI). Home range sizes (km2) were calculated from areas of 

MCPs, which, for each turtle, represents the smallest polygon to encompass all 

foraging locations.  

 

Genetics  
Skin, muscle and blood samples from adults landed in the fishery, captured in-water 

or on the nesting beach and from dead hatchlings were collected and stored in lysis 

buffer until DNA extraction at University of Exeter laboratory in UK. Phire Animal 

Tissue and Phusion Blood Direct PCR kits (Finnzymes ThermoFisher) with 

LCM15382 and H950g primers (Abreu-Grobois et al. 2006) were used to extract and 

isolate approximately 830bp fragments of the D-loop control region of mitochondrial 

DNA (mtDNA). PCR products were analysed on an ABI 3730xl DNA Analyzer 

(Applied Biosystems) at Macrogen Europe (Netherlands). Sequences were aligned, 

edited and analysed using Geneious Pro version 5.1 (Biomatters: 

http://www.geneious.com/ ) and haplotypes assigned based on reference sequences 

from GenBank (http://www.ncbi.nlm.nih.gov/), the Archie Carr Center for Sea Turtle 

Research website for green turtles (http://accstr.ufl.edu/cmmtdna.html), and Abreu-

Grobois (pers. comm.) for hawksbill haplotypes (see also Leroux et al. 2012). 

Haplotype sequences were truncated to 481bp and 740bp for green and hawksbill 

turtles respectively. Unknown haplotypes were re-extracted, re-sequenced and 

checked thoroughly against all possible sources. 

 Haplotype diversity (h) and nucleotide diversity (!) were calculated in the 

software Arlequin v. 3.5 (Excoffier & Lischer 2010). To test whether male breeding-

condition hawksbills and nests were genetically similar, differences in haplotype 

frequencies were tested with Exact tests of population differentiation (with 100000 

permutations and 10000 dememorisation steps), and pairwise FST statistics (P 

values from 10000 permutations) using Arlequin. The small sample size of green 

turtles precluded us from making genetic comparisons between adults and 

hatchlings. Comparisons of haplotype frequencies between TCI and other regional 

rookeries are given in Stringell et al (2013; Chapter 4). 
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Results 
Spatio-temporal patterns 

Hawksbill nesting distribution was almost entirely restricted to the eastern islands of 

TCI particularly on uninhabited cays and coasts (Figure 1a), whereas green turtle 

nesting distribution appeared to be more widespread, with evidence of activity on 

Atlantic coasts of Providenciales and North Caicos in addition to the more sheltered 

Isles (Figure 1b).  

 Of 208 records of turtle activity (non-nesting emergences, nests, hatched 

nests), the majority (79.8%) were from hawksbill turtles (n=166) (Figure 2). On 

average across the TCI, adult nesting emergence (proportion of emergences 

resulting in nests) was 38% for hawksbill turtles and 50% for green turtles. 

 Hawksbill turtle nesting activity occurred all year round (Figure 2a) whereas 

green turtle nesting activity was seasonal with nesting only recorded from May-

October (Figure 2b). Survey effort (Figure 2c) was minimal in January and May due 

to logistical constraints, however turtle activity was evident in these months due to 

inferred lay date from hatched nests or the age of tracks, although no fresh nests 

were observed.  

 

Magnitude of nesting 

We recorded a total of 55 hawksbill turtle and 22 green turtle nests (including 

hatched nests) during the entire survey period (Figure 2). From 35 and 16 hawksbill 

turtle nests recorded in 2009 and 2010 respectively, we estimate that 167 (95% CI: 

150-185) and 113 (95% CI: 107-120) clutches were actually laid during each of these 

years in the surveyed beaches of TCI.  Averaging these values provides a 

conservative estimate of 140 (range 107-185) hawksbill turtle nests per year. For 

green turtles, we recorded five and 17 nests in 2009 and 2010 respectively, from 

which we estimate 27 (95% CI: 6-47) and 64 (95% CI: 40-87) clutches were actually 

laid.  Averaging these values gives an estimate of 46 (range 6-87) green turtle nests 

per year. Using the assumption that female turtles lay on average three clutches per 

year (Seminoff 2004, Mortimer & Donnelly 2008), we estimate the population of 

nesting turtles in TCI to be 47 (36-62) hawksbill turtles and 15 (2-29) green turtles 

per year. 
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Adult captures 
Out of 18 captures of potential adult hawksbill turtles (>78cm CCL), 14 were verified 

as sexually mature (i.e. adults). The average size at maturity for hawksbill turtles was 

89.1cm CCL (range 84.7 ! 92.2, n=7) for females, and 84.6cm CCL (range 81.6 ! 

90.5, n=7) for males. All mature males had a tail length of >30cm that extended well 

beyond the margin of the carapace. Adult hawksbill turtles (n=14) were captured in 

the fishery (n=5) or during in-water surveys (n=9) throughout the year (1-3 turtles 

each month except January, April, Jun and August when no landings were 

observed), with most captures (2-3 per month) around the peak nesting period 

between September and November (Figure 2A), although two adults were also 

landed in February. One was landed by fishers in Providenciales (TCI) in October 

2010, and was bearing flipper tags that had been attached after the turtle nested in 

Barbados in October 2008 (J. Horrocks, WIDECAST pers. comm. 2010). In addition 

to the turtles landed during the study period, fishers in Providenciales landed another 

flipper tagged adult female hawksbill in February 2012 (not included in this study) 

that had been tagged whilst nesting in Jumby Bay Antigua in July 2003 (J. Horrocks, 

WIDECAST pers. comm. 2012).  

 Green turtles (n=2) were captured and sampled in June and September, 

during the nesting season for this species in TCI (Figure 2B). Both were mature 

females, one that was captured foraging in TCI waters and probably nested in 

Barbuda (Richardson et al. 2010) and one that nested in TCI. 

 

Satellite tracking 
All five satellite tracked adult hawksbill turtles remained in TCI waters for the duration 

of their tracking (between 38 and 1327 days; see Table 1, Figure 3) showing fidelity 

to specific areas. Residency centroids calculated for one female hawksbill turtle and 

the three male hawksbill turtles were located between 2.5 km and 4 km from their 

release sites (Table 1). Hawksbill turtle EiF2 (nest locations shown in Figure 3E), 

was fitted with a transmitter after it nested on Fish Cay on the 30 June 2009. She 

was tracked for 38 days before being found stranded dead on Fish Cay on the 08 

August 2009. During that time her tracking data suggested she nested once again on 

nearby Big Ambergris Cay, which was confirmed by beach patrols the following 

morning.  A post-mortem found no determinate cause of death and since she nested 

again after tag deployment it is unlikely that she was harmed by the attachment. As 
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we have no idea when or why she died, data was considered uninformative and 

removed from analysis of tracking data). In contrast EiF1 was tracked for over three 

years after it was captured on Philips Reef approximately 6.5 km east of East Caicos 

on 12 October 2009. The turtle was released the next day off the eastern shore of 

East Caicos, and by the 01 December 2009 the turtle had moved westwards to 

inshore waters on the north coast of East Caicos (see Figure 3D). Here the tracking 

data suggests that the turtle laid five clutches of eggs before settling back on Philips 

Reef on the 24 January 2010. The turtle returned to the north coast of East Caicos 

the following year (04 October 2011) and laid another five clutches before returning 

to Philips Reef on the 01 January 2012, where it remained at the time of writing 

(February 2013). This turtle exhibited A3 post-nesting behaviour (local residence: 

Godley et al. 2008).  

 The two satellite tagged green females appeared to be seasonally present in 

TCI waters (Figure 3A). Turtle CmF1 was captured by fishers on the 30 June 2009 in 

sea grass habitat in coastal waters north of East Caicos. This turtle was released 

within 10 km of the capture site the next day and subsequently tracked for 317 days. 

The turtle travelled back to inshore waters north of East Caicos where it remained for 

61 days. It then travelled away from TCI and undertook a migration to Barbuda, 

where tracking data suggest it may have nested once, before eventually returning to 

settle back in the same inshore waters of East Caicos, TCI on the 27 January 2010 

(see Richardson et al. 2010 for an account of the movements of this female). Turtle 

CmF2 was tagged after nesting on Gibbs Cay on 12 September 2010 and tracked 

for 96 days. The turtle exhibited A1 post-nesting behaviour (oceanic and/or coastal 

movements to neritic foraging grounds) typical of green turtles (Godley et al. 2008). 

The turtle migrated away from TCI waters on the 16 September 10, travelled through 

oceanic and coastal waters before settling in coastal waters south of St Croix, USVI 

by the 01 October 2010, approximately 780 km straight-line distance from Gibbs 

Cay, where it remained until transmissions ceased on the 17 December 2010.   

 

Genetics 
We successfully sequenced the samples from the two satellite tracked adult green 

turtles, hatchlings from four green turtle nests and 22 hawksbill turtle nests, and 12 

adult hawksbills, of which eight had likely bred in TCI (two females, six males, 

including all satellite tagged animals). Combining these adult hawksbill turtle ‘TCI 
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breeders’ and hatchling samples, taking into account the haplotype frequency 

adjustments for sequenced mother and hatchlings to avoid the possibility of pseudo-

replication, a total of eight hawksbill turtle haplotypes were recorded (Table 2), one 

of which (EiA81) is so far unique to the TCI nesting population. Haplotypes EiA03 

and EiA27 were found only in ‘TCI breeding’ males and not in any of the 22 nests 

(Table 2). No significant differences were found between haplotype frequencies of 

male hawksbill turtles and hatchlings (Pairwise FST=0.067, P=0.113; Exact test 

P=0.126), although we note the small sample size. The hawksbill turtle rookery had 

a haplotype diversity of h=0.407 ±0.128, and nucleotide diversity of !=0.003 ±0.002.  

 Both green turtle adults and the four nests of hatchlings were found to be of 

CmA3 and CmA64 haplotypes, the latter from a nest on Providenciales and the only 

source rookery record to date. Haplotype diversity and nucleotide diversity were 

calculated as 0.500 ±0.265 and 0.001 ±0.001 respectively. 
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Discussion  
Our data confirm that the Turks and Caicos Islands provide foraging habitat year-

round for locally breeding and foraging adult hawksbill turtles and for adult green 

turtles that likely breed elsewhere. While breeding adult hawksbill turtles are present 

in the waters of TCI all year and thus are vulnerable to capture by the turtle fishery, 

the more locally scarce breeding green turtles are probably more seasonal, being 

recorded only between May – October in the present study and likely move out of 

TCIs waters during the non-breeding months.  The estimated nesting populations are 

small (47 hawksbill and 15 green turtles/year) and probably represent remnant 

rookeries (Richardson et al. 2009, McClenachan et al. 2006).  Although, the nesting 

surveys did not include all possible nesting beaches, which may have increased the 

total estimated number of nesting turtles, our assumed average clutch frequency 

estimates could have been low in comparison to satellite derived estimates (Rees et 

al. 2010, Tucker 2010, Weber et al 2013), which would have led to estimates of the 

nesting populations that would be smaller than estimated here. Additionally, for both 

species, unique or rare haplotypes have been recorded within the breeding stock of 

TCI, and are therefore of considerable interest and conservation concern 

(McClenachan et al. 2006, Leroux et al. 2012).  

 Although the traditional turtle fishery largely captures juvenile turtles, individuals 

from breeding populations in TCI, as well as adult turtles from populations breeding 

elsewhere are legally captured. The current Fisheries Protection Ordinance does not 

protect breeding-size individuals from TCI or the Wider Caribbean Region. In the 

following sections we discuss the utility of this study data in revising existing 

legislation to introduce seasonal closures and maximum size limits for the current 

fishery. 

 

Rookery genetics  

Despite the small size of TCI rookeries, the unique or rare haplotypes recorded in 

both green and hawksbill turtle populations by this study highlight the importance of 

protecting such relictual populations in order to maintain regional genetic diversity 

(Leroux et al. 2012, Shamblin et al. 2012). The hawksbill EiA81 haplotype found in 

an East Caicos nest is so far unique to the TCI nesting population and undescribed 

from Caribbean foraging grounds.  The EiA13 haplotype from a nest on Gibbs Cay in 
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the Grand Turk region has previously only been found in nests from Cuban rookeries 

(Leroux et al. 2012). Haplotype and nucleotide diversity of the hawksbill rookery (see 

Table 2) is similar to other Caribbean rookeries (see Stringell et al. in prep., Chapter 

4), with EIA11 being one of the most prevalent in the region (Leroux et al. 2012). 

Haplotypes EiA01, EiA13, and EiA81 were found only in the nest samples, thus 

appear to be representative of breeding females. Two haplotypes (EiA03 and EiA27) 

were found only in breeding males and may indicate that these individuals, although 

clearly in breeding condition, may not be originally of TCI stock; EiA03 has been 

described from rookeries in Antigua, US Virgin Islands and British Virgin Islands 

(BVI), and EiA27 from rookeries of Montserrat and BVI (Leroux et al. 2012, Formia et 

al. unpublished). The extended time in which these males were in TCI waters (e.g. 

>640 days of satellite tracking) however would imply residency. The frequencies of 

breeding males and nest haplotypes were genetically similar, suggesting that they 

might be part of the TCI rookery. With small sample sizes, however, it is difficult to 

draw compelling conclusions; further work is required to establish whether these 

‘male’ haplotypes are represented in TCI nests.  

 To our knowledge, the TCI represents the only known source rookery for the 

green turtle haplotype CmA64. Prior to this study, it has been found only in a single 

foraging green turtle juvenile captured in Indian River Lagoon, Florida (Shamblin 

pers. comm. 2012). With only four green turtle nests sampled, it is infeasible to 

compare haplotype and nucleotide diversity to other rookeries in the Greater 

Caribbean (e.g. Bjorndal et al. 2005); further work is needed to genetically 

characterise the green turtle rookery of TCI. Better protection of adult turtles in TCI 

waters than is currently afforded by the regulations is therefore required to facilitate 

recovery of the small but genetically diverse populations breeding in TCI.  

 

Nesting seasonality and magnitude 

This work highlights the challenges involved in monitoring low-magnitude nesting in 

an extensive archipelago. Considerable investment of both time and money would 

be required to monitor nesting thoroughly (e.g. SWOT Scientific Advisory Board 

2011 gold standard). In the UK Overseas Territories in the Caribbean, where 

conservation managers are financially constrained (Forster et al. 2011), but have 

responsibility to manage minor turtle nesting populations, such as TCI, these 

exacting standards are likely to be untenable. Broad insights can be gained from 
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simple visual assessments of seasonality, especially in situations with highly 

irregular and partial nest counts, and are probably sufficient for recommending 

conservation measures. This study suggests that conservation decisions do not 

necessarily require massive investment in biological research to provide sufficient 

insight for sensible and realistic recommendations. 

Nesting by hawksbill turtles was recorded year round in TCI, peaking in 

October, while green turtle nesting peaked in August but occurred between May-

October.  This is consistent with nesting patterns in neighbouring Caribbean nations 

(Bjorndal et al. 2005, Velez-Zuazo et al. 2008).  Although the magnitude of nesting 

activity can vary substantially between years (Broderick et al. 2001), the timing of the 

peak, and duration of the nesting seasons is usually relatively conservative between 

years (Jackson et al. 2008), characteristics we used to our advantage by steering 

our survey design on gaining a better understanding of the nesting seasonality in TCI 

rather than nesting magnitude. Nevertheless, we approximated the relative 

magnitude of nesting in both green and hawksbill turtles using the MTTS software 

with the caveat of high expected variation, as reflected, for example, in the wide 95% 

CI of hawksbill turtle nesting estimate of 2009 as a consequence of the low number 

of nests that year and the resulting uncertainty in model fit. We assert that the annual 

estimates should be considered cautiously for reasons given previously and because 

only two years of data were collected - a small time frame for species with large 

interannual nesting variation (Broderick et al. 2001). However, the software 

modelling assumptions are considered well suited for partial survey data such as 

these (Girondot 2010).  

In July 1982, a brief survey of TCI nesting turtle populations was carried out 

(Fletemeyer 1983) and provides an historical comparison, albeit with high 

uncertainty, of between 125 and 275 nesting hawksbills and 45 to 105 nesting green 

turtles (although the estimation technique was not given). This suggests that the 

current population may be considerably smaller than that in the 1980s. Given the 

small size of the current breeding populations of marine turtles in TCI, especially in 

the context of these larger historical numbers, the take of reproductively valuable 

adults - in particular the higher number of hawksbill turtles taken over this two-year 

study - is likely to be affecting the recovery potential of these populations. 
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Adult size and captures 

In August 2012, after this study was completed, a female green turtle with shelled 

eggs in its ovaries and measuring 90.3cm CCL was captured for consumption in 

Middle Caicos. This adult turtle was considerably smaller than the adult green turtles 

captured during the study period. However, the smallest nesting green turtle size 

reported in the region was 73.5cm CCL (converted from 69.2cm SCL) from 

Tortuguero, Costa Rica (Hirth 1997). In hawksbills, minimum size at maturity has 

been described in females harvested in Cuba as small as 54-59cm CCL (converted 

from 51-55cm SCL) and in males at 65-67cm SCL (Moncada et al. 1999) contrary to 

general sexual dimorphism patterns, where males are typically about 5cm smaller 

(Witzell 1983, Limpus 1993, Hirth 1997). Meylan et al. (2011) compared green turtle 

biometric and laparoscopy data across study sites which revealed significant 

overlaps in size ranges of immature and mature turtles among and within sites and 

highlighted the difficulties of using size alone to determine maturity. Even though the 

green turtles we sampled in this study were sexually mature, the use of a size 

threshold (e.g. 97cm) to classify turtles as adults should be treated with caution. 

 

Management implications: closed seasons  

Elsewhere in the Wider Caribbean Region, closed seasons have been introduced 

into legislation that prohibit take of turtle species during a specified time, usually 

coinciding with the breeding seasons. For example, take of turtles is prohibited in the 

Cayman Islands between April and November (Cayman Islands Government 2008), 

a period which includes the time when breeding adult turtles arrive in Cayman waters 

and the nesting seasons for loggerhead and green turtles (Bell et al. 2007). A similar 

closed season is included in the British Virgin Islands legislation, which 

encompasses the nesting season for green turtles and most of the hawksbill turtle 

nesting season (Richardson et al. 2006, McGowan et al. 2008). A similar approach 

could be adopted in the TCI through the introduction of a closed season that covers 

both the green turtle nesting season and peak nesting of hawksbill turtles. However, 

the introduction of what may essentially be a ban on turtle capture lasting eight 

months or more may not be acceptable to the broad collective of stakeholders who 

currently have year-round use of turtles or be necessary in terms of stock 

sustainability (Crouse et al. 1987, Campbell et al. 2009, Richardson et al. 2009, 

Stringell et al. 2013, Chapter 1). The TCI lobster fishery appears to be an important 
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driver in the number of hawksbill turtles landed, with more hawksbills landed during 

the lobster open season (Stringell et al. 2013, Chapter 1). Given the relatively low 

frequency of adult green turtle take by the TCI fishery, an alternative to the 

composite closed season could be a hawksbill turtle, species-specific closed season 

coinciding with the lobster open season that traditionally runs from August to March 

inclusive. Hawksbill turtles are preferred less by consumers in TCI than green turtles 

(Richardson et al. 2009), and while this measure would still involve a novel eight 

month restriction on hawksbill take, it would still allow fishers access to green turtles 

throughout the year, and importantly outside of the lobster season at a time when the 

green turtle fishery is most valuable (Stringell et al. 2013, Chapter 1).  

 

Management implications: size limits  

The Cayman Islands turtle fishery regulations are the only legislation in the 

Caribbean that provide a maximum size limit for a turtle fishery (Blumenthal et al. 

2010). The introduction of maximum size limits for green and hawksbill turtles within 

the TCI turtle fishery regulations may well be more acceptable measures for local 

stakeholders compared to a composite closed season for these species. Fishers are 

already used to the current minimum size limit, and this measure would allow the on-

going take of juveniles that make up the majority of animals currently landed anyway 

(Stringell et al. 2013, Chapter 1).  A standard maximum size limit for both species is 

likely to prove more practical to enforce, but setting such a limit would have to take 

into account estimated minimum sizes at maturity for the smaller hawksbills to 

accommodate both species. A conservative maximum size limit of 50cm would 

therefore take into account the smallest sizes at maturity reported by Moncada et al. 

(1999) from Cuba. However this is the equivalent of the current minimum size limit of 

20 inches (TCI works in imperial measurements) and so is not appropriate if this 

minimum size limit is maintained (all turtles would be excluded from the fishery: 

Figure 4). It may therefore be necessary to lower the current minimum size limit, or 

repeal it altogether, to facilitate fisher access to broader size ranges of juvenile 

turtles.  Even if the minimum size limit is lowered to accommodate a maximum size 

limit, 50 cm may be deemed too low by stakeholders, as it would significantly impact 

access to juvenile greens that make up a majority proportion of the current fishery 

(Stringell et al. 2013, Chapter 1). A maximum size limit of nearer 78cm (e.g. 30 

inches) would protect the majority of adult hawksbills and all adult green turtles using 
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TCI waters, including breeding turtles and those from populations breeding 

elsewhere. Based on the size distribution of turtles landed in the fishery, such a 

maximum size limit, in combination with the current minimum size limit, would 

exclude 44% and 57% of the hawksbill turtle and green turtle populations 

respectively from the fishery (Figure 4), of which 12% and 6% respectively are 

>78cm. However, the TCI fishery also lands large juvenile (sub-adult) turtles 

considered to require protection to facilitate regional population recoveries (Crouse 

et al. 1987, Crowder et al. 1994, Heppell & Crowder 1996). A precautionary 

maximum size limit lower than 30 inches set specifically to protect large juveniles 

would accommodate most uncertainty regarding size at maturity: the current 

minimum size limit of TCI plus a maximum size limit of 60cm, in line with the Cayman 

Islands, would protect approximately 72% and 75% of the hawksbill turtle and green 

turtle populations respectively. 

 

Conclusions 

Previous work in the TCI (Richardson et al. 2009) recommended changes to the 

management of the traditional turtle fishery in TCI, and called for further work to 

better describe the nature of the fishery and its likely impacts on nesting populations. 

This study concludes that specific legislative amendments, particularly the 

introduction of maximum size limits above which animals may not be landed and 

potential closed seasons, would be beneficial to protection and recovery of the 

remnant nesting populations in TCI. Management at the country level is also likely to 

be a key step towards successful regional conservation (Moncada et al. 2012) and of 

benefit to the populations of turtles in the Wider Caribbean that use TCI as foraging 

grounds.  However, legislative change alone will not facilitate recovery of the turtle 

populations using TCI waters. Community will and understanding, effective 

enforcement and stakeholder compliance with turtle fishery legislation will be key 

factors that decide the future of the turtle populations breeding in TCI and will 

influence how future generations benefit from this element of TCI’s natural heritage.  
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Table 1. Deployment statistics of adult turtles satellite tagged in TCI: two female green turtles (CmF) and five adult hawksbills (two 
females [EiF] and three males [EiM]). Data derived from location classes (LCs) A, B, 1-3. Minimum convex polygons (MCP) 
calculated from LCs 1-3.  
 

Turtle 
CCL 

(cm) 

Date of 

release 

No. 

days 

tracked 

Distance 

between release 

& foraging site 

centroid (km) 

Max  

Displacement 

from release 

(km) 

Home 

range  

(km2; MCP) 

Migration 

beyond TCI 

waters 

Foraging 

ground 
Nesting site 

EiF1  90.6 13.10.09 >1210* 
N: 3.4** 

63 80.46 No TCI East Caicos, TCI 
IN: 13.4*** 

EiF2  85.1 01.07.09 38† - 58 - No Unknown 
Fish & Ambergris 

Cays, TCI 

EiM1  81.6 23.09.09 746 2.5 47 38.18 No TCI - 

EiM2  90.5 02.10.09 640 4 28 29.46 No TCI - 

EiM3  84.0 01.10.09 1327 3.1 45 18.96 No TCI - 

CmF1  102.6 25.06.09 317 9.1 1452 216.14 Yes TCI Barbuda†† 

CmF2  112.9 12.09.10 96 778.4 788 27.37 Yes USVI Gibbs Cay, TCI 

CCL=curved carapace length 
N=nesting, IN= internesting  
Dates are dd/mm/yy format 
* still transmitting at time of writing (04 February 2013) 
** two nesting seasons (2009-10 and 2011-12)  
*** distance between release site and nesting/internesting centroid 
† died 
†† a likely single clutch laid in Barbuda (Richardson et al. 2010) 
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Table 2. Haplotype frequency for hawksbill (Ei) and green turtle (Cm) adults 
captured in the TCI fishery and from in-water surveys, and hatchlings from individual 
nests. Frequencies are separated by sex (M=Male, F= Female, U= Undetermined). 
See Stringell et al. in prep. (Chapter 4) for comparisons with regional haplotype 
frequencies. 
 

 
Breeders  

(Br) 

Foragers  

(Fg) 

Hatchlings 

(H) 

Total  

(H & Br) 

Total  

(Fg) 

Haplotype F M F M U   

EiA01     1 1 0 

EiA03  1    1 0 

EiA11 2 3 2b 1 17 21b 3 

EiA13     1 1 0 

EiA27  1    1 0 

EiA41     2 2 0 

EiA42  1 1   1 1 

EiA81a      1 1 0 

CmA3 1b    3 3b 0 

CmA5   1   0 1 

CmA64a     1 1 0 
a source rookery haplotypes unique to TCI (submitted to Genbank).  
b haplotype frequency adjusted for mother and nest duplicates. 
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Figure 1. Spatial distribution of hawksbill (A) and green turtle (B) nesting activity. 
Magnitude of nests recorded is shown by increasing circle size. Locations where 
only non-nesting emergences were observed are indicated by squares. Survey 
locations where no turtle activity was observed are shown with triangles. Data are 
summed over the two-year survey period. Numbers in bold refer to the following 
locations:  1-Salt Cay, 2-Cotton Cay, 3-Pinzon Cay, 4-Eastern Cay, 5-Gibbs Cay (2 
beaches), 6-Weis Cay, 7-Indian Cay, 8-Long Cay, 9-Pine Cay, 10-Dellis Cay. 
Numbers in parentheses indicate the number of survey beaches at each location, 
otherwise each label represents a single beach.   
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Figure 2. Nesting activity of hawksbill turtles (A) and green turtles (B) in TCI. Black 
bars indicate number of nests and hatched nests of inferred lay date. Non-nesting 
emergences are shown as white bars. Survey effort (C) is the number of nesting 
surveys (n=162) by month. Triangles indicate when one or two adult turtles were 
captured during CMR (inwater and nesting surveys; two hawksbill turtles were 
captured in Sep and Oct), and squares indicate turtles captured by fishers (two in 
November). Data are summed by month and survey locations over the two-year 
study period.  
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Figure 3. Locations and home ranges - minimum convex polygons (thick straight 
black lines), kernel density estimates (shading) with 90% volume contours (thin 
curved black lines) - of seven satellite-tracked turtles: Panel A shows the two green 
turtle (Chelonia mydas, Cm) migration tracks away from TCI territorial waters (see 
Richardson et al. 2010 for information on CmF1), two female green turtles (B-C: 
CmF1 and CmF2) and five hawksbill turtle (D-H) (Eretmochelys imbricata, Ei: 
Females EiF1-2 and males EiM1-3). Crosses (+) indicate nesting position for each 
nesting female (Barbuda: CmF1 (A); TCI: EiF1-2 (D-E), CmF2 (C)). White circles 
indicate foraging locations - Argos location classes 1, 2, 3 for each turtle up to the 
time of writing (04 February 2013). Locations are not displayed for the internesting 
periods of turtles EiF1-2 or CmF2 (see text for further detail).   
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Figure 4. Proportion of hawksbill turtle (open circle, n=108) and green turtle (filled 
circle, n=155) populations of TCI, as determined from size distribution of harvested 
turtles (Stringell et al 2013; Chapter 1), potentially excluded from the fishery with 
various size limits (CCL; curved carapace length, cm). The proportion excluded from 
the fishery is inclusive of those already excluded by the TCI minimum size limit 
(51cm). The maximum size limit for Cayman Islands is 60cm. The average minimum 
nesting size for the region is 78cm for the hawksbill turtle (Witzell 1983) and 97cm 
for the green turtle (Hirth, 1997). 
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Abstract 
Disease in wildlife populations is often controlled through culling. But when healthy 

individuals are removed and diseased individuals are left in the population, it is 

anticipated that prevalence of disease increases. Although this scenario is 

presumably common in exploited populations where infected individuals are less 

marketable, it is not widely reported in the literature. We describe this scenario in a 

marine turtle fishery in the Turks and Caicos Islands (TCI), where green turtles are 

harvested annually for local consumption. During a two-year period, we recorded the 

occurrence of fibropapillomatosis (FP) disease in green turtles (Chelonia mydas) 

captured during in-water surveys and compared it with those landed in the fishery. Of 

turtles captured from in-water surveys, 13.4% (n=32) showed externally visible signs 

of FP. Despite the disease being prevalent in the size classes selected by fishers, 

FP was not present in any animals landed by the fishery (n=162). FP occurred at 

specific geographic locations where fishers encounter diseased turtles. The majority 

(61%) of fishermen interviewed expressed that they had caught turtles with FP and 

of those that had caught turtles with the disease, 82% chose to return their catch to 

the sea, selectively harvesting healthy turtles and leaving those with the disease in 

the population. Our study illustrates that fisher choice may increase the prevalence 

of FP disease and highlights the importance of this widely neglected driver in the 

dynamics of exploited wildlife populations. 
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Introduction 
It is thought that emerging infectious diseases of wildlife are increasing globally with 

consequences to human, animal and ecosystem health (Cohen 2000, Daszak et al. 

2000, Ward & Lafferty 2004, Jones et al. 2008). Causes of disease emergence are 

varied, complex and difficult to study but frequently implicate anthropogenic impacts 

(McCallum & Dobson 1995, Daszak et al. 2001, Plowright et al. 2008). The 

consequences of wildlife exploitation on disease dynamics in host species, however, 

are widely neglected in resource management (Choisy & Rohani 2006). 

 Sustainable exploitation of wildlife populations that optimises yield while 

maintaining the population has been a mainstay of conservation biology across taxa 

for decades (e.g. Gordon 1954, Clark 1976). Resource exploitation is usually driven 

by complex interactions between nature and humans that can have synergistic 

effects (Liu et al. 2007) and involve complex and often poorly described 

socioeconomic systems (Ostrom 2009). It is no surprise, therefore, that there is 

widespread neglect of the human dimension to exploitation and disease. Harvesting 

may alter disease prevalence and mortality directly or indirectly (Choisy & Rohani 

2006) and when this results in an increase in the disease, may present a serious 

threat to wildlife or resource conservation, particularly in management of species of 

conservation concern.  For example, overfishing of the food source of harp seals and 

subsequent seal movement to find alternative prey has been implicated in the spread 

of phocine distemper virus from infected harp seals to European harbour seals 

leading to a massively depleting epizootic in the species (Dietz et al. 1989, Heide-

Jorgensen et al. 1992, Härkönen et al. 2006). 

 Disease in animal species is widely controlled by removal of infected hosts 

(e.g. badgers, (Donnelly et al. 2003); Tasmanian devils, (Lachish et al. 2010); white-

tailed deer, (Blanchong et al. 2006). However, culling often not only fails to control 

the disease but also may increase it. For example, where culling disrupts social 

structures, a resulting increase in movements of individuals may spread the disease 

further afield, an effect called perturbation (Donnelly et al. 2003, Woodroffe et al. 

2004).  But what happens when non-diseased animals in the population are 

exploited and diseased individuals are left in the population? Such a scenario is 

presumably common, for example, in fisheries when disease renders fish less 

marketable (Dobson & May 1987, Kuris & Lafferty 1992, Wood et al. 2010). 
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However, there are few empirical examples in marine ecosystems. Kuris and Lafferty 

(1992) report on the effect of returning infected hosts in modelled crustacean 

fisheries, where the common practice of releasing female crabs, which are 

preferentially parasitised over male crabs, may result in an increase in the impact of 

parasitism and affect reproductive output. This scenario may apply in other cases 

where a fishery takes a disproportionately large percentage of uninfected hosts.  

 Fibropapillomatosis (FP) is a disease characterised by external and internal 

tumours and has been found in most species of sea turtle, primarily green turtles 

(Chelonia mydas) (Herbst 1994) (Figure 1). Since its discovery in the 1930s (Smith & 

Coates 1938) FP has become a global pandemic (Williams et al. 1994) and received 

much attention in the press, popular media and scientific literature, and is considered 

one of the most significant neoplastic diseases in reptiles (Herbst 1994). Although 

fibropapillomas appear to be benign, their location, size and frequency may be 

debilitating to the host by impeding vision, feeding, swimming, and internal organ 

function. However, some studies have documented the regression of infection, even 

in advanced cases (Chaloupka et al. 2009). There is strong evidence that FP is 

caused by a herpes virus (Lackovich et al. 1999, Lu et al. 2000, Quackenbush et al. 

2001, Herbst et al. 2004, Greenblatt et al. 2005a, Patricio et al. 2012) and is 

associated with various environmental cofactors (Herbst & Klein 1995, Work et al. 

2004, Arthur et al. 2008, Van Houtan et al. 2010) but its mode of transmission is yet 

to be verified, although ectoparasites have been implicated (Greenblatt et al. 2004).  

Many green turtle populations have been depleted by exploitation for food, 

leading to their globally endangered status (IUCN 2010). It is believed that FP might 

impair recovery of depleted populations (Herbst 1994, Ene et al. 2005) because FP 

has a high prevalence in immature animals thus impacting the long-term survival of 

green turtle populations (Greenblatt et al. 2005b). However, in the historically and 

currently exploited Caribbean metapopulation of green turtles, where multiple nations 

take turtles for domestic consumption, the dynamics of FP prevalence is unknown.  

The regionally significant foraging aggregation (Richardson et al. 2009) and the 

small-scale turtle fishery in the Turks and Caicos Islands (TCI), a UK Overseas 

Territory in the Caribbean (Stringell et al. 2013, Chapter 1), offered an ideal 

opportunity to investigate the impact of harvest on FP prevalence in green turtles. 

 In this study, we ask three broad questions: 1) do we observe different levels 

of FP prevalence in turtles landed by the fishery and those sampled during 



115 

independent in-water surveys; 2) are turtle size and location risk factors for FP; and 

3) are fishers selectively harvesting healthy animals?  
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Methods 
Study Site 

This study took place over two years between November 2008 and December 2010 

in the Turks and Caicos Islands (TCI), a UK Overseas Territory in the Caribbean (21° 

45N, 71° 35W). The research team was stationed on South Caicos, the main fishing 

centre of the TCI, for the duration of this study, with regular visits made to the islands 

of Grand Turk and Providenciales, the two main population centres, and several 

visits made to North and Middle Caicos (Figure 2).  

 

Monitoring methods 

In-water surveys 
We used past information (Godley et al. 2004, Richardson et al. 2009) and local 

knowledge (sensu Hall & Close 2007) to select survey locations that reflected a 

range of turtle fishing intensities. We surveyed 14 locations in TCI in an extensive in-

water capture-mark-recapture (CMR) programme to sample foraging green turtles. 

We hand-captured 239 individual turtles via a combination of “free-diving” and 

“rodeo-style” methods (Ehrhart & Ogren 1999). In general, each location was visited 

at least 4 times per year to provide a seasonal spread of effort, but logistics and 

weather occasionally constrained this. We typically used turtle fishermen and their 

boats for most surveys and tried to emulate the methods they would use to catch 

turtles; the fishermen themselves made most captures. 

 

Turtle fishery 
We observed the turtle fishery at several fish-landing docks throughout the TCI (see 

Stringell et al. 2013, Chapter 1 for details). A total of 233 green turtles were 

butchered at the fish-landing docks and 162 visually assessed for presence of FP.  

We recorded capture location for 89% (n=208) of all butchered turtles and for 92% 

(n=149) of those assessed for FP.  An index of turtle fishing intensity was created 

from the proportion of turtles harvested at each location during the survey period 

(Figure 2). 

 

Turtles 
Both CMR and harvested turtles were measured by curved carapace length (CCL 
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cm: Bolten 1999), weighed using Kern digital scales for turtles under 50 kg (±0.05 

kg) or Salter analogue scales for those weighing over 50 kg (±0.5 kg), and visually 

assessed for presence or absence of lesions typical of external FP tumours (Figure 

1). Where turtles were recaptured during the 25-month CMR study, only 

measurements (CCL, weight and location) from first captures were used with the 

exception of three individuals that developed FP between recaptures (here final 

capture measurements were used). Capture location was recorded by handheld 

GPS during surveys, or the location of a butchered turtle’s capture approximated 

after fisher interviews.   

 

Fisher Interviews 
We used informal semi-structured interviews with 28 fishers - approximately 10% of 

licensed fishers in TCI (287 licenses for fishing year 2009/10) - who were asked a 

series of questions related to FP in turtles and harvesting practice (see 

supplementary Table S1). Participants at South Caicos (n=13), Providenciales (n=6), 

Grand Turk (n=5) and North Caicos (n=4), were interviewed by the authors (AS, QP, 

TBS). These authors were either resident or had spent a significant amount of time 

with the fishing community over the two-year study period and had established trust, 

enabling us to gain a unique insight on the turtle fishery.  

Interviews were conducted in a casual but guided manner and generally 

lasted between 5 and 10 minutes but frequently ran over as discussions developed 

and the subject was revisited over the sampling period to substantiate claims and 

verify answers. During the interview, an image of a green turtle with FP was shown 

(Figure 1) and each participant asked whether they had seen green turtles with this 

disease in TCI waters.  Among other questions about FP, fishing locations and 

opinions on the disease, we asked whether they themselves had caught turtles with 

FP and what the fate of that turtle was, whether they remember any turtle with FP 

being landed by others for consumption, and whether they had eaten turtle with or 

without FP (see supplementary Table S1).  

 

Statistical analyses 
To create a null model of FP prevalence in harvested turtles, we took the means of 

10,000 randomisations of the number of turtles harvested from locations that had an 

incidence of FP multiplied by the probability of FP prevalence at these locations as 
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determined from CMR surveys. Turtle size was restricted to that landed in the fishery 

(28.8cm-88.0cm CCL). The actual level of FP in the harvest from these locations 

was compared to this null model. Two-sample t-tests were used to test differences in 

average CCL between groups. These analyses were conducted in R v 2.13.0 (R-

Development-Core-Team 2011). We then investigated the risk factors of location, 

size and their interaction on FP incidence using a two-way crossed mixed-effects 

permutational ANOVA (PERMANOVA), using PERMANOVA+ (Anderson et al. 2008) 

and PRIMER v6 (Clarke & Gorley 2006). CCL was the response variable, location a 

random factor with 13 levels (one location was excluded as an outlier) and FP a 

binary fixed factor.  Where significant differences existed, we investigated pairwise 

comparisons of CCL of the FP factor at locations where FP occurred.  
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Results 
Fishery vs. CMR 

Of the 239 green turtles captured and released during our in-water/CMR surveys, 

13.4% (n=32) showed externally visible signs of FP. None of the turtles captured in 

the fishery that we assessed for FP (n=162) had the disease. The absence of FP in 

harvested turtles departed significantly (P=0.02) from the null model of prevalence, 

which was simulated from turtles captured during CMR surveys (n=140) that were of 

similar sizes to those captured by the fishery (28.8-88.0cm CCL) and only from sites 

that had an incidence of FP (n=5 sites).  

 

Does FP prevalence change with body size? 

Turtles with FP caught in CMR surveys were significantly larger (mean CCL=54.0cm, 

SD=10.2, n=32) than those without FP (mean CCL=42.7cm, SD=11.4, n=207) (t43.7 = 

5.71, P<0.0001) (Figure 3).  A 3-order polynomial fit with R2 = 0.84 indicates that FP 

prevalence peaks at 40% at around the 65-70cm range (Figure 3a). A prevalence 

value of 50% at 80-85cm size range is probably an artefact of small sample size 

(n=2). Turtles with FP did not differ in terms of body condition (weight vs. CCL) to 

those that were FP free (supplementary Figure S1). Turtles captured by the fishery 

averaged 52.6cm CCL (SD=12.3, n=136; Figure 3b), similar to turtles captured and 

released with FP (t54.16=0.6639, P=0.51). These results indicate that FP is present in 

the size classes of turtles selected by the fishers and that we would expect to find 

some harvested turtles to have FP.  

 

Does FP prevalence change with location? 

FP occurred only at central island locations where FP prevalence varied from 5%-

34% (Figure 2). About 10% (n=23 of 233) of turtles were harvested at these 

locations (Figure 2). Fishermen therefore exploit turtles from areas where FP occurs 

and are likely to encounter them.  

There was also a strong spatial effect to turtle size, with turtles generally being 

larger in central locations (Random factor: F12=5.54, P=0.001), and the incidence of 

FP tended to follow this pattern: four out of the five locations that had turtles with FP 

had the largest average turtle size (supplementary Figure S2). However, turtles with 

FP were larger than those without (Fixed factor: F1=21.31, P=0.002) only at two 
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locations: Causeway (t1=2.3, P=0.03, n=22; four turtles with FP) and Jacksonville 

(t1=2.2, P=0.024, n=38; two turtles with FP), and not at those locations that had the 

highest prevalence of FP (Ocean Hole: t1=1.53, P=0.138, n=32; 11 turtles with FP; 

Southern Bush: t1=1.26, P=0.216, n=47; 12 turtles with FP). These results imply that 

size and location interact and together are risk factors for FP.  

 

Does fisher choice affects FP prevalence? 

The absence of turtles with FP that are landed by the fishery is likely due to fisher 

choice. Of the 28 fishermen interviewed, 21 (75%) were active turtle fishers at the 

time of the interviews; the remainder were once or had worked closely with turtle 

fishers (Table 1).  Most fishers (61%) had seen or captured green turtles with FP in 

TCI and 82% of them had returned the turtles to the sea because they did not want 

to eat diseased meat. Only three fishers reported having harvested turtles with FP 

and typically cut FP tumours off and sold the meat on to restaurants. The majority of 

fishers (90%) expressed that they would not harvest turtles with FP in the future; just 

two of the 21 fishers stated that in the future they would harvest turtles with FP for 

food, with one stating he would eat meat from turtle with FP, although it was 

uncertain if he had eaten turtle with FP before.  
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Discussion  
Fishers do encounter turtles with FP, but from our dockside surveys and fisher 

questionnaires it is clear that fisher choice and harvest practice may explain the 

absence of the disease in their catch. The fishery selectively harvests healthy turtles 

and leaves those with the disease in the population, thereby likely increasing the 

survivorship of turtles with FP through reduced fishing-mortality. This empirical 

example suggests that harvest and fisher choice may increase the proportion of the 

population exhibiting FP in green turtle foraging areas in TCI. These results highlight 

the potential importance of this widely neglected driver in the dynamics of exploited 

wildlife populations. 

 

Fishery / harvest effects and examples 

Culling infected prey theoretically reduces disease prevalence (Holt & Roy 2007). 

Conversely, predation (or harvest) may increase disease prevalence when the 

predator or harvester selects only immune or non-diseased individuals (Choisy & 

Rohani 2006, Holt & Roy 2007). The TCI turtle fishery targets apparently unaffected 

turtles leading to low fishing mortality of infected individuals and is an empirical 

example of the latter scenario. It is unknown, however, whether FP transmission is 

density or frequency dependent. In frequency-dependent transmission there may be 

an increase in relative abundance of infected hosts and an increase in the 

prevalence of the disease (Wood et al. 2010), and in density-dependent 

transmission, removal of uninfected hosts will reduce host density which may lead to 

a reduction in disease prevalence (Dobson & May 1987, Wood et al. 2010). Either 

way, harvesting in general reduces the number of hosts, and harvesting uninfected 

individuals may increase the proportion of infected animals. 

 In several crustacean fisheries around the world, where diseased products 

are unpalatable or unmarketable and tend not to be landed in the fishery, the 

incidence of disease has been correlated with fishing effort (Kuris & Lafferty 1992, 

Stentiford & Shields 2005, Freeman & MacDiarmid 2009, Bateman et al. 2011). 

Harvest practice may also have indirect effects on disease (e.g. Dietz et al. 1989, 

Heide-Jorgensen et al. 1992, Härkönen et al. 2006). Our work also suggests the 

potential for unintended consequences of harvest practice. 
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Bias 

Differential catchability of infected animals may bias estimates of disease prevalence 

rates from harvested stocks (Conner et al. 2000). FP may make turtles more 

susceptible to capture, because tumours can restrict mobility and impair vision 

(Herbst 1994). If, however, FP infected turtles are more frequently captured by 

fishers but evidently returned as unsuitable for consumption, estimates from landings 

would be a stronger indication of the selective harvest. Moreover, if prevalence of FP 

in harvested turtles is used as an estimate of prevalence in the population, the actual 

proportion of diseased animals in the population may be much higher. For example, 

Adnyana et al. (1997) calculated 21.5% prevalence of FP in green turtles from 

slaughterhouses in Indonesia and extrapolated this prevalence to wild stocks in 

Indonesian seas. If fisher choice also played a part in the slaughterhouses of 

Indonesia, then the wild prevalence of FP could have been much greater than 

reported. Without information on FP prevalence in wild stocks, captured through 

independent in-water surveys, and knowledge of how fisher choice influence the 

independent observations of sea turtle fisheries, reliable metrics on disease 

prevalence would be hard to obtain.  

 

FP risk factors 

It is widely reported that turtle size is a risk factor for FP (Chaloupka & Balazs 2005, 

Foley et al. 2005, Chaloupka et al. 2008, Van Houtan et al. 2010). The absence of 

FP in small size-classes in the present study (<35cm CCL) may indicate that FP is 

acquired after turtles recruit to coastal foraging pastures (e.g. Ene et al. 2005), and 

rarity in large size-classes (>80cm CCL) may suggest either mortality or tumour 

regression (e.g. Chaloupka et al. 2009). Geographic location is frequently implicated 

as a risk factor (Van Houtan et al. 2010); FP tends to be more prevalent in near-

shore habitats (lagoons, bays) especially those impacted by agricultural industrial 

urban development, perhaps due to poor water exchange (Herbst 1994, Foley et al. 

2005, Santos et al. 2010, Van Houtan et al. 2010). Our in-water survey results 

further indicate that geographic location and turtle size interact. Fishers exploit turtles 

from areas where FP occurs and of the size-classes expected to exhibit the disease, 

yet turtles with FP were not landed as a result of fisher choice. We suggest that 

fisher choice / harvest may be an important additional risk factor, and one not 

reported previously in the literature. 
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 Rapid increases in FP have been reported in Hawaii (Chaloupka et al. 2009) 

and Florida (Foley et al. 2005) since the 1980s and 1930s respectively. Both regions 

had substantial historical harvests and fisher choice and selective harvest practice 

may well have played a part in the emergence of disease in these locations. 

The long residence times of turtles at sites in TCI (as indicated from recapture 

histories and satellite tagging data: Stringell et al. in prep., Chapter 2), and the 

relatively short development times of tumours (three turtles recaptured during the 

study developed extensive FP in <12 months), could exacerbate the disease. It 

remains to be seen whether the prevalence of FP in TCI will increase in the coming 

decade. 

 

Human health 

Despite FP being pandemic (Williams et al. 1994) and green turtles being taken for 

food in artisanal small-scale fisheries (SSF) throughout the world, both historically 

and at present, comprehensive studies on the human health impact of consuming 

FP-infected turtles is lacking. While it seems unlikely that there is a human health 

concern here, it would benefit from further study. SSF and bushmeat hunting have 

much in common (Milner-Gulland & Mace 1998), and the term “marine bushmeat” 

has been coined for the artisanal hunting of marine turtles (Alfaro-Shigueto et al. 

2011). Most concern with hunting and consumption of bushmeat, however, has been 

the potential human health issues such as animal-human disease transmission 

(LeBreton et al. 2006, Harrison et al. 2011) and toxicity (McClenachan et al 2006). 

McClenachan et al (2006) suggested that hawksbill turtle meat was toxic until the 

19th century when it began to be eaten without health consequences as a result of 

hawksbill turtles consuming more desirable, less toxic sponge species as turtles 

were overexploited, became less abundant and competition for food was reduced. 

Few studies consider the effects of hunting on prevalence of disease in wildlife 

population.  

 

Conclusions and global disease emergence 

Disease is a pervasive ecological driver in population dynamics (Plowright et al. 

2008) and with suggested global increases (Daszak et al. 2000, Ward & Lafferty 

2004, Jones et al. 2008), disease has become pertinent to contemporary wildlife 

management. As per Plowright et al. (2008), “the goal of this study was not to 
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conclusively ‘prove’ causation but to amass sufficient evidence to implicate possible 

ecological and sociological causes of disease emergence”, in order to inform disease 

prevention and management. Although in many aquatic diseases, causal factors are 

difficult to isolate due to the complexity of interactions, some anthropogenic impacts 

have been implicated (Daszak et al. 2001). As such, marine environmental 

monitoring programmes may utilise diseases as sentinels for ecological status 

(Stentiford et al. 2009, Lyons et al. 2010, Stentiford et al. 2010). Causal agents of FP 

in turtles have not been unequivocally isolated. However, incidence of FP in green 

turtles, that are considered keystone species in tropical seagrass habitats (Bjorndal 

& Jackson 2003), may prove to be a prime indicator of ecosystem health (Aguirre & 

Lutz 2004). Our study highlights the possibility that harvesting and fisher choice may 

increase disease prevalence. Knowledge of such an effect may prove invaluable in 

informing management decisions for sustainable exploitation and control of 

epizootics in threatened species.   
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Table 1. Results of interviews about fibropapillomatosis (FP) with 28 participants, of 
which 21 (75%) are currently practicing turtle fishers. See Table S1 for full 
questionnaire. Questions asked of the future were only to current fishers. 
 

The number of participants who ! turtles with FP % (n) 

had seen and captured 61% (17 of 28) 

had harvested 18% (3 of 17) 

threw back 82% (14 of 17) 

(in the future) would not harvest 90% (19 of 21) 

(in the future) would harvest 10% (2 of 21) 
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Figure 1. Green turtle showing externally visible signs of fibropapillomatosis (FP). 
This image was shown to fishers during interviews. 
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Figure 2. Map of Turks and Caicos Islands (TCI) showing locations (pies) where 
green turtles were harvested. Size of pies indicates the relative percentage of the 
total harvest (<5, <10, <20, and >20%; n=233 turtles) during 25 months of survey 
(Nov 2008 to Dec 2010). Shaded pies indicate areas where we also conducted 
capture-mark-recapture (CMR) surveys and the prevalence of fibropapillomatosis 
(black) in turtles caught in these surveys is shown. White circles indicate locations 
where turtles were harvested but where no CMR surveys were conducted. 
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Figure 3. Curved carapace length (CCL, cm) of green turtles captured during 
capture-mark-recapture surveys (A) and in the fishery (B), showing external signs of 
fibropapillomatosis (FP) (stacked black bars) or no FP (grey bars). Dots in (A) 
indicate FP prevalence within each size-class and the dashed line indicates a 3-
order polynomial fit (R2=0.84) of FP prevalence by size.  
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Chapter 3: Supplementary Information 
Table S1. Semi-structured questionnaire used to interview fishers and guide 
discussions on occurrence of fibropapillomatosis. Figure 1 of main text and a map of 
TCI was shown to participants during the interview. 
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Figure S1. The relationship between curved carapace length (CCL, cm) and weight 
(kg) of turtles with fibropapillomatosis (FP; black, n=32) and without FP (white, 
n=207) captured and released during in-water capture-mark-recapture surveys from 
Nov 2008 to Dec 2010. 
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Figure S2. Curved carapace length of turtles captured in capture-mark-recapture 
surveys without fibropapillomatosis (FP; left panel, n=207) and with FP (right panel, 
n=32). The top nine locations have no recorded FP prevalence. Box plots indicate 
median, interquartile ranges and outliers. 
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Abstract 
A better understanding of sex ratios in wild populations and the factors affecting 

survivorship of the sexes is crucial for supporting effective conservation strategies, in 

particular for species with temperature-dependent sex determination (TSD) given 

predicted scenarios of climate warming. In sea turtles, which exhibit TSD, a greater 

proportion of females are produced at higher temperatures and female biased 

primary sex ratios are common. Female skewed sex ratios in immature sea turtles 

captured at sea likely arise from skewed primary sex ratios, sex biased dispersal 

from rookeries or differential fitness of the two sexes. Immature and adult hawksbill 

(Eretmochelys imbricata) and green turtles (Chelonia mydas) were sampled from the 

regionally important foraging area and local turtle fishery of the Turks and Caicos 

Islands (TCI). We identified sex from gonads (via histology and gross morphology) to 

calibrate sex ratio estimates from blood plasma hormone concentrations for turtles of 

different size class and haplotype. Sex ratios were highly female biased in recruits in 

both species, but especially in hawksbills (1M:15F - the highest documented in the 

Atlantic) but this differed for adult hawksbills where the sex ratio was 1:1. Mixed 

stock analysis indicated contribution from widespread Atlantic rookeries in both 

species but a single dominant source for male juvenile green turtles (>80% from 

Costa Rica). Significant differences in the genetic composition across life-stages 

were observed with adult hawksbills captured in water most similar to the TCI 

rookery and differentiated from the immature stock. As no difference in growth rates 

between the sexes were found, at least in green turtles, the female biases observed 

in early life-stages (recruits to sub-adults) are unlikely to have resulted from mortality 

associated with growth rate differences between the sexes. Thus, the extreme 

female bias in immature life-stages may have resulted from sex biased dispersal 

and/or skewed primary sex ratios. This work provides insight into the factors that 

determine in-water sex ratios and origins across life-stages and highlights the need 

to characterise primary sex ratios at key rookeries in the Atlantic. 



141 

Introduction 
The genetic theory of natural selection predicts that genotypic sex determination 

should produce roughly equal numbers of males and females (Fisher 1930). 

However, sex ratios are often skewed in species with environmental sex 

determination, of which temperature-dependent sex determination (TSD) is the most 

common form (Janzen & Paukstis 1991, Janzen & Phillips 2006). Most studies of 

TSD in reptiles find offspring sex ratios biased towards females (Bull 1980, Janzen & 

Paukstis 1991), but the evolutionary reasons for this are unknown (Janzen & Phillips 

2006). Charnov and Bull (1977) theorised that TSD may have evolved as an 

adaptive mechanism for maintaining sex ratios to cope with stochastic and 

unpredictable environmental conditions that differentially influence male versus 

female fitness (Shine 1999, Warner & Shine 2008). Several differential-fitness 

models have been proposed to explain the adaptive significance of TSD, some or all 

of which may apply for any given species where it occurs (Shine 1999). Warner and 

Shine (2008) provided empirical support for the Charnov-Bull model of differential 

fitness in a lizard with TSD, and this could apply to sea turtles which exhibit TSD 

(Yntema & Mrosovsky 1980, Yntema & Mrosovsky 1982, Mrosovsky 1994, Wibbels 

2003).  

 In sea turtles, a greater proportion of females are produced at temperatures 

above a pivotal value (where a 50:50 sex ratio is produced; typically at temperatures 

between 28-30°C) with more males produced at temperatures below the pivotal 

(Yntema & Mrosovsky 1980, Yntema & Mrosovsky 1982). These “primary” sex ratios 

(pertaining to hatchlings) have been generally found to be female biased (see Figure 

1 and Hawkes et al. 2009 for review). Under current climate change scenarios, 

widespread feminisation of primary sex ratios and a critically reduced proportion of 

males that could hinder population maintenance are predicted (Hawkes et al. 2007, 

Hawkes et al. 2009, Poloczanska et al. 2009, Witt et al. 2010, Fuentes et al. 2011). 

Studies of sex ratios and how they are affected are therefore crucial to determine 

current sex ratio baselines and for building an understanding of how sea turtles may 

be impacted by climatic change. 

 Studies of juveniles sea turtles captured at sea reveal variation in “secondary” 

sex ratios (pertaining to post hatchling stages) across sites but most are also female 

biased, likely reflecting the primary sex ratios (e.g. Bolten & Bjorndal 1992, Bolten et 
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al. 1992, Stabenau et al. 1996, Leon & Diez 1999, Bjorndal et al. 2000, Geis et al. 

2003, Blanvillain et al. 2008, Delgado et al. 2010, Hawkes et al. 2013). Some 

studies, however, show 1:1 or male biased adult sex ratios (Chaloupka & Limpus 

2001, Stewart & Dutton 2011, Wright et al. 2012), despite female-biased sex ratios in 

rookeries or immature life-stages. This shift from highly skewed female biased 

primary sex ratios to 1:1 or “Fisherian” ratios (Fisher 1930) in adult stages is an 

elusive question in sea turtle biology. Causes of this marked difference are unknown 

but may relate to several non-exclusive scenarios: 1) Sex differences in dispersal 

(e.g. Limpus 1993, FitzSimmons et al. 1997, van Dam et al. 2008, Velez-Zuazo et al. 

2008, Hays et al. 2010 in adults; Casale et al. 2002 in juveniles), as a result of 

differential genetic structuring between the sexes (Casale et al. 2002, but see 

Maffucci et al. 2013) which may serve to avoid resource competition, intrasexual 

mate competition and inbreeding (Johnson & Gaines 1990, Perrin & Mazalov 2000, 

Warner & Shine 2008). 2) Sex biased mortality/fitness, due to differential predation 

rates between the sexes; hatchlings from cooler nests (i.e. males) have been shown 

to be larger and have better swimming ability than those from warmer nests (i.e. 

females) (Gyuris 2000, Booth & Evans 2011) and this may aid more rapid dispersal 

away from coastal waters where they are vulnerable to predation (Gyuris 1994, 

Pilcher et al. 2000). Presumably any differences in growth rates between the sexes if 

present (Chaloupka & Limpus 1997, Limpus & Chaloupka 1997, Bjorndal et al. 2000, 

Chaloupka et al. 2004) could also have consequences on predation. 3) Sex biased 

breeding periodicity, for example, male turtles might breed more frequently than 

female turtles (Limpus 1993, Hays et al. 2010, but see Wright et al. 2012) 

contributing to a balanced “operational sex ratio” (the ratio of sexually active males to 

fertilisable females at any given time; Emlen & Oring 1977) even though observed 

sex ratio might be biased towards females. 

 

Sex determination 

Determining sex in marine turtles from external features is thought to be possible 

only in adults where males have clearly pronounced secondary sexual 

characteristics including a long prehensile tail, curved claws, and a seasonally 

softening plastron, when in breeding condition, although complex morphometric 

methodologies that distinguish sexes in hatchlings have been described (Michel-

Morfin et al. 2001, Valenzuela et al. 2004). Sex determination can be achieved by 
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internal examination of gonads via laparoscopy in juveniles and by dissection and 

histology in hatchlings (Wood et al. 1983, Wibbels et al. 2000).  Laparoscopy, 

however, is an invasive surgical technique that is logistically demanding and requires 

trained personnel to perform. An alternative method to sex individuals is to determine 

concentrations of circulating blood hormones of testosterone (T) and oestradiol-17! 

(E2) (Owens et al. 1978) and compare these against threshold hormone values for 

females and males. However, calibration of hormone concentrations with animals of 

known sex (via observations of gross morphology of gonads by laparoscopy, direct 

sampling and histology) is desirable, because T values can vary seasonally (in 

response to temperature), with age and between (and within) individuals, and 

females produce T as a precursor for E2 (Wibbels et al. 1987, Geis et al. 2003, 

Braun-Mcneill et al. 2007, Blanvillain et al. 2008, Hawkes et al. 2013). In this study, 

we accessed a turtle fishery to obtain paired gonad observations/samples and blood 

samples in order to test and calibrate blood hormone analysis. 

 

Genetics 

The generalised life cycle of green and hawksbill turtles suggests that after 

remaining for a period as pelagic juveniles in oceanic gyres, turtles from different 

rookeries may converge and recruit to mixed origin feeding grounds in coastal 

shallow waters (Musick & Limpus 1997). It is thought that turtles may recruit to 

foraging grounds away from their natal rookery and move between a series of 

developmental sites as they age (Carr 1968, Meylan et al. 2011), until they return to 

their natal rookery to reproduce. Maternally inherited mitochondrial DNA (mtDNA) 

has been widely used to assess sea turtle population structure among rookeries and 

foraging aggregations (Bowen & Karl 2007 and Lee 2008 for reviews), thus 

facilitating the conservation and management of genetically distinct units (Moritz 

1994, Wallace et al. 2010). With good quality knowledge of mtDNA haplotype 

frequencies of potential source nesting populations, mixed stock analysis (MSA) 

methodology enables groups of individuals in mixed feeding aggregations to be 

linked to their rookeries of origin. MSA can provide powerful insight into the 

conservation implications of exploiting stocks of mixed origin, e.g. hawksbill harvest 

and “tortoiseshell” trade in Cuba (Carrillo et al. 1999, Bowen et al. 2007, Godfrey et 

al. 2007, Mortimer et al. 2007a, Mortimer et al. 2007b, Moncada et al. 2012), and 

how impacts to nesting populations can affect turtle populations in feeding grounds 



144 

(Carreras et al. 2013).  

 Progressively greater genetic differentiation has been found in later lifestages 

of turtle populations and results in a spatially “complex population structure” (Bowen 

et al. 2005, Bowen & Karl 2007). Most research into sea turtle genetic population 

structure has been based on eggs, hatchlings and nesting females using mtDNA. 

Recently, interest has turned towards male mediated gene flow in sea turtle 

populations through nuclear DNA (nDNA) e.g. in microsatellites or SNPs (Roberts et 

al. 2004, Bowen et al. 2005, Carreras et al. 2011, Wright et al. 2012) and breeding 

male natal philopatry using nDNA and mtDNA (FitzSimmons et al. 1997, Carreras et 

al. 2007, Velez-Zuazo et al. 2008, Bagda et al. 2012, Shamblin et al. 2012). Some 

attention has focussed on haplotype frequencies and genetic differentiation between 

adult life-stages and sexes (Velez-Zuazo et al. 2008) but few studies (e.g. Casale et 

al. 2002) have separated sex, different life-stages and residential status when 

applying mixed stock analyses.  

 

Aims and objectives 

Marine turtles are sensitive to exploitation due to their complex life history traits 

including a broad distribution of life-stages across extensively disbursed habitats, 

extended period to sexual maturity and multi-decadal generation times. Therefore 

science-based management of these taxa benefits from knowledge of critical 

population parameters such as in-water sex ratios, size/life-stage structure and 

genetic population structure, aspects that aid understanding of their population 

dynamics and their sustainable management. In this study we present the most 

thorough and up-to-date sex ratios and genetic profile of the green and hawksbill 

turtle stocks yet undertaken in the Turks and Caicos Islands to provide a regional 

perspective for management decisions and to further elucidate relationships with the 

Wider Caribbean Region. We set out to incorporate life-stage and sex ratio 

demographics into mtDNA-based MSA to address origin of green and hawksbill 

turtles and to determine possible genetic origins of any biases in sex ratios of 

immature life-stages in the Turks and Caicos in-water populations. We explore 

growth rates between the sexes in the two species, examine known primary sex 

ratios at rookeries in the Atlantic/Mediterranean, and explore origin of turtles using 

MSA to describe potential sex biased dispersal. 
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Methods 
Study site 

The Turks and Caicos Islands (TCI) is a UK overseas territory in the Caribbean 

located at the southeastern end of the Bahamas and north of Hispaniola Island (21o 

45N, 71o 35W) (Figure 1). The low-lying archipelago consists of several islands and 

numerous cays that surround a shallow, sandy and productive habitat called the 

“bank” which is generally fringed by mangroves and creeks. Most outlying cays and 

ocean facing beaches are surrounded by coral reefs. The hawksbill and green turtle 

foraging aggregations of TCI, are thought to be regionally significant in abundance 

(Richardson et al. 2009). However, in the TCI they are subject to a legal harvest. 

TCI’s hawksbill fishery is thought to be one of the largest in the western Atlantic and 

the take of its breeding adults is a key conservation concern (Stringell et al. 2013, 

Chapter 1).  

 

Sampling  

Over a period of approximately two years (from November 2008 to December 2010), 

we carried out extensive countrywide in-water capture-mark-recapture (CMR) 

surveys (via a combination of free-diving and “rodeo-style” methods: Ehrhart & 

Ogren 1999), nesting surveys (see Stringell et al. in prep., Chapter 2) and directly 

observed turtles landed in the legal turtle fishery in TCI (see Stringell et al. 2013, 

Chapter 1). Turtle capture location was recorded using a hand-held GPS or 

estimated following fisher interviews. Turtles were measured along the midpoint of 

the carapace (Curved Carapace Length, CCL: Bolten 1999), assessed for secondary 

sexual characteristics (e.g. males have a long prehensile tail, curved claws, soft 

plastron), and checked for metal flipper tags and Passive Integrated Transponders 

(PIT tags) and tagged (if absent) for those released (Balazs 1999). Some individuals 

had been tagged prior to the present study by authors and collaborators (Richardson 

et al. 2009). 

 Tissue samples (skin, muscle and blood) were collected from each turtle for 

use in genetic and blood hormone analyses. The sampling strategy avoided pseudo-

replicates from individuals because harvested turtles were killed and living animals 

were tagged. Small sections of skin from the trailing edge of the rear flippers of live 

turtles and/or muscle tissue from butchered animals were sampled with sterile 
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scalpel blades and transferred immediately to vials of Queens Lysis Buffer (Seutin et 

al. 1991) and refrigerated until DNA extraction at the University of Exeter laboratory, 

UK. Blood samples were extracted from the dorsocervical sinus (Owens & Ruiz 

1980) of each turtle using sterile 0.8x25mm or 0.8x38mm needles (depending on 

animal size) and stored in 6ml BD Vacutainer sampling tubes internally coated with 

Lithium Heparin anticoagulant. Blood samples were stored on ice until they could be 

transferred to a refrigerator when approximately four drops of whole blood were then 

transferred to 1.5ml vials of lysis buffer. The vials were then centrifuged for 10mins 

at 10000 RPM. Blood plasma was pipetted into cryovials and stored at -20 C until 

transferred to the UK for long-term storage at -80 C and used in blood hormone 

analyses. Only one sampling occasion per individual was included in the analyses.  

 Gonad samples were taken from butchered animals, fixed in 5% formaldehyde 

solution, stored in 90% ethanol and later used in histological examination to confirm 

sex identified from in-situ gross morphology of the gonads (Wyneken 2001). Gonad 

tissue was embedded in paraffin, sectioned and stained with hematoxylin and eosin 

and examined as part of a wider study into gonad ontogeny (e.g. Miller & Limpus 

2003). 

 

Laboratory analysis 

Blood hormones 

Enzyme-immunoassays (EIA) were used to analyse testosterone (T) and oestradiol-

17! (E2) concentrations in turtle blood plasma (Owens et al. 1978) following the 

manufacturer protocols (Cayman Chemical Co. USA: Item 582701 Testosterone EIA 

Kit; 582251 Estradiol EIA Kit). Steroids from 500µl of blood plasma were extracted 

with diethyl ether in glass test tubes. Ether was collected in a fresh test tube and 

evaporated under a gentle stream of nitrogen. Dried samples were resuspended in 

0.5ml of EIA buffer (or more if dilution was needed). On 96 well plates, samples were 

assayed in duplicate along with T and E2 standards (in duplicate) to create standard 

curves of between 3.9 – 500 pg T/ml and 6.6 – 4,000 pg E2/ml. Plasma hormone 

concentrations were calculated based on 4-parametric logistic standard curve fits 

and taking sample dilution factors into account. Each plate was read at 412nm 

wavelength on a Tecan Infinite m200Pro nanoquant plate reader with multiple reads 

(2x2) per well and five flashes per read. 

 To assign sex we used an approach similar to Hawkes et al. (2013) where 
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threshold values of sex hormones (T and E2) were used to discriminate likely sex, 

but with our data we also had the known sex from gonad examination. Where gonad 

sex was known, this took precedence over hormone determination of sex. Blood 

hormone levels were compared between sexes using t-tests or Mann-Whitney U 

tests when parametric assumptions were not met. The testosterone: estradiol-17! 

ratio (T:E2) was used to aid sex-allocation. For each sex, blood hormone 

concentrations were tested between years using t-tests or Mann-Whitney U tests 

and against day of year as a continuous variable using general additive models 

(GAMs) with the mgcv package in R (Wood 2011). 

 

Molecular analyses 

For most samples, we extracted and amplified DNA using Phire Animal Tissue and 

Phusion Blood Direct PCR kits (Finnzymes ThermoFisher), where 0.25mg of tissue 

or 1ul of 10x diluted blood-buffer solution were added directly to 96-well plates along 

with kit reagents and primers, and thermally cycled following manufacturer 

instructions. Forward (H950g: 5’-GTCTCGGATTTAGGGGTTTG-3’) and reverse 

(LCM15382: 5’-GCTTAACCCTAAAGCATTGG-3’) primers were used to isolate 

approximately an 830bp fragment of the D-loop control region of mitochondrial DNA 

(mtDNA) (Abreu-Grobois et al. 2006). For some samples, DNA was extracted from 

blood or tissue using QIAamp DNA mini kits (QIAGEN) and amplified by PCR using 

the same primer pairs and the thermal profile described in Carreras et al. (2006). All 

PCR products were purified using Exo1 and FastAP enzymes (Fermentas), and sent 

to Macrogen Europe (Netherlands) where products were cycle sequenced in both 

directions using ABI BigDye protocols (Applied Biosystems), and analysed on an ABI 

3730xl DNA Analyzer (Applied Biosystems). Sequences were aligned, edited and 

analysed using Geneious Pro version 5.1 and haplotypes assigned manually based 

on reference sequences from Genbank databases (http://www.ncbi.nlm.nih.gov/), 

author’s database (Abreu-Grobois, see also Leroux et al. 2012) for hawksbill turtles, 

and the Archie Carr Center for Sea Turtle Research website for green turtles 

(http://accstr.ufl.edu/cmmtdna.html). Unknown haplotypes were re-extracted, re-

sequenced and checked thoroughly against all possible sources. New haplotypes 

were submitted to the repositories listed above. A multiple alignment of sequences of 

haplotypes found in TCI were trimmed to 740bp and 481bp in hawksbill and green 

turtle haplotypes respectively for use in subsequent analyses and regional 
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comparisons. 

 

Data analyses 
Grouping variables 

mtDNA sequence data were grouped by various factors to explore the potential 

influence of temporal sampling, capture location, capture habitat, capture method 

(harvested or released), life-stage (size) and sex. We first explored temporal 

structure in terms of survey year, quarterly period, and month. Then, capture location 

was grouped by distinct sites and sequentially pooled into larger spatial units. 

Capture habitat was grouped into two categories: reef and seagrass habitats. 

Capture method of the animal was used as a factor to examine whether there were 

genetic differences between turtles harvested in the fishery and those captured from 

CMR surveys. Turtle size (CCL) was used to group turtles into four discrete size 

classes to represent the following life history stages: new recruits <35cm, juveniles 

35-65cm, large juvenile (hereafter sub-adults) green turtles 65-97cm, sub-adult 

hawksbill turtles 65-78cm, adult green turtles >97cm and adult hawksbills >78cm. 

Recruit sizes were defined following Velez-Zuazo et al. (2008) for hawksbills and 

Reich et al. (2007) for green turtles. Sub-adult size was broadly defined following 

Goshe et al. (2010) and Krueger et al. (2011).  Adult turtles were defined by size 

based on regional average minimum sizes of nesting females (Witzell 1983, Hirth 

1997 see Stringell et al. in prep., Chapter 2 for details) and were further split into 

‘breeders’, based on confirmed observations of breeding condition (and assumed 

resident in TCI, for example, from nesting and satellite tracking; see Stringell et al. in 

prep., Chapter 2), and ‘foragers’ where breeding condition was not confirmed and 

assumed as visitors to TCI. Haplotype frequencies of TCI nests were also used to 

elucidate patterns in genetic differentiation (see Stringell et al. in prep., Chapter 2). 

 

mtDNA haplotype characterisation 

Haplotype diversity (h) and nucleotide diversity (!) for each group (see grouping 

variables) were calculated in Arlequin v. 3.5 (Excoffier & Lischer 2010). To explore 

structure in the sequence data, with null hypotheses of no structure, we conducted 

haplotype frequency based pairwise FST and genetic distance based "ST 

comparisons, analyses of molecular variance (AMOVAs), and Exact tests of 

population differentiation (with 100000 permutations and 10000 dememorisation 
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steps) using Arlequin. P-values for pairwise FST and !ST were calculated from 10000 

permutations. The best nucleotide substitution model (Tamura 3-parameter model 

(Tamura 1992) with gamma correction=0.05) was determined by maximum likelihood 

in MEGA5 software (Tamura et al. 2011). Principal Coordinate Analysis (PCoA) 

using GenAIEx v6.5 (Peakall & Smouse 2012) was used to analyse pairwise FST 

distances and haplotypes most contributing to the PCoA pattern (Spearman 

correlation >0.45 for green turtles an >0.7 for hawksbills on the first two PCoA axes) 

were constructed using PRIMER v6 software (Clarke & Gorley 2006). For multiple 

comparisons, we employed a modified False Discovery Rate (Narum 2006) instead 

of Bonferroni corrections. 

 We incorporated life-stage and sex into the testing procedure to account for 

possible genetic differentiation between life-stages and sexes and to reflect the 

genetic makeup of these groups as a result of possible differing sex ratios by life-

stage. We sequentially pooled non-significant group pairs and examined each 

structure in turn from a maximal model consisting of each life-stage-sex combination 

- due in part to very small sample sizes (<6) associated with some of these groups, 

particularly the males (see supplementary Tables S1 and S2). 

 

Mixed stock analyses 

A Bayesian many-to-many mixed stock analysis (MSA) was carried out with the R 

“mixstock” package (Bolker et al. 2007) to elucidate potential origins of turtles in TCI. 

Six chains of 20,000 Markov Chain Monte Carlo (MCMC) iterations were run for 

each MSA, with a burn-in of 10,000 and thinning by 60. The Gelman-Rubin 

diagnostic criterion of <1.2 for all variables indicated convergence of MCMC. We 

used the foraging ground centric approach to test the importance of Atlantic and 

Mediterranean rookeries to the TCI mixed foraging stocks. Due to significant genetic 

differentiation (see later), we analysed juvenile male green turtles separately from 

the rest of the immature green turtles (recruit, juvenile and sub-adult females, and 

sub-adult males) but we combined all immature hawksbills. We tested these groups 

against potential source rookeries (Figure 1; Table 1; supplementary Tables S1 and 

S2). We did not test adult hawksbills in an MSA because, due to likely natal 

philopatry (Carr 1968), we assumed the majority of adults that appeared to be in 

breeding condition originated in TCI. Furthermore we found no genetic differentiation 

among the adult groups (of non-nesting adults) and nests. The few that were not in 
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breeding condition (adult foragers) could not be run in an MSA due to low sample 

size. Hawksbill sequence data were truncated to 740bp for comparison with other 

published haplotype frequencies of 16 source rookeries (Table 1a; supplementary 

Table S1). For compatibility with other published green turtle haplotype frequencies 

of 16 source rookeries (Table1b; supplementary Table S2), sequences were 

truncated to 481bp.  We incorporated source rookery size (average number of 

nesting females per year) from published literature (see supplementary Tables S1 

and S2) as priors in the MSAs to improve the reliability of the results (Lahanas et al. 

1998, Bass et al. 2004, Blumenthal et al. 2009). Where rookery size data were 

number of nests, we divided by 3 nests/female/year to convert to females/year 

(Seminoff 2004, Mortimer & Donnelly 2008). Rookery size was tested for 

Spearman’s correlation with arcsine MSA contribution estimates, as were straight-

line distances between all source rookeries and TCI measured using the Mapinfo 

GIS DistanceCalc Tool. 

 

Sex ratios 

Sex ratios of the in-water samples were calculated for each life-stage grouping for 

each species and compared statistically using Chi-squared tests with P-values 

derived from 10,000 MCMC randomisations. Data from published studies that have 

estimated primary sex ratios at potential Atlantic/Mediterranean source rookeries 

were used to inform patterns from the results of in-water sex ratios and Mixed Stock 

Analyses; Hawksbill turtles:  US Virgin Isles (USV, Wibbels et al. 1999), Antigua 

(ANT, Mrosovsky et al. 1992, Glen & Mrosovsky 2004), Guadeloupe (GU, Kamel & 

Mrosovsky 2006), Bahia, Brazil (BRZ, Godfrey et al. 1999) (Figure 1a); Green turtles: 

Cyprus (CYP, Kaska et al. 1998, Broderick et al. 2000), Turkey (TKY, Kaska et al. 

1998, Casale et al. 2000), Costa Rica (CR, Standora & Spotila 1985, Spotila et al. 

1987, Horikoshi 1992), Suriname (SUR, Mrosovsky et al. 1984, Godfrey et al. 1996), 

Poilao, Guinea Bissau (GBP, Rebelo et al. 2011), Ascension Island (ASCI, Broderick 

et al. 2001, Godley et al. 2002, Pintus et al. 2009) (Figure 1b). Where more than one 

sex ratio reference was available for a rookery, or several locations measured within 

a study, the percentage female values were averaged. 

 

Growth rates 

Flipper tagged turtles recaptured after at least one month were used to determine 
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growth rates per year. If a turtle was recaptured more than once we took the CCL of 

the first and last captures. Where sample size allowed, we compared growth rates 

between sexes using Mann-Whitney U or t-tests and against size (measured from 

last capture) as a continuous variable using GLMs following initial examination for 

linearity. 

  



152 

Results 
Sex determination 

We determined sex of 112 immature hawksbill turtles using histology and 

morphology of gonads (n=40, 26 of which had paired hormone concentrations) or 

only using testosterone (T) concentrations (n=72). Sex was determined in 177 

immature green turtles from gonads (n=101, of which 55 had paired hormone 

concentrations) or only using T concentrations (n=76). Twenty-two adult hawksbills 

(>78cm CCL) were sexed from external or gonad morphology and blood samples 

were obtained from 14 of these (seven of each sex). No blood samples were 

collected from the two adult green turtles captured in this study. Testosterone 

concentrations varied widely in both species (Table 2). For animals whose sex had 

been confirmed using gonad morphology, concentrations of T differed significantly 

between sexes in adult hawksbills (W = 2, P = 0.002, n=14), immature hawksbills (W 

= 1, P = 0.002, n=26, although sample size for males was very low, n=3), and 

immature green turtles (W=17, P<0.001, n=56). Testosterone was therefore used to 

develop threshold values for classifying sex in turtles of unknown sex (mostly from 

CMR surveys) that had concentrations above and below these thresholds.  

 Our data indicated that hawksbill turtles were likely to be male if they had T 

concentrations above 518 pg/ml (maximum T value in known females, except in one 

adult female of breeding size), and immature hawksbills - turtles smaller than 78cm - 

could be deemed female below 444pg/ml (minimum T value in known males) (Figure 

2a). Adult female hawksbills were difficult to sex using blood hormones because of 

high T concentration (e.g. the single known female at 83cm sampled after egg-

laying, Figure 2a). All hawksbills larger than 78cm CCL, however, were sexed 

through gonads or external morphology (and/or satellite tagged). Sex determination 

was not considered possible if T concentrations fell between the two threshold 

values, but no hawksbill samples fell within this range. No hawksbill smaller than 

40cm was sexed by both gonad morphology and blood hormones. Only seven turtles 

this size were landed in the fishery and only one juvenile was sampled for gonads 

but not for blood and only one recruit (31cm CCL) was captured and killed for 

consumption in the fishery. Hawksbills recruits (<35cm CCL) were sexed by T 

concentrations in blood (n=16).  

 Green turtles with T concentrations above 216 pg/ml were considered male 
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(maximum T value in females) and below 108 pg/ml were considered female 

(minimum T value in known males) (Figure 2b). However, between these two 

threshold values, determining sex was not possible: 15 turtles of unknown sex fell 

within this range, and were excluded from further sex ratio analysis (Figure 2b). 

Testosterone did not vary significantly with size between species, sex, life-stage 

(GLM: P>0.05), or between years (2009 vs. 2010: P>0.05). When tested for temporal 

effects, female green turtles had higher T levels in the summer (GAM: F1.97=3.624, 

P=0.037) and E2 levels were higher in the summer in samples from unknown sex 

green turtles (that is, turtles that were not confirmed by histology/gross examination 

of gonads: GAM, F1=5.599, P=0.022), although inference from this result is 

confounded by the effects of both sexes. No significant temporal effect was found 

with day of year and T for male, female or combined immature or adult hawksbills 

(GAM: P>0.05). Testosterone concentrations were significantly correlated with 

increasing E2 concentrations in green turtles (Pearson’s R=0.412, t101=4.54, 

P<0.001), but not in hawksbills (supplementary Figure S1). We found no evidence to 

suggest that any of our sampled turtles were intersex (that is, both high 

concentrations of E2 and T: cf Hawkes et al. (2013)) when compared with gonadal 

histology. 

 There were no significant differences in E2 concentrations between the sexes 

(immature hawksbills: W=22.5, P=0.283, n=14; adult hawksbills: W=18, P=0.117, 

n=10; immature green turtles: W=255.5, P=0.363, n=54) and E2 was therefore not 

used on its own to sex turtles using threshold values (Table 2, supplementary Figure 

S2). However, the testosterone: estradiol-17! ratio (T:E2) appeared to discriminate 

sex in both species, with distinguishable profiles seen in the males (hawksbills: 

median=788.1, n=9; green turtles: median=80.2, n=15) and females (hawksbills: 

median=5.2, n=14; green turtles: median=3.9, n=38) (hawksbills: W=122, P<0.001; 

green turtles: W=548, P<0.001), although some overlap between the sexes was 

evident and this distinction was more robust in individuals of a curved carapace 

length (CCL) >50cm (supplementary Figure S3).  

 

Sex ratios 

In immature hawksbills there were just 10 males (M) in our sample of 112 turtles 

(92% female, F) and a shift from a strong female bias in recruits (1M:15F, 94% F) to 

male bias in breeding condition adults (operational sex ratio, 3:1, 25% F). Juvenile 
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and sub-adult sizes were also female biased (1:9.6 and 1:10 respectively, 91% F). In 

non-breeding adults, a 1:1.8 (64% F) ratio was evident (Figure 3). If all hawksbill 

adults were combined there was an equal (Fisherian) sex ratio of 1:1 (50% F, n=22). 

There were no significant differences in sex ratios between recruit to sub-adult life-

stage pairs, or between adults and earlier stages, but significant differences between 

breeder/operational sex ratios and all recruit to sub-adult stages (PFDR<0.016). The 

sex ratio of all adults combined differed significantly from juvenile and recruit stages 

(PFDR<0.016), but not sub-adults (P=0.051).   

 In green turtles, there was a female biased sex ratio in all immature stages 

combined (70% F) and no significant decline in female bias from recruits (1:4.25, 

81% F) to later-stage groups (juveniles 1:2.2, 68% F; sub-adults 1:2.25, 69% F) 

(Figure 3). Estimating the non-breeding adult sex ratio and breeding adult 

(operational) sex ratio was not possible in green turtles with only a single female 

sample for each case. 

 

Growth rates 

We re-captured 22 hawksbills (mean captures per individual=3 ±1.6 (SD), range 2-7 

captures per individual) and 37 green turtles (2.3 ±0.7, range 2-5 captures) over the 

two-year period, some initially tagged several years prior to our study (Richardson et 

al. 2009). The time between first capture and the last recapture ranged between 90-

1799 days (607.1 ±540.4) for hawksbills and between 28-1374 days (250.2 ±279.9) 

for green turtles. Other studies used turtles with a time interval of longer than one 

year between release and recapture in order to reduce biases due to possible 

differences in growth rates among seasons of the year (Chaloupka & Musick, 1997, 

Bjorndal et al. 2000). However, a comparison of growth rates between turtles with a 

recapture time interval of longer than one year (11 hawksbill turtles, 7 green turtles) 

to those with less than one year (11 hawksbill turtles, 30 green turtles) revealed no 

significant difference in mean growth rates (hawksbill turtles: t15.6=0.736, P=0.473; 

green turtles: t7.626=-0.02, P=0.983). We therefore used growth rate data from turtles 

recaptured over an interval of at least one month. Only a single male hawksbill 

(CCL=28.5cm on first capture) was recaptured in this highly female biased 

population and so a comparison between sexes was not possible in this species. 

Growth rates for hawksbill females revealed no significant difference between life-

stages (ANOVA: F2=0.43, P=0.657: Figure 4a). In green turtles, growth rates were 
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not significantly different between sex (t21.9=-0.44, P=0.667) or size (CCL) either 

tested on its own (GLM: F1,35=0.87, P=0.357) or in a two-factor model with sex and 

size (GLM: F2,34=0.66, P=0.522: Figure 4b) or sex and life-stage (ANOVA: 

F3,33=0.466, P=0.708). Data were therefore pooled to provide overall average growth 

rates of 4.2 cm.yr-1 (range: 1.05 ! 7.44, SD=1.7, n=22) in hawksbills turtles and 6.9 

cm.yr-1 (range: 1.95 ! 11.48, SD=2.3, n=37) in green turtles. 

 

Genetic stocks 

For all 118 in-water foraging immature hawksbills there were 20 different haplotypes 

recorded with 41 polymorphic loci in nucleotide lengths truncated to 740bp 

(haplotype diversity h=0.832 ±0.023; nucleotide diversity != 0.0087 ±0.0046). When 

truncated to 384bp for comparison with other foraging ground literature, the TCI 

Hawksbill haplotype diversity was similar to other regional foraging grounds (Formia 

et al. unpublished). We discovered one new haplotype in the foraging stock (EiA93: 

submitted to Genbank). For 16 adult hawksbills (both ‘breeders’ and ‘foragers’) there 

were six haplotypes with 12 polymorphic sites (h=0.617±0.135; !=0.0049±0.0029). 

The TCI hawksbill nesting rookery (n=22 nests) consisted of five haplotypes 

(h=0.407 ±0.128, !=0.0032 ±0.0021; Stringell et al. in prep., Chapter 2), including 

the unique haplotype EiA81 (submitted to Genbank) and the haplotype EiA13 which 

was not found among the immature or adult stocks; EiA13 has only previously been 

found in Cuban nesting rookeries (Leroux et al. 2012). 

 The foraging green turtles analysed (all non-adult sizes regardless of whether 

sex was determined) consisted of 134 individuals comprising 15 haplotypes with 19 

polymorphic loci in the 481bp nucleotide length sequences. Haplotype and 

nucleotide diversity of the TCI green turtle foraging population (h=0.731 ±0.029; 

!=0.0071 ±0.0041) is high compared to most other regional foraging stocks (Bass et 

al. 1998, Lahanas et al. 1998, Bass & Witzell 2000, Bjorndal et al. 2006, Naro-Maciel 

et al. 2006, Proietti et al. 2009, Proietti et al. 2012, Prosdocimi et al. 2012) and 

similar to that found in foraging grounds of Almofala, Brazil (Naro-Maciel et al. 2006), 

Anguilla (Formia et al. unpublished), Barbados (Luke et al. 2004), British Virgin Isles 

(Formia et al. unpublished) and North Carolina, USA (Bass et al. 2006). A single 

adult female captured foraging in TCI, and later nesting in Barbuda (see Richardson 

et al. 2010) had the CmA5 haplotype. The TCI green turtle rookery (n=4 nests) had 

two haplotypes, CmA3 and CmA64 (h=0.500±0.265 and !=0.0010±0.0010), the 
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latter from a nest on Providenciales and the only source rookery recorded for this 

haplotype to date (Stringell et al. in prep., Chapter 2). The single green turtle breeder 

sampled here also had the CmA3 haplotype.  

 Except for the Exact test between years in hawksbills (P=0.035), there was no 

significant temporal (year, month) or spatial genetic structure (capture location, 

habitat, turtle fate - harvested or released) in either species of immature size classes 

for both distance (!ST) and haplotype frequency (FST) based pairwise comparisons. 

Since these results are not significant across all testing methods, annual or seasonal 

genetic differences are thought to be absent or weak at best in both species. 

 

Genetic differentiation: Life-stages and sex 

When considering sex or life-stage (excluding adults) as sole grouping factors, there 

were no significant genetic differences across all testing procedures in either 

species. The combination of these two factors, however, revealed some 

differentiation. From a maximal model consisting of each life-stage and sex 

combination, all non-significant group pairs of recruit, juvenile and sub-adult 

hawksbills were sequentially pooled into two groups by sex (Male, n=6 vs. Female, 

n=79: !ST=-0.038, P=0.4821, FST=0.004, P=0.3559, Exact P= 0.2489; see 

supplementary Table S1 for groups). Due to their similar genetic structure, the sexes 

were combined into a single ‘immature’ group (Imm) and the remaining non-sexed 

but sequenced and sized immature turtle samples were added (n=33) making the 

global ‘immature’ group’s sample size n=118.  Adults (breeding and foraging) of both 

sexes were genetically similar and were combined (n=16) but were different from 

Imm (!ST=0.199, P=0.0036, FST=0.125, P=0.0004, Exact P=<0.0001): this 

differentiation was largely driven by adult breeding males (ABM vs. Imm: !ST=0.149, 

P=0.0270; FST=0.125, P=0.0025; Exact P=0.0660). Nests (n=22) were genetically 

similar to adults (!ST=-0.002, P=0.3743, FST=0.009, P=0.3112, Exact P=0.1499) and 

distinct from Imm (!ST=0.305, P<0.0001, FST=0.209, P<0.0001, Exact P=0.0009). A 

PCoA indicated that the haplotypes most correlated (Spearman’s correlation >0.7 on 

the first two PCoA axes) to the genetic structure in TCI hawksbill were the rarer 

haplotypes of EiA66 and 83 and the common EiA01 of immature size classes (see 

supplementary Table S1 for frequencies). 

 In green turtles, we compared sub-adults, juveniles and recruits of both sexes 

(n=85). We had no samples of male recruits and the single adult forager (CmA5) and 
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breeder (CmA3) were excluded from analyses. The remaining 49 green turtle 

samples were not sexed and therefore were not used in further analyses. Juvenile 

males (JM, n=17) were significantly different to sub-adult males (SAM, n=7) and sub-

adult females (SAF, n=18) across all testing procedures due to the low frequency of 

CmA1 haplotype in the JM group (JM vs. SAF: !ST=0.484, P=0.0011; FST=0.194, 

P=0.0029; Exact P=0.0045. JM vs. SAM: !ST=0.568, P=0.0068; FST=0.301, 

P=0.0127; Exact P=0.0114. FDR10 threshold P=0.0171). Haplotype frequencies were 

significantly different between JM and juvenile female (JF, n=36) (FST=0.105, 

P=0.0166), but not for genetic distance based or exact tests. Female recruits (RF, 

n=7) were not significantly different to later stage groups of either sex. Incorporating 

TCI green turtle nest haplotypes into the testing procedure did not reveal any further 

significant differentiation from other groups, probably due to the small sample size 

(n=4). As a result of this genetic structure, we kept JM as a distinct grouping and 

combined all other life-stage and sex groups (except adults) into an ‘immature’ 

grouping (Imm, n=68): A PCoA indicated that this genetic structure was largely 

correlated (Spearman’s correlation >0.45 on the first two PCoA axes) with the low 

frequencies of CmA01 and CmA05 in JM compared to JF and by the single (rare) 

haplotype (CmA22) only found in JM (see supplementary Table S2 for frequencies).  

 

Mixed stock analysis (MSA) 

Only 7% of Imm hawksbill turtles were of TCI origin. The rest were from Barbados 

Leeward (24%), Cuba and Nicaragua (11% each), Mexico (9%), Guadeloupe (8%), 

Puerto Rico (7%), USVI (6%), and the remaining rookeries each contributed <5% 

(Figure 5, supplementary Table S3). Overall, the pattern of contribution is one of 

mixed origins that is correlated with rookery size (Spearman’s R=0.789, P<0.001), 

but differs from what might be expected if only rookery size was guiding the 

contribution. For example, the largest hawksbill rookery in the Caribbean is in 

Mexico, but ranks fourth in terms of contribution to TCI stocks, Nicaragua - the eighth 

largest rookery - ranks second in contribution and Antigua, the sixth largest rookery, 

ranks twelfth for contribution (supplementary Table S3; see supplementary Table S1 

for rookery sizes).  

 The MSAs of green turtle haplotypes indicated clear differences in source 

contributions between JM and Imm stocks: 84% of JM were estimated to have 

originated from Costa Rica while the majority of Imm came from Florida (>30%), 
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Costa Rica (>20%) and Mexico (>10%) (Figure 5, supplementary Table S3). 

Contribution was again correlated to rookery size (Imm: Spearman’s R=0.958, 

P<0.001; JM: Spearman’s R=0.958, P<0.001) even when the dominating effect of 

Costa Rica was removed (Imm: Spearman’s R=0.956, P<0.001; JM: Spearman’s 

R=0.949, P<0.001) (supplementary Table S4, see Table S2 for rookery sizes).  

 There was no correlation between foraging ground-centric contribution 

estimates and geographic distance of source rookeries for either JM green turtles or 

Imm of both species (Green turtle: JM: R=0.079, P=0.771; Imm: R=-0.026, P=0.925; 

Hawksbill: Imm: R=0.181, P=0.502) (see supplementary Tables S1 and S2 for 

distances). Removal of Costa Rica from the green turtle data, which dominates the 

JM contribution, gave similar non-significant correlations with distance.  

 Pairwise haplotype frequency comparisons between Atlantic hawksbill 

rookeries (Table 2) indicates that the TCI rookery genetic composition is significantly 

different (high FST value) to 60% of rookeries and confirmed in most cases by 

significant Exact tests. There were no significant differences, with low FST values and 

therefore genetic similarity, between the TCI rookery and Barbados Windward, Costa 

Rica, Dominican Republic (Saona Island), Nicaragua, US Virgin Isles and 

Montserrat, although the latter had few samples and thus comparisons are tentative. 

The small sample size (n=4) of the TCI green turtle rookery precludes reliable 

pairwise comparisons of haplotype frequencies with other Atlantic/Mediterranean 

rookeries, but tentatively suggests similarity with Costa Rica, Mexico, Cuba and 

Florida.  
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Discussion 
Sex determination 

While some studies have use blood hormones solely to sex immature turtles (e.g. 

Blanvillain et al. 2008, Hawkes et al. 2013), and several have utilised laparoscopy for 

verification of sex (see Wibbels et al. 2000 for review), our study incorporated paired 

blood and gonad samples from harvested turtles, providing a definitive sex 

verification method. With this, we were able to validate our T methodology for sex 

differentiation across all size-ranges, although it is clear from our results that T 

concentrations vary greatly between individuals. We found no discernible evidence 

of seasonal differences, unlike several other studies (Wibbels et al. 1987, Braun-

Mcneill et al. 2007, Hawkes et al. 2013). Testosterone concentrations were not 

related to size within immature life stages/sizes, but in adult hawksbill males, T 

concentrations were orders of magnitude greater than those of immature turtles. 

Oestradiol-17! was uninformative on its own in this study, but proved useful when 

considered in combination with T, and as expected (E2 is an active metabolic 

product of T), E2 was correlated with increasing levels of T. Despite some turtles 

having both high T and E2 concentrations, contrary to the suggestion of Hawkes et 

al. (2013), we found no evidence of intersex in hawksbill turtles from verification of 

gonads and histology. Rather, it is likely that concentrations of both circulating 

hormones vary among individuals, with some having high levels, especially in adults 

(supplementary Figure S1). 

 Published thresholds of testosterone concentrations in green turtles from the 

neighbouring Bahamas (Bolten et al. 1992, corrected by an order of magnitude 

following Braun-McNeill et al. 2007) were remarkably similar to those of our study 

and provided a similar sex ratio of 68% female (supplementary Table S4). In 

contrast, sex specific threshold limits in hawksbill turtles from various Caribbean 

states (Dominican Republic: Leon & Diez 1999, corrected following Braun-McNeill et 

al. 2007; Puerto Rico: Diez & van Dam 2003, also corrected following Braun-McNeill 

et al. 2007; US Virgin Islands: Geis et al. 2003; South Florida: Blanvillain et al. 2008) 

varied more widely (<162 to <261 in females, >182 to >721 in males); yet similar sex 

ratios were obtained to our results (83% to 93% female), each with low 

misclassification errors (<3.8%: supplementary Table S4). This suggests that plasma 

sex hormones can be used in isolation to estimate gonadal sex. Given that immature 
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turtle stocks, such as those in TCI, are likely to be of mixed genetic origin, it is 

recommended that, in the absence of site specific blood hormone data (ideally 

calibrated with known sex samples through observations of gonads), regional 

average testosterone threshold values would form the basis of relatively accurate 

sex ratio estimates, provided there was sufficient data to encompass the likely 

variation in testosterone concentrations due to, for example, temperature, 

seasonality, breeding and non-breeding periods (Wibbels et al. 1987, Owens 1997, 

Braun-McNeill et al. 2003, Hawkes et al. 2013).  

 

Sex ratios 

Immature stages 
Our results reveal strongly female biased sex ratios in immature stages of both 

species of sea turtle, but especially in hawksbills. A decline in female bias with 

advancing life-stages to approximately Fisherian ratios in adult stages was found in 

the hawksbill population of TCI. The 94% female bias in hawksbill recruits (<35cm 

CCL) and 91% in juveniles (35-65cm CCL) are the highest female biased secondary 

sex ratios yet to be reported from the Wider Caribbean Region (WCR).  Values 

between 70-80% have been observed in Florida, Dominican Republic and USVI 

(Leon & Diez 1999, Geis et al. 2003, Blanvillain et al. 2008) and between 69-89% in 

British Virgin Isles (Hawkes et al. 2013). A slight male bias, however, has been 

recorded in juveniles at Puerto Rico (44%: Diez & van Dam 2003).  

 The green turtle foraging population is female biased and our results suggest, 

albeit without statistical significance, that bias reduces with age from 81% to 69%. 

This is similar to the in-water secondary sex ratios (of all size life-stages below adult) 

reported elsewhere in the WCR (Bolten & Bjorndal 1992, Bolten et al. 1992, 

Stabenau et al. 1996, Bjorndal et al. 2000).  

 Why hawksbills have such a high female bias in younger stages at TCI foraging 

grounds is unknown, but it seems reasonable to suppose that the primary sex ratios 

of at least the rookeries contributing the majority of turtles (Barbados leeward, 

Nicaragua and Cuba; see Figure 5) are highly female biased. Highly skewed primary 

sex ratios have been reported in hawksbill nests from Bahia, Brazil (Godfrey et al. 

1999), Buck Island USVI (Wibbels et al. 1999) and Antigua (Glen & Mrosovsky 2004, 

but see Mrosovsky et al. 1992) (Figure 1a). Male biased sex ratios, however, have 

been reported in Guadeloupe (26% Female: Kamel & Mrosovsky 2006), Florida (7% 
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female: Dalrymple et al. 1985, although caution is noted as only one hawksbill nest 

was examined here) and Dominican Republic (Revuelta et al. 2013, estimates from 

incubated nests) which suggests that female bias cannot be considered a general 

rule, although rookery sizes here are small and so too their influence on mixed 

stocks. 

 In most cases, highly female biased primary sex ratios have been reported in 

Atlantic and Mediterranean green turtle rookeries (Figure 1b). Tortuguero, Costa 

Rica, however, had highly varying sex ratio data; in one study sex ratios ranged from 

0-100% female depending on where nests were laid (Horikoshi 1992). In another 

study, Standora and Spotila (1985) found 7% of offspring were female in clutches 

laid in the vegetation line, 72% female in those near the water and 87% at open 

beach nest sites. In a further study at Tortuguero, Spotila et al. (1987) found 67% 

females in 15 nests. Such variation at this key rookery undoubtedly regulates the sex 

ratios for most of the Caribbean. It is possible that juvenile male green turtles in TCI 

may have originated from cool nests at the vegetation line of Tortuguero, and other 

immature turtles of Costa Rica origin from more open sections of this beach.   

 It is clear from these results that the limited data available on primary sex ratios 

from the Atlantic and Mediterranean cannot adequately explain the observed sex 

ratios of in-water stocks, because the primary sex ratios are highly variable between 

nests, season, years and nest site position (Horikoshi 1992, Kamel 2013) and as a 

result of other varying influences e.g. cooling rainfall (Godfrey et al. 1996, Miller et al. 

2003, Houghton et al. 2007). Such variation in exogenous conditions may be the key 

to producing enough males for an operational sex ratio (Bell et al. 2010, Hays et al. 

2010) capable of sustaining populations in a warming world (Hawkes et al. 2007, 

Poloczanska et al. 2009, Witt et al. 2010, Fuentes et al. 2011, Hamann et al. 2013). 

Further primary sex ratio data from other sites around the Caribbean would help 

elucidate future sex-based MSA. 

 

Adult sex ratios 

Why adult sex ratios in TCI are markedly different from those of earlier stages 

remains unknown, but to our knowledge this is the first study to present such clear 

evidence of shifting sex ratios between all stages in the same location.  

 Male adult hawksbills in our study appear to be present at more-or-less equal 

ratios to females, but there was a male-biased operational sex ratio, although 



162 

caution is necessary here as fishermen report that adult males are easier to catch 

than adult females (T. Stringell pers. obs.). Several studies have suggested that 

adult males may skew the sex ratio by having higher breeding periodicity than 

females but maintain a balanced operational sex ratio through multiple mating 

(Limpus 1993, FitzSimmons et al. 1997, Hays et al. 2010), but others suggest that 

promiscuity is less prevalent than once thought, with as many fathers as mothers in 

the green turtle population of Cyprus (Wright et al. 2012). Indeed, in some studies 

male-biased adult sex ratios have been reported despite female-biased juvenile sex 

ratios (e.g. green turtles in the southern Great Barrier Reef, Chaloupka & Limpus 

2001).  

 Sample size was limited for adult hawksbills in our study (and very low for adult 

green turtles due in part to their highly seasonal breeding season and likely small 

breeding population size; Stringell et al. in prep., Chapter 2), so drawing definitive 

conclusions from sex ratios in this life-stage is speculative. Clearly, late maturity in 

marine turtles gives large time differences (decades) between the sex ratios in adult 

turtle populations and primary sex ratios at nesting beaches.  It is possible that 

historic beach temperatures may have favoured balanced sex ratios in nests, but 

literature from this time also indicated, in the main, female biased primary ratios (see 

Hawkes et al. 2009 for review). There are, therefore, several possible balancing 

mechanisms that appear to make the overall sex ratio of adults similar to 1:1 than 

that expressed in primary and secondary stages.  

 

Possible sex ratio balancing mechanisms 

Sex biased dispersal 

Sex biased dispersal or migration could be an important factor in balancing sex 

ratios. Sex differences in migration/dispersal rates (e.g. Limpus 1993, FitzSimmons 

et al. 1997, van Dam et al. 2008, Velez-Zuazo et al. 2008, Hays et al. 2010 in adults; 

Casale et al. 2002 in juveniles), may be a result of differential genetic structuring 

between the sexes (Casale et al. 2002, but see Maffucci et al. 2013). The results 

from our mtDNA analysis suggest juvenile male green turtles may be genetically 

different from most other groups. This would imply possible differences in origin and 

sex biased dispersal. The MSA indicated that these males were highly likely to have 

originated from Costa Rica. Alternatively they could be the result of incubation in the 

early or late parts of the season when temperatures are lowest. Immigration of young 
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females from several rookeries that return to their origin when they reach adulthood, 

might explain the shift from female bias to Fisherian ratios with age/size. 

Incorporating sex, life-stage and genetics has provided some insight in sex biased 

dispersal in juvenile green turtles (here defined as 35cm-65cm). Given the growth 

rates of green turtles (Bjorndal et al. 2000), this size cohort implies that hatchlings 

from Tortuguero beach, Costa Rica, may have hatched a decade or more prior to 

this study. It is unlikely that it was significantly cooler on average then, than in more 

recent times, so it is probable that >80% of juvenile male green turtles hatched from 

cooler times of the season, or from cooler parts of the beach (e.g. from periods of 

prolonged cooling rainfall (Houghton et al. 2007) or from the vegetation line 

(Horikoshi 1992)) when and where temperatures promote production of males. But 

clearly, sand albedo, nest depth and egg position will have confounding influence 

(Hawkes et al. 2009).  

Investigating the likely influence of ocean currents in linking rookeries of origin to 

the green turtle stocks suggests supply from southwestern Caribbean, Gulf of 

Mexico and Florida which join the Caribbean current and in turn the Gulf Stream and 

Antilles current (Figure 1). Conversely, widespread supply to the immature hawksbill 

stock of TCI is likely from throughout the Wider Caribbean with more probable 

contribution from the Gulf of Mexico region into the Gulf Stream with return flows to 

TCI waters via the variable Antilles current; hatchling hawksbills from Barbados may 

disperse via the Caribbean current, enter the Gulf of Mexico region and recruit to TCI 

waters as described above (Figure 1).  These data perhaps suggest a passive 

dispersal of hawksbill hatchlings and recruitment to TCI waters. However, a 

protracted analysis of the influence of currents on the phylogenetics of these 

Atlantic-wide data is beyond the scope of this paper (but see Blumenthal et al. 2009, 

Monzón-Argüello et al. 2012, Proietti et al. 2012, and Carreras et al. 2013 for 

potential approaches). 

 Lack of genetic differentiation in other life-stage/sex combinations provides no 

compelling reason to separate groups to examine sex biased dispersal. This 

highlights some of the issues of relying on MSA to explore such questions: if 

haplotype frequencies are not differentiated between the life-stage/sex groupings in 

question then sophisticated tools such as Bayesian MSA will not be able to 

distinguish origin. Additionally, and perhaps more importantly, annual variations in 

source contribution to MSA have implications for drawing conclusions (Bjorndal & 
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Bolten 2008). In their study of green turtles in Bahamas, contributions from Costa 

Rica varied greatly between years over a period of a decade due to “sweepstake” 

recruitment pulses (Hedgecock 1994), that is, a small portion of individuals from a 

few rookeries can produce the majority of recruits by chance - escaping storms, 

predators, ocean currents (Bjorndal & Bolten 2008). Thus, large variance in annual 

production of hatchlings that successfully survive to coastal recruitment may drive 

the composition of mixed stocks and thus the conclusions of the MSA. If such 

“sweepstakes” recruitment occurred in TCI, then differential recruitment from source 

stocks also has a sex biased dispersal component. Such insights from our work in 

TCI will only be gained from long-term data collection, such as those in the Bahamas 

(Bjorndal & Bolten 2008). 

 

Differential fitness 

Another potential sex ratio balancing mechanism might be differential fitness 

between the sexes that might result from differences in hatchling size, speed of 

incubation, timing of hatching, growth rates, predation rates etc. Growth rates 

indicated no significant difference between the sexes implying that this measure of 

fitness did not explain biased sex ratio. Our hypothesis was that perhaps males grew 

more slowly in juvenile stages and this might make them more prone to predation for 

longer. Bjorndal et al. (2000), however, found male green turtles grew faster than 

females in the Bahamas, but elsewhere females grew faster than males (Limpus & 

Chaloupka 1997, Chaloupka et al. 2004). In the Great Barrier Reef, hawksbills 

females grew faster than males (Chaloupka & Limpus 1997, but see Bell & Pike 

2012) but no difference between the sexes was found in Barbados (Krueger et al. 

2011). These studies illustrate that timing and location have significant influences on 

growth rates. Predation of juvenile to adult sizes is generally limited to large 

predators (Heithaus et al. 2008). The highest risk of predation is to earlier stages 

(eggs and hatchlings) (Gyuris 1994, Heithaus 2013) when growth rate in hatchlings 

may be more likely to influence fitness. For example male hatchlings from cooler 

nests tend to incubate for longer and emerge with larger body size (Gyuris 2000), 

and as such have stronger swimming ability than female hatchlings (Booth & Evans 

2011, but see Burgess et al. 2006) to pass through coastal areas before reaching 

offshore pelagic zones. Transit through the coastal zone at this vulnerable stage is 

prone to high levels of predation from a wide range of predators of varying sizes 
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(Gyuris 1994, Gyuris 2000, Pilcher et al. 2000). The sex ratios in later life-stages 

may therefore be a result of higher production of female hatchlings from rookeries 

that also produce some male hatchlings with better survival prospects. 

 

Genetic structure and connectivity  

Bowen et al. (2005) found progressively greater genetic differentiation among 

regional foraging sites in older life stage turtles, resulting in “complex population 

structure” (Bowen & Karl 2007). Similarly, although no structure was found among 

younger life-stages in our study (except for juvenile male green turtles), significant 

structure was found between immature stages and adults. Different innate 

behaviours at different life cycle stages e.g. oceanic hatchling dispersal, juvenile 

ontogenetic shifts from oceanic to coastal habitats, sequential developmental 

migrations, and adult breeding migrations (philopatry), are likely to drive this 

population structure (Bowen & Karl 2007). For example, oceanic-stage juvenile 

loggerheads in North Atlantic are apparently well mixed with no obvious population 

structure (Bolten et al. 1998), whilst older life-stages of coastal feeding aggregations 

are correlated to the haplotype composition of nearest nesting populations (Bass et 

al. 2004, Roberts et al. 2005). This complex population structure results in a suite of 

threats differentially affecting each life history stage, which in turn, may differentially 

affect separate populations (Bowen & Karl 2007). Coastal management strategies 

may fortuitously provide better protection of nesting colonies, adults and large 

juveniles - the key life-stages for population maintenance (Crouse et al. 1987). 

Threats to adults and nests in TCI affect almost exclusively the TCI population, 

whereas threats to recruits, juveniles and sub-adults also affect other distant 

rookeries (Carreras et al. 2013). In TCI where nesting rookeries are small, efforts to 

protect and maintain large and adult size-class turtles in coastal waters are likely of 

key importance.  

 Previous studies (Diaz-Fernandez et al. 1999, Bowen et al. 2007, Velez-Zuazo 

et al. 2008, Blumenthal et al. 2009) indicated the highly mixed nature of the hawksbill 

turtle aggregations at foraging grounds in the Caribbean. Our MSA results confirmed 

this for TCI and backs the assertion by Richardson et al. (2009) that this foraging 

area is regionally significant for both hawksbill and green turtles. Our analysis shows 

that the immature hawksbill foraging stock is genetically different from the TCI 

nesting rookery and adults, presenting further evidence of differences between life-
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stages and the broad geographic contribution to TCI foraging aggregations. 

Due to the small size of the TCI green turtle rookery, contributions to foraging 

grounds across the Caribbean are likely to be negligible. A clearer indication of 

connectivity to other mixed stocks may yet be found now that the unique TCI nesting 

haplotype profile including the endemic Cm-A64 is known and can be identified in 

future Caribbean foraging stock assays. Prior to this study, this haplotype was found 

only in a single foraging green turtle juvenile captured in Indian River Lagoon, Florida 

(Shamblin pers. comm. 2012). Moreover, the unique haplotype discovered in one of 

four sampled green turtle nests illustrates that, despite being a small and remnant 

population (Richardson et al. 2009), this green turtle rookery is genetically singular 

and protection of this unique genetic signature requires urgent action.  

In a many-to-many MSA of short hawksbill haplotypes (truncated to 384bp), the 

TCI hawksbill rookery supplied foraging grounds across the Caribbean, and due to 

the minor to moderate size of the rookery, contributions were minimal (<10%) 

(Stringell et al unpublished data). However, once the unique TCI nesting haplotype 

of EiA81 is characterised in Caribbean foraging stocks, a clearer indication of 

connectivity to other mixed stocks may be found. 

 

Conservation implications 

Knowledge of sex ratios in marine turtle populations is fundamental for their effective 

conservation and important for determining likely effects of human impacts on 

population maintenance. In TCI, both hawksbill and green turtles are exploited for 

food, and the hawksbill fishery is one of the largest documented in the Atlantic 

(Stringell et al. 2013, Chapter 1). The effects of the fishery in TCI on its sea turtle 

populations can now be better assessed with a robust understanding of the sex 

ratios at various life-stages. It is clear that with the highly female biased populations, 

harvest of juvenile turtles is unlikely to be detrimental to the supply of females.  

 The mixed composition of the foraging stocks of both species in TCI is an 

expected result, given the multitude of literature on Caribbean green and hawksbill 

turtle MSAs indicating similar conclusions for several study sites (see Bowen & Karl 

2007 for review). What is interesting about these results, however, is the likely small 

proportion of turtles in foraging sites that are of TCI origin. TCI fishers have 

traditionally viewed foraging turtle aggregations as a closed population originating 

from the TCI and thus a native resource for justifiable exploitation (T. Stringell pers. 
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obs.). A similar scenario occurred in the 1990s when Cuban authorities wished to 

exploit hawksbill turtles for shell trade, arguing that the turtles in Cuban waters were 

of Cuban origin (Carrillo et al. 1999, Moncada et al. 2012 and references therein). 

MSA played an important part in confirming that their foraging hawksbill stock was 

mixed, although a high proportion of those foraging turtles also originated from 

Cuban rookeries (Bowen et al. 2007). Similarly, the TCI turtle fishery is harvesting 

turtles that originate in other jurisdictions, most of which have protective measures in 

place (Richardson et al. 2006). For the hawksbill, exploitation of adults is likely to 

disproportionately affect the native TCI population, although distant sources will still 

be impacted, perhaps severely in the case of small rookeries. Exploitation of recruits, 

juveniles and sub-adults, however, is likely to predominantly affect other distant 

populations e.g. in Barbados, Nicaragua and Cuba (and mainly females). The results 

of this study have informed the development of new protective measures that 

facilitate access to foraging juvenile turtles while safeguarding sub-adult and adult 

turtles in TCI waters (Stringell et al. 2013, Chapter 1, Stringell et al. in prep., Chapter 

2). 

 In a warming world with predicted feminisation of sea turtle populations 

originating from ‘hot’ beaches (Hawkes et al. 2007, Hawkes et al. 2009, Poloczanska 

et al. 2009, Witt et al. 2010, Fuentes et al. 2011, Hamann et al. 2013), operational 

sex ratios may become critical in years to come, although there is some evidence 

that the Allee effect (a decreased per capita population growth rate at low density, 

Allee et al. 1949) is less likely to be as critical in turtles as other taxa (Hays 2004, 

Bell et al. 2010). Climate change, however, may have unintended consequences on 

sea turtle population maintenance, and it remains to be seen whether turtles will 

weather the change. 
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Table 1. Pairwise FST values between Atlantic/Mediterranean rookeries and TCI rookeries (TCI.R: hawksbill turtles, n=22; green 
turtles, n=4) and TCI mixed stocks (green turtle juvenile males (JM, n=17) and other immature turtles (Imm, n=68) and immature 
hawksbills (Imm, n=118). Data based on hawksbill turtle (A) and green (B) turtle haplotype frequencies. Hawksbill haplotypes are 
long sequences (740bp), green turtle haplotypes are 481bp. * denotes significant Exact test at P < 0.05. Bold = significant at FDR 
corrected P values for pairwise comparisons (hawksbill FDR31, P=0.0124; green turtle FDR47, P=0.0113). 
 

A) 
Abbrev. No 

samples 
No  

haps. 

FST 
Genetic data source 

Hawksbill turtle rookery TCI.R TCI.Imm 

Antigua (Jumby Bay) ANT 72 3 0.512* 0.170* LeRoux et al 2012 
Barbados (Leeward) BLE 54 1 0.868* 0.317* Browne et al 2010 
Brazil (Bahia) BRZ 66 4 0.609* 0.188* Lara-Ruiz et al 2006 
British Virgin Islands BVI 4 4 0.420* 0.006  Formia et al unpubl. 
Barbados (Windward) BWI 30 3 0.028  0.143  Browne et al 2010 
Costa Rica (Tortuguero) CR 60 7 0.064* 0.130* a LeRoux et al 2012 
Cuba (Doce Leguas) CUB 70 5 0.712* 0.244* Diaz-Fernandez et al 1999 
Dominican Republic (Jaragua NP) DRJ 15 6 0.274* 0.063  Carerras et al 2013 
Dominican Republic (Saona Island) DRS 33 4 0.027  0.144* Carerras et al 2013 
Guadeloupe GU 74 4 0.788* 0.429* LeRoux et al 2012 
Mexico (Yucatan ) MEX 20 4 0.612* 0.317* LeRoux et al 2012 
Montserrat MON 5 3 0.177  -0.050  Formia et al unpubl. 
Nicaragua (Pearl Cays) NIC 95 5 0.077* 0.150* LeRoux et al 2012 
Puerto Rico (Mona Island) PRV 109 7 0.104* 0.162* b LeRoux et al 2012 
US Virgin Islands (Buck Island) USV 67 6 -0.002  0.179* LeRoux et al 2012 
Turks and Caicos Islands TCI 22 5 - 0.125* Stringell et al. in prep.; This study 
  Total 796 71       
a  includes 42 samples from Troeng et al 2005 

     b includes 94 samples from Velez-Zuazo et al 2008 and 15 resequenced samples from Bass et al 1996 
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Table 1. Cont. 
 
B) 

Abbrev. No 
samples 

No 
haps 

FST 
Genetic data source 

Green turtle rookery TCI.R TCI.JM TCI.Imm 

Ascension Island ASCI 245 13 0.671* 0.673* 0.498* Formia et al 2007 
Aves Island, Venezuela AVI 67 2 0.811* 0.757* 0.479* Shamblin et al 2012 
Bioko, Equatorial Guinea BOK 50 2 0.775* 0.742* 0.466* Formia et al 2006 
Atol das Rocas & Fernando de Noronha, Brazil BRZ 69 7 0.53* 0.549* 0.347* Bjorndal et al 2006 
Tortuguero, Costa Rica CR 433 5 0.138 0.06* 0.446* Bjorndal et al 2005 
a Southwest Cuba CUB 28 7 -0.031 0.029 0.065* Ruiz-Urquiola et al 2010 
b Northern and Greek Cyprus CYP 61 3 0.835* 0.794* 0.549* d Bagda et al 2012 
Florida, USA FLO 24 3 0.136 0.159* 0.019 Encalada et al 1996 
Poilao, Guinea Bissau GBP 51 1 0.966* 0.885* 0.551* Formia et al 2006 
Quintana Roo, Mexico MEX 20 7 0.136 0.203* 0.005 Encalada et al 1996 
c Gulf of Guinea: Principe & Sao Tome, Gulf of Guinea PRST 26 7 0.449* 0.493* 0.277* Formia et al 2006 
Galibi, Suriname SUR 58 3 0.858* 0.796* 0.498* Shamblin et al 2012 
Turkey TKY 187 4 0.953* 0.925* 0.733* Bagda et al 2012 
Trinidade, Brazil TRI 99 7 0.496* 0.519* 0.335* Bjorndal et al 2006 
Buck Island, US Virgin Islands USV 49 2 0.805* 0.749* 0.462* Shamblin et al 2012 
Turks & Caicos Islands TCI 4 2 - -0.072 0.075 Stringell et al. in prep.; This study 
  Total 1471 42         
a Two sites combined 

       b Northern Cyprus (Alagadi and Iskele peninsula): Bagda et al 2012; Kaska 2000. Greek Cyprus: Lara Bay 
 c Corisco excluded 

       d also Bowen et al 1992; Encalada et al 1996; Kaska 2000 
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Table 2. Mean ± standard deviation (SD) and range of testosterone and oestradiol-17! blood hormone concentrations (pg/ml) in 
hawksbill and green turtles of different life-stages and sexes. Known sex was determined via gonad morphology/histology or 
external secondary sex features. Total range includes these plus turtles of unknown sex where only blood samples were taken. 

 

Hormone Life stage Sex 
Hawksbill turtles   Green turtles 

Mean ± SD Min Max n   Mean ± SD Min Max n 

Testosterone Immature Total range 184.71 ± 386.03 15.72 3023.95 98 
 

455.25 ± 923.31 8.45 5083.69 131 

  
Known males 1395.57 ± 1416.90 443.88 3023.95 3 

 
1062.30 ± 957.77 108.06 3123.29 16 

  
Known females 81.04 ± 101.40 22.46 517.92 23 

 
51.26 ± 48.83 8.45 215.79 39 

 
  

          
 

Adults Total range 8535.79 ± 12664.50 13.58 39890.43 14 
 

- - - - 

  
Known males 16598.31 ± 13965.58 1307.03 39890.43 7 

 
- - - - 

  
Known females 473.27 ± 892.61 13.58 2473.31 7 

 
- - - - 

  
           Oestradiol-17! Immature Total range 18.08 ± 26.07 3.18 116.88 32 

 
28.87 ± 57.14 2.33 419.77 102 

  
Known males 6.39 ± 2.78 3.18 8.00 3 

 
21.43 ± 37.56 3.18 151.96 15 

  
Known females 11.90 ± 10.73 3.18 40.75 11 

 
28.34 ± 73.36 2.33 419.77 38 

 
  

          
 

Adults Total range 62.71 ± 72.17 8.00 191.22 10 
 

- - - - 

  
Known males 37.52 ± 53.60 8.00 154.60 7 

 
- - - - 

    Known females 121.47 ± 86.14 25.18 191.22 3   - - - - 
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Figure 1. Hawksbill (A) and green turtle (B) rookeries (black circles) used in the 
MSA.  Location labels are listed in Table 1. Arrows in B indicate generalised surface 
currents applicable for both maps. Brazil (BRZ) rookery indicated on inset of A. 
Cyprus (CYP) and Turkey (TKY) rookeries indicated on Mediterranean inset of B. Pie 
charts indicate % female (black) at rookeries where primary sex ratio data exist. 
Hawksbill turtles: approx. 90% at Bahia, Brazil (Godfrey et al. 1999) and Buck Island 
US Virgin Islands (USV Wibbels et al. 1999); approx. 63% at Antigua (Mrosovsky et 
al. 1992, Glen & Mrosovsky 2004); 26% female at Guadeloupe (GU Kamel & 
Mrosovsky 2006). Green turtles: 54-68% at Suriname (SUR: Mrosovsky et al. 1984, 
Godfrey et al. 1996); 70.2% at Poilao Guinea Bissau (GBP Rebelo et al. 2011); 79% 
at Cyprus (Kaska et al. 1998, Broderick et al. 2000), 92% at Turkey (Broderick et al. 
2000, Casale et al. 2000); 75-87% at Ascension Island (ASCI Broderick et al. 2001, 
Godley et al. 2002, Pintus et al. 2009); 54% average from Tortuguero, Costa Rica 
(CR Standora & Spotila 1985, Spotila et al. 1987, Horikoshi 1992).   
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Figure 2. Hawksbill turtle (A) and green turtle (B) testosterone concentration (log 
pg/ml) plotted against curved carapace length (CCL, cm). Filled circles indicate 
individuals of known sex derived from gross morphology or histology of gonads: 
females (black), males (grey). Empty circles are turtles of unknown sex (no 
observations of gonads). Maximum or minimum testosterone concentrations 
observed in known sex individuals (dashed lines: colour scheme as before) are used 
to construct threshold values for determining sex in unknown sex individuals 
(between the dashed lines, sex determination is infeasible). See Table 2 for ranges 
of testosterone concentrations for each species, relative to life-stage and sex. 
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Figure 3. Sex ratios of hawksbill (dark grey) and green turtle (light grey) for the 
different life-stages. Recruits (R) <35cm curved carapace length (19.6-34.1cm in 
hawksbill, 25.1-34.4cm in green turtles), Juveniles (J) 35-65cm, sub-adults (SA) 65-
97cm in green turtles and 65-78cm in hawksbills, foraging adults (A), breeding adults 
(B) are here defined as >78cm in hawksbills and >98cm in green turtles (see main 
text). Numbers above bars indicate sample size. Dashed line indicates equal sex 
ratio. Sex ratio data in hawksbill turtles: R, 1M:15F; J, 8M:77F; SA,1M:10F; A, 
5M:9F; B, 6M:2F; Green turtles: R, 4M:17F; J, 41M:89F; SA, 8M:18F; *No adult 
green turtle sex ratios are shown because only a single female was captured in each 
case. 
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Figure 4. Growth rates in female hawksbill turtles (A) and female and male green 
turtles (B, C). Data are from known sex individuals, as determined by gross 
morphology or histology of gonads, or via testosterone concentrations in blood 
plasma. Lines indicate GLM fit and 95% CI. Curved carapace length (CCL) of final 
recaptures ranged between 30.6 and 72.4cm in female hawksbill turtles (2 recruits, 
18 juveniles, 1 sub-adult; a single male hawksbill turtle recruit [30cm CCL, growth 
rate 4.18cm/yr] is not shown); between 29.6 and 61.7cm in female green turtles (5 
recruits, 19 juveniles), and between 33.3 and 66.5cm in male green turtles (1 recruit, 
11 juveniles, 1 sub-adult).  
  

30 40 50 60 70

0

2

4

6

8

10

12

CCL

G
ro

w
th

 ra
te

 c
m

/y
r

A. Hawksbill turtle, female (n=21)

30 40 50 60 70

0

2

4

6

8

10

12

CCL

G
ro

w
th

 ra
te

 c
m

/y
r

B. Green turtle, female (n=24)

30 40 50 60 70

0

2

4

6

8

10

12

CCL

G
ro

w
th

 ra
te

 c
m

/y
r

C. Green turtle, male (n=13)



187 

 
Figure 5.  Contribution estimates of Atlantic and Mediterranean source rookeries to 
TCI foraging aggregations as determined by Bayesian Mixed Stock Analyses using 
rookery size as weighted priors. Contributions to the immature (Imm) hawksbill stock 
(n=118) were estimated using 740bp haplotype data. Green turtle mixed stocks 
consist of Juvenile males (JM, C; n=17) and all other immature turtles (Imm, B; 
n=68). See supplementary Table S3 for values. 
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Chapter 4: Supplementary Information 
 

Table S1. Haplotype frequencies using long sequence lengths (740bp) at hawksbill rookeries and mixed stocks used in 
the Mixed Stock Analyses. TCI foraging groups that make up the mixed stock are also listed. N denotes the number of 
samples in each group. Haplotype diversity (h) and nucleotide diversity (!) was calculated in Arlequin 3.5 (Excoffier & 
Lischer 2010), the latter using a Tamura 3-parameter substitution model (Tamura 1992).  
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Table S2. Haplotype frequencies using short sequence lengths (481bp) at green turtle rookeries and mixed stocks used in 
the Mixed Stock Analyses. TCI foraging groups that make up the mixed stock are also listed. N denotes the number of 
samples in each group. Haplotype diversity (h) and nucleotide diversity (!) was calculated in Arlequin 3.5 (Excoffier & Lischer 
2010), the latter using a Tamura 92 3-parameter substitution model. Rookery size (females pa) is calculated from number of 
nests (Seminoff 2004, Mortimer & Donnelly 2008). 
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Table S3. Hawksbill (A) and green turtle (B) Mixed Stock Analyses foraging ground 
centric mean contributions ± 95% CIs using models with rookery (source size) 
weighted priors. Rank contribution and source size shown in parenthesis. Hawksbill 
long sequence length (740bp) haplotypes were used for the TCI immature mixed 
stock. Green turtle 481bp sequence length haplotypes were used for the TCI 
immature and juvenile male mixed stocks. See Table S2 for rookery abbreviations. 
 
A)  Hawksbill 740bp Immature 

Rookery Relative source 
size (rank) 

Contribution 
(rank) 95% CI 

ANT 0.039 (6) 0.022 (12) 0.000-0.073 
BLE 0.145 (3) 0.235 (1) 0.024-0.412 
BRZ 0.095 (5) 0.053 (9) 0.001-0.188 
BVI 0.003 (14) 0.006 (15) 0.000-0.018 
BWI 0.015 (11) 0.049 (10) 0.003-0.118 
CRI 0.004 (13) 0.013 (13) 0.001-0.033 
CUB 0.158 (2) 0.107 (3) 0.004-0.332 
DRJ 0.002 (15) 0.006 (14) 0.000-0.015 
DRS 0.013 (12) 0.031 (11) 0.001-0.086 
GU 0.017 (10) 0.084 (5) 0.040-0.132 
MEX 0.351 (1) 0.093 (4) 0.032-0.173 
MON 0.001 (16) 0.003 (16) 0.000-0.009 
NIC 0.020 (8) 0.110 (2) 0.044-0.177 
PRV 0.097 (4) 0.065 (7) 0.002-0.198 
USV 0.022 (7) 0.059 (8) 0.003-0.147 
TCI 0.019 (9) 0.065 (6) 0.005-0.139 

 
B)  Green turtle 481bp Immature   Juvenile Male 

Rookery Relative source 
size (rank) 

Contribution 
(rank) 95% CI   Contribution 

(rank) 95% CI 

ASCI 0.075 (2) 0.037 (5) 0.036-0.077 
 

0.018 (4) 0.018-0.048 
AVI 0.009 (9) 0.019 (8) 0.018-0.044 

 
0.004 (10) 0.004-0.014 

BOK 0.010 (8) 0.017 (9) 0.016-0.044 
 

0.006 (9) 0.006-0.020 
BRZ 0.002 (13) 0.005 (13) 0.005-0.016 

 
0.001 (13) 0.001-0.005 

CR 0.688 (1) 0.229 (2) 0.193-0.198 
 

0.845 (1) 0.200-0.102 
CUB 0.004 (11) 0.007 (11) 0.007-0.020 

 
0.002 (11) 0.002-0.007 

CYP 0.001 (14) 0.002 (14) 0.002-0.005 
 

0.001 (14) 0.001-0.002 
FLO 0.073 (3) 0.378 (1) 0.202-0.208 

 
0.050 (2) 0.046-0.100 

GBP 0.030 (6) 0.034 (7) 0.033-0.066 
 

0.015 (5) 0.014-0.043 
MEX 0.031 (5) 0.161 (3) 0.104-0.155 

 
0.020 (3) 0.019-0.063 

PRST 0.004 (12) 0.006 (12) 0.006-0.017 
 

0.002 (12) 0.002-0.006 
SUR 0.042 (4) 0.055 (4) 0.051-0.078 

 
0.012 (7) 0.012-0.036 

TKY 0.008 (10) 0.012 (10) 0.011-0.029 
 

0.011 (8) 0.011-0.029 
TRI 0.024 (7) 0.037 (6) 0.035-0.068 

 
0.013 (6) 0.013-0.036 

USVI 0.001 (15) 0.001 (15) 0.001-0.004 
 

0.000 (15) 0.000-0.001 
TCI 0.000 (16) 0.001 (16) 0.001-0.002   0.000 (16) 0.000-0.001 
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Table S4. Comparison of testosterone thresholds and estimated sex ratios in immature turtles from TCI.  For this comparison, sex 
was assigned solely through testosterone concentrations, even if turtles were of known sex. Turtles of known sex that also had 
paired testosterone samples (green turtles [Cm], n=55; hawksbill turtle [Ei], n=26) were used to establish the misclassification rate, 
the difference in numbers of turtles accurately determined and the effect on sex ratio. Unknown sex turtles were those whose 
testosterone concentrations fell between threshold values. 

 

 
 

  

Testosterone thresholds 
(pg/mL) Assigned sex 

       
Source Species Male (M) Female (F) M F Unknown Mis-

classified 
% Mis-

classified 
F : M 
Ratio 

% 
F 

Difference 
% F 

Successfully 
sexed 
turtles 

Difference 
from 

actual 

This study Cm >216 <108 38 87 22 1 1.818 2.3:1 70 1 125 -6 
Bolten et al. (1992) Cm >200* <100* 39 84 24 1 1.818 2.2:1 68 -1 123 -7 

Average Cm >208 <104 39 85 23 1 1.818 2.2:1 69 0 124 -6 
This study Ei >518 <444 7 89 2 0 0 12.7:1 93 1 96 -2 
Leon & Diez (1999) Ei <200* <162* 16 80 2 1 3.846 5:1 83 -1 96 0 
Diez & van Dam (2003) Ei >182* <170* 16 81 1 1 3.846 5.1:1 84 -1 97 0 
Geis et al. (2003) Ei >459 <186 8 82 8 1 3.846 10.3:1 91 0 90 -1 
Blanvillain et al. (2008) Ei >720 <261 6 84 8 0 0 14:1 93 2 90 -3 

Average Ei >416 <245 9 84 5 1 3.846 9.3:1 90 -1 93 0 
* Values corrected following Braun-McNeill et al. (2007) 

          
              Immature green turtles sexed by testosterone only (n=92; for this study, 76 were successful) 

      Immature hawksbill turtles sexed by testosterone samples only (n=72; for this study, all successful) 
     Misclassified samples were of either Male, Female or Unknown determination 

       % misclassified is calculated from Male or Female Known sex (Unknown category was excluded) i.e. for cm in this study, 1/55*100 
  Sex ratios calculated from Male and Female determined sex only (Unknown category was excluded) 

     Difference in % Female is difference to that derived from gonad morphology (known sex samples) plus testosterone only (hormone determined sex) samples  
n of successfully sexed turtles is the sum of Male and Female turtles. Difference from actual is in comparison to maximum possible (n=131, cm; n=98, ei) 
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Figure S1. Hawksbill turtle (A) and green turtle (B) log oestradiol-17! against log 
testosterone concentrations (pg/ml). Filled circles indicate known sex individuals 
from gross morphology or histology of gonads: females (black), males (grey). 
Unknown sex (no observations of gonads) are empty circles.  
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Figure S2. Hawksbill turtle (A) and green turtle (B) log oestradiol-17! (E2) 
concentration (pg/ml) against curved carapace length (CCL, cm). Filled circles 
indicate known sex individuals from gross morphology or histology of gonads: 
females (black), males (grey). Unknown sex (no observations of gonads) are empty 
circles. Immature green turtle E2 concentrations (pg/ml) ranged from 3.18 to 151.96 
in known males (n=15) and 2.33 to 419.77 in known females (n=38). No blood 
samples were collected from adult green turtles. In immature hawksbills, E2 ranged 
from 3.18 to 8.00 in known males (n=3) and 3.18 to 40.75 in known females (n=11) 
and in adult females 25.18 to 191.22 (n=3), and adult males from 8.00 to 154.60 
(n=7).   
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Figure S3. Hawksbill turtle (A) and green turtle (B) log testosterone: oestradiol-17! 
(T:E2) ratios against curved carapace length (CCL, cm). Filled circles indicate known 
sex individuals, females (black), males (grey), from gross morphology or histology of 
gonads. Immature hawksbill turtle T:E2 ratios (unlogged) ranged from 89.9 to 378.0 
in known males (n=3) and 2.7 to 64.7 in known females (n=11), and from 9.6 to 
3109.2 in adult males (n=7) and 1.1 to 98.2 in adult females (n=3). Immature green 
turtle ratios ranged from 6.3 to 366.3 in known males (n=15) and 0.5 to 19.9 in 
known females (n=38). No blood samples were collected from adult green turtles. 
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Abstract 
Understanding the foraging ecology of species is vital to inform effective 

conservation of the ecosystems in which they function. Marine turtles are considered 

keystone consumers in coastal ecosystems and their decline through 

overexploitation has been implicated in the deterioration of reefs and seagrass 

pastures in the Caribbean. In the present study we analysed stomach contents of 

green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles harvested in 

the legal turtle fishery of the Turks and Caicos Islands (Caribbean) to assess the 

trophic role of these sympatric species. In addition, we carried out habitat surveys. 

The diet of green turtles (n=92) consisted of a total of 47 taxa: including three 

species of seagrass (present in 99% of individuals, mostly Thallasia testudinum, 

95%), 29 species of algae (54%, particularly Batophora oerstedii, 18%) and eight 

species of sponges (28%, particularly Chondrilla carabensis, 16%). Hawksbill turtles 

(n=45) consumed 73 taxa and were largely spongivorous (16 species, sponges 

present in 100% of individuals, especially C. carabensis, 47%) but also foraged on 

50 species of algae (present in 73% of individuals, mostly Padina spp., 22%) and 

three species of seagrass (22%, particularly Syringodium filiforme, 18%). Plastics 

were found in trace amounts in 4% and 9% of green and hawksbill turtle stomach 

samples respectively. There was little overlap in prey items between the sympatric 

turtle species suggesting niche separation. We used taxonomic distinctness routines 

to assess the diversity of dietary items found in stomach contents. Green turtles had 

the most selective diet, whereas hawksbill turtles were less selective than expected 

compared with relative frequency and biomass of diet items. Results from this study 

contribute to the fundamental understanding of the foraging ecology of these species 

and examine their previously suggested keystone roles in maintaining reef and 

seagrass habitats. 
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Introduction 
The keystone species concept has been central to community ecology since its 

inception by Paine (1969). The term was originally applied to top predators but has 

since been relaxed to include species whose presence is crucial in maintaining 

ecological communities (Mills et al. 1993). Detrimental effects on ecosystems that 

occur due to the loss of keystone species are widely known; for example, in the 

northern Pacific, the removal of sea otters during the fur trade, resulted in large 

increases in their main prey, sea urchins, which caused the collapse of kelp 

communities through over-grazing (Estes & Palmisano 1974). Marine turtles are 

large-bodied consumers in coastal ecosystems and are generally considered 

keystone species; their decline through overexploitation in recent centuries is 

thought to have contributed to the deterioration of reefs and seagrass pastures in the 

Caribbean (Jackson 1997, Jackson et al. 2001, Green & Short 2003, Pandolfi et al. 

2003, Orth et al. 2006, Waycott et al. 2009).  Here, reef-building corals have declined 

(Bellwood et al. 2004) and in some areas macroalgae and sponges have become 

dominant (Mumby 2009, McMurray et al. 2010), likely in response to overfishing of 

their consumers (Mumby et al. 2006, Pawlik et al. 2013).  

 As the most abundant marine megaherbivore in the Caribbean, green turtles 

(Chelonia mydas) graze principally (but not exclusively) on Thallasia testudinum 

seagrass, and profoundly affect the structure, productivity and nutrient composition 

of seagrass pastures (Thayer et al. 1982, Thayer et al. 1984, Moran & Bjorndal 

2005, 2007, Christianen et al. 2012). It has been suggested that seagrass 

ecosystems in the Caribbean likely had very different structures and dynamics in 

times of pre-exploitation of marine turtles, when they existed in huge numbers 

(Bjorndal & Jackson 2003, McClenachan et al. 2006). Green turtles are thought to 

maintain grazing plots, and consistent biomass removal increases the nutritional 

quality of seagrass for the turtle (Thayer et al. 1984) and the speed of nutrient 

recycling (Thayer et al. 1982). Green turtles are unusual among turtle species in that 

they are generally herbivorous. However, they have also been recorded as 

consuming cnidarians, sponges and other invertebrates (Mortimer 1981, Seminoff et 

al. 2002, Seminoff et al. 2006, López-Mendilaharsu et al. 2008, Arthur et al. 2009; 

see Bjorndal, 1985 and Bjorndal 1997 for review) and research on Pacific turtle 

populations suggested immature green turtles are omnivorous (Arthur & Balazs 
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2008, López-Mendilaharsu et al. 2008). Recent research confirmed the likely 

ontogenetic shift of green turtles from omnivory in an epipelagic-oceanic habitat 

(Witherington et al. 2012) during the first three to five years of their lives, to a largely 

herbivorous diet in coastal-benthic habitats in older turtles (Reich et al. 2007, Arthur 

et al. 2008). Prey consumed therefore varies within individuals, among populations 

and through different life stages (Bjorndal 1997). An understanding of diet shifts 

through the size classes may contribute to our understanding of foraging ecology 

and the ecosystem roles of green sea turtles. 

 Hawksbill turtles (Eretmochelys imbricata) were originally thought to be 

indiscriminate omnivores (Carr & Stancyk 1975) but subsequent studies have 

demonstrated that, although they also consume diverse species of algae (Mortimer 

1981, Van Dam & Diez 1997, see Bjorndal, 1997 for review), sponges are probably 

the primary prey for post-pelagic life stages (Meylan 1988). Post-hatchling hawksbill 

turtles are thought to have an epipelagic-oceanic stage, similar to green turtles, 

during which they feed omnivorously on prey in Sargassum rafts (see Witherington 

et al. 2012 for review) before recruiting to coastal areas where they feed benthically 

on sponges (Bjorndal 1997). In juvenile to adult stages coastal benthic stages, 

hawksbill diet is thought to be driven by selectivity for certain sponges as well as 

local abundance of species (León & Bjorndal 2002, Rincon-Diaz et al. 2011).  

 Sessile sponges rely on toxins, spicules (spike-like skeletal structures) and 

growth form (e.g. massive form with tough exterior) to deter predators and 

competitors, and as such there are relatively few sponge predators (Chanas & 

Pawlik 1995, Pawlik et al. 1995). Hawksbills are the dominant spongivores in reef 

ecosystems and by removing sponge biomass from reefs, are thought to influence 

total reef productivity biomass, succession and diversity (Meylan 1988, Bjorndal 

1997, Van Dam & Diez 1997); other spongivorous animals, such as nudibranchs, 

parrotfish and wrasse (Pawlik et al. 1988, Dunlap & Pawlik 1996, Wulff 1997, Dunlap 

& Pawlik 1998, Hill 1998, Pawlik et al. 2013), do not forage to such an extent 

(Jackson 1997, Bjorndal & Jackson 2003). Hawksbill turtles reduce sponge 

overgrowth not only by directly feeding on sponges, but also by exposing the softer 

inner tissues of sponges, facilitating predation by other species that otherwise would 

not be able to penetrate the tough exteriors of sponges (Meylan 1988). The 

precipitous decline of hawksbill turtle populations in the Caribbean, principally from 

exploitation for their shells (Meylan & Donnelly 1999, McClenachan et al. 2006), has 
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thus undoubtedly had a profound effect on reef dynamics (Bjorndal & Jackson 2003). 

Furthermore, predicted effects of climate change on reef and seagrass habitats as a 

result of rising sea levels and temperatures may make these habitats and associated 

species vulnerable (Harley et al. 2006, Orth et al. 2006, Hoegh-Guldberg et al. 2007, 

Hawkes et al. 2009). 

 Understanding the trophic role and niche width of marine vertebrates is often 

challenging (Layman et al. 2007). Trophic studies generally require gastric sampling 

to directly observe what the study species has been eating over a certain time period 

and location.  In comparison to other taxa (Hyslop 1980, Barrett et al. 2007), 

relatively few studies of sea turtles have utilised stomach sampling (see Mortimer 

1981, and Bjorndal 1997 for review, and more recent studies e.g. Brand-Gardner et 

al. 1999, León & Bjorndal 2002, Seminoff et al. 2002, Arthur & Balazs 2008, López-

Mendilaharsu et al. 2008, Arthur et al. 2009, Rincon-Diaz et al. 2011, Santos et al. 

2011, Witherington et al. 2012). This is largely due to the logistical difficulties in 

obtaining samples, which usually involves oesophageal/gastric lavages (see Forbes 

& Limpus 1993 for technique), or sampling stomachs directly from dead animals 

through strandings, fishery bycatch or directed take.  

 In the present study we had the opportunity to collect and analyse stomach 

contents of green and hawksbill turtles harvested in a legal turtle fishery in the 

Caribbean (Stringell et al. 2013, Chapter 1). Here, using stomach contents, we set 

out to assess the trophic role of these sympatric species in the Turks and Caicos 

Islands. Our aim was to assess dietary preference at an inter-specific level: it was 

expected that both turtle species would demonstrate clear niche separation, although 

we were interested in determining the extent of overlap in prey items between 

species. Secondly we wished to determine whether diets changed with turtle body 

size (i.e. if an ontogenetic shift existed) and tested the hypothesis of expected 

specialisation towards herbivory in green turtles and spongivory in hawksbill turtles 

as they reached maturity. Finally, we discuss this information to elucidate the 

ecological role of each turtle species and their influence in maintaining Caribbean 

coastal ecosystems. 
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Methods 
Study Site 

The Turks and Caicos Islands (TCI) is a UK Overseas Territory in the Caribbean 

located at the southeastern end of the Bahamas (21o 45N, 71o 35W) (Figure 1).  The 

low lying limestone islands surrounded by shallow soft sediment areas with 

mangrove swamps and tidal creeks on the leeward side, contrasting with the fringing 

reefs and steep drop-offs on the windward side (Doran 1958). The archipelago 

supports regionally significant foraging stocks of hawksbill and green turtles 

(Richardson et al. 2009) that are subject to one of the largest legitimate turtle 

fisheries in the Caribbean (Stringell et al. 2013; Chapter 1). Harvested turtles were 

sampled for stomach contents, permitting a large number of both species to be 

studied. 

 

Sampling  

Habitat surveys 

To characterise the epibenthic macrofaunal communities, shallow (<10m depth) 

snorkelling surveys were made throughout October 2010. Sixteen survey sites were 

selected to represent locations where turtle fishing and turtle capture-mark-recapture 

(CMR) sampling occurred (Figure 1), based on the information acquired during fisher 

interviews. Reef-based habitats (reef, patch reef, hard bottom and gorgonian plains) 

and seagrass-based habitats (seagrass, seagrass-algae, algae, coralline algae) 

were surveyed at these locations, some of which had two or more representative 

habitats (supplementary Table S1). Approximate survey areas ranged between 0.08 

and 1.2 km2 (see supplementary Table S1). These surveys enabled us to 

quantitatively describe presence, diversity and abundance of possible prey species 

at several locations and habitats in order to compare relative proportions of species 

groups to those found in stomach contents.  

The communities at each habitat were described from a total of 1061 

photoquadrat images taken at random locations using a housed Canon Powershot 

G10 digital camera, attached to a 0.25m2 quadrat framer (the quadrat was divided 

into 25 cells). Between 14 and 48 photoquadrats were analysed from 15-105 images 

per habitat (except at Long Cay reef where, due to water depth, only six quadrats 

were photographed and analysed; supplementary Table S1). At each habitat in each 
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location, a sample of two to four quadrats were surveyed in situ to validate 

photoquadrat data and species abundance was enumerated by cell frequency 

counts (see supplementary methods for further details). 

 

Turtles 

For two years (from November 2008), we monitored the legal turtle fishery at key 

landing sites throughout TCI (see Stringell et al. 2013, Chapter 1 for details). Turtle 

capture location was estimated following fisher interviews. Turtle size was measured 

along the midpoint of the carapace (Curved Carapace Length cm (CCL): Bolten 

1999). The sex of turtles was determined by gross morphology and histology of the 

gonads of butchered animals or external morphology in adults (see Stringell et al. in 

prep. for further detail: Chapter 4). 

 Stomach content samples from 45 hawksbills and 92 green turtles of various 

sizes were collected directly from butchered animals. Owing to the large volume of 

digestive material in the gut we chose to collect the contents of the stomach and 

upper digestive tract. Samples were frozen until sorting. 

 

Turtle stomach contents 

Individual stomach contents were sorted and wet mass of each taxon weighed to the 

nearest 0.01g after blotting dry (Hyslop 1980).  If a species weight was <0.01g it was 

recorded as trace. We also recorded the degree of digestion (categories: fresh, 

moderate, severe) to aid with further interpretation; most samples were relatively well 

preserved. Dietary items were identified to the lowest taxonomic level (see 

supplementary methods for further details). 

 

Data analysis 

All multivariate statistical routines were carried out in PRIMER v6 software (Clarke & 

Gorley 2006) with the PERMANOVA+ add on (Anderson et al. 2008) and univariate 

tests in R v 2.12 (R Development Core Team 2012).  

 

Habitat 

Differences in abundance data (Bray-Curtis similarities of photoquadrat data) 

between habitats were tested with a one-way permutational multivariate analysis of 
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variance (PERMANOVA) and for differences in multivariate dispersion by 

permutation (PERMDISP) (Anderson et al. 2008). Species were also grouped into 

nine categories: seagrasses, sponges, bluegreen algae, green algae, red algae, 

brown algae, cnidarians, invertebrates and unknown; and grouped into broad habitat 

types (reef-based and seagrass-based habitats) with the purpose of comparing turtle 

stomach content data and tested with a one-way analysis of similarities (ANOSIM, 

Clarke 1993). (See supplementary methods for further details, including the 

application of taxonomic distinctness to habitat samples - see below for description 

of these diversity metrics). 

 

Stomach content 

Species biomass was standardised (by total) to account for differences in stomach 

fullness, and square root transformed. Bray-Curtis similarities were used for 

subsequent resemblance based tests and visualised in a non-metric multi-

dimensional scaling (MDS) with a vector plot overlay of diet species most correlated 

with the pattern (Clarke 1993).  A similarity of percentages (SIMPER) routine (Clarke 

1993) was used to examine differences in species composition between turtle 

species. Differences between turtle species, a priori grouping factors (habitat, sex) 

and turtle size as a covariate were tested using 3-way crossed multivariate 

permutational analysis of covariance (PERMANCOVA) (Anderson et al. 2008) with 

permutations under a reduced model and Type 1 (sequential) sums of squares, and 

non-significant interaction terms sequentially removed. Differences in dispersion 

among groups were tested using PERMDISP. Diet species were then grouped into 

nine categories (as above) and visualised for differences in diet groups with size 

(CCL) between the two turtle species, and tested with a one-way ANOSIM. We 

compared the relative abundance of these diet groups in hawksbills and green turtles 

against the relative abundances of the same groups identified in reef and seagrass 

habitats respectively using a Pearson’s Chi-square analysis with Monte Carlo 

simulated P-values from 10,000 replicates. 

 To determine how representative stomach content samples were in relation to 

species available in the habitat, average taxonomic distinctness (AvTD) and variation 

in taxonomic distinctness (VarTD) were assessed for stomach content samples by 

turtle species (Clarke & Warwick 1998, Clarke & Warwick 2001a). These diversity 

measures are based on the relatedness of species drawn at random from a sample, 
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are independent of the number of species (a better statistical sampling property than 

richness related estimators), and can be used to compare data from differing 

sampling effort, spatial and temporal scales (such as stomach samples and habitat 

species lists) (Clarke & Warwick 1998, Clarke & Warwick 2001a). Here, taxonomic 

distinctness is defined from a Linnaean tree (taxonomic aggregation file) of 

macrobenthic species likely in TCI. A regional master list of 565 species was created 

from species identified in the habitat surveys, stomach content analysis and from 

searches of databases of sponge, gorgonian, coral, seagrass and algae species 

previously recorded in TCI and neighbouring Bahamas from the World Register of 

Marine Species (WoRMS) database (Appeltans et al. 2012).  

 The two taxonomic distinctness measures were used in a taxonomic 

distinctness test (TAXDTEST Clarke & Gorley 2006), where stomach content sample 

data were superimposed on a funnel plot of expected AvTD and VarTD 95% 

probability limits created from randomised draws of sublists of 2 to 20 species from 

the regional master list. The weighting of Linnaean tree step lengths was guided by 

taxon richness of the master file (Clarke & Warwick 1999) and the simulation of 

random draws was weighted by the frequencies of species found in the habitat 

surveys (Clarke & Gorley 2006).  A Mann-Whitney U test was used to formerly 

compare the differences in AvTD and VarTD between species.   

 Stomach sample species richness (S), Simpsons evenness (1-Lambda, 

calculated on Pi - proportion data: Clarke & Warwick 2001b), AvTD and VarTD were 

plotted against CCL and tested with GLMs or GAMs after initial exploration of 

linearity.  
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Results 
Habitat surveys 

There were significant differences in species abundance among surveyed habitats 

and these differences were driven largely by seagrass and algae species (Spearman 

correlation >0.5) (PERMANOVA:  Pseudo-F7=78.6, Pperm=0.001: supplementary 

Figure S1). Dispersion among habitats was significantly different (PERMDISP:  

F7,810=81.9, Pperm =0.001) with patch reefs having the highest mean dispersion 

(58.9±0.4 SE) and coralline algae habitats having the least (26.0±1.8) 

(supplementary Figure S1). Grouping species in each photoquadrat into eight 

categories indicated clear differences between their relative proportions in the broad 

habitat types, such that algae and cnidarians were more common in reef habitats 

and seagrass were absent (Reef-based vs. Seagrass-based, ANOSIM: R=0.753, 

P=0.001: Figure 2). 

 We identified 108 species of plants and animals from the photoquadrat 

images. Green algae (Chlorophyta) were the most diverse taxonomic group with 22 

species and Halimeda the most common genus in this group. Reef habitats were 

most diverse (had the greatest species richness) but the gorgonian habitat at 

Harbour (site 10 in Figure 1) was the single most diverse site with 41 species 

identified (supplementary Table S1). Seagrass density ranged from 15.6 – 148.5 

shoots/m2 (supplementary Table S1). Analyses of taxonomic distinctness of habitat 

samples (see supplementary methods) indicated that reef based habitats (reef, patch 

reef, hard bottom and gorgonian plains) were more distinct than seagrass based 

habitats (seagrass, seagrass-algae, algae, coralline algae); reef photoquadrats 

mostly fell within the 95% AvTD funnel of the regional expectation, but were 

generally more variable than expected in terms of VarTD; this pattern was converse 

with Seagrass based habitats (supplementary Figure S2). These findings indicate 

that our habitat surveys were likely representative of the species likely to be found in 

the region. 

 

Stomach content 

We identified a total of 93 species in 137 turtle stomach samples (47 species in 92 

green turtle stomach samples, and 73 species in 45 hawksbill samples; 

supplementary Table S2). In green turtles, the diet was mainly herbivorous 
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(approximately 92% seagrass and algae by biomass) but with varying amounts of 

sponge (average 7%; Table 1, supplementary Table S2): the seagrass, Thalassia 

testudinum contributed the greatest to biomass (73%). This was followed, in 

decreasing order, by the seagrass Syringodinum fiiforme (16%), the sponge 

Chondrilla caribensis (formerly C. nucula) (4%), and the seagrass Halodule 

beaudettei (2%). Remaining species contributed <1% each. T. testudinum was found 

in 95% of all green turtle stomach samples, S. filiforme and H. beaudettei in 58%, the 

green algae Batophora oerstedii in 18% and C. caribensis in 16%. Plastics were 

found in 4% (n=4) of green turtle stomach contents in trace amounts. 

 In hawksbill turtles, diet was more varied and omnivorous, with individuals 

mostly consuming sponges and algae (approximately 99% by biomass) (Table 1, 

supplementary Table S2): 27% of the biomass comprised of the sponge C. 

caribensis, followed by the sponges Sidonops neptuni (17%), Halichondria 

melanadocia (16%), Scopalina ruetzleri (8%), Cinachyrella alloclada (5%), Erylus 

formosus (4%), and the red algae Gelidiella acerosa (3%) and an unidentified red 

algae (2%). Remaining species contributed <2% each. The most frequently 

occurring species in the stomach samples were the sponges C. caribensis, H. 

Melanadocia, S. neptuni (47%, 29%, 24% respectively) followed by the brown algae 

Padina spp. (22%), the red algae, Gelidiella acerosa (18%) and the seagrasses S. 

filiforme and T. Testudinum in 18% and 16% of samples respectively. Plastics were 

found in 9% (n=4) of hawksbill turtle stomach contents in trace amounts. 

 Green turtles measured between 28.8cm and 88.0 cm (mean=52.8 ± 12.6 SD, 

n=91) and hawksbills measured between 39.3cm and 91.2 cm (60.4 ± 14.0, n=45). 

No significant differences were found in diet composition (Bray-Curtis similarities of 

standardised biomass) with body size, sex and habitat type in which the turtle was 

found, but there was a clear difference in diet composition between turtle species 

(PERMANCOVA, turtle species factor: Pseudo-F1=58.9, Pperm<0.001). A SIMPER 

analysis confirms that Thalassia and Syringodium seagrasses, Chondrilla, Sidonops 

and Halichondria sponges together contributed 70% to the dissimilarity between the 

turtle species: Thalassia made the largest contribution and explained 32% of the 

dissimilarity, and Chondrilla explained 13%, with their average abundance being 

highest in green turtles and hawksbill turtles respectively (Figure 3). There were 

significant differences in diet variability (multivariate dispersion of Bray-Curtis 

similarities) between turtle species found at reef and seagrass habitats (PERMDISP: 
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F3, 123 = 18.486, Pperm= 0.001). For example, hawksbill turtles captured on reef 

habitats had the highest mean dispersion of 62.6 ±1.3 (SE) and from seagrass 

habitats, 53.5 ±6.3, which were not significantly different (PERMDISP: F1, 38 = 4.496, 

Pperm= 0.331). Green turtles had significantly lower dispersion than hawksbills from 

both habitats; green turtles from reefs had a mean dispersion of 35.8±4.0, and from 

seagrass habitats, 25.7 ±1.7 (PERMDISP: F1, 85 = 7.322, Pperm= 0.036), suggesting 

green turtles had the narrowest range of diet of the two species, especially from 

seagrass habitats. 

 Grouping stomach content species into diet categories indicated clear 

differences between the turtle species (ANOSIM: R=0.957, P=0.001: Figure 2) but 

revealed no discernible pattern with size (supplementary Figure S3), either as a 

continuous predictor or grouped into 10cm size classes. Turtle size also did not 

significantly explain the diversity of species in turtle diet expressed as Species 

richness (S), Species evenness (Simpson’s), or VarTD, but there was a weak 

suggestion of size partitioning in AvTD for green turtles with the taxonomic breadth 

of diet reducing with larger sizes (GAM: P=0.04) (Figures 4-5).  

 The analysis of AvTD (on presence-absence stomach content data) indicated 

that hawksbill turtle stomach samples did not depart significantly from the ‘funnel of 

95% confidence’, indicating that hawksbill turtles fed randomly on what was available 

in the habitat, that is, their varied diet consisted of species that were as 

taxonomically related as those chosen at random from a species list of >500 species 

(Figure 6a). However, 43% (n=40 of 92) of green turtles had significantly lower 

(P<0.05) AvTD than expected, indicating that they may exhibit strong dietary 

selectivity, that is, a relatively taxonomically narrow diet in comparison to the habitat, 

although 57% of individuals had relatively taxonomically wide diets that fell within the 

habitat probability limits (Figure 6a). There was much less departure from probability 

limits in the case of VarTD for both species (5%, n=5 of 92 green turtles; no 

hawksbill turtles), indicating similar variation in distinctness between species in turtle 

stomachs to those chosen at random (Figure 6b). This result is confirmed by a 

formal test of these metrics with significantly greater average taxonomic breadth 

(AvTD) found in hawksbill turtle stomach samples (Wilcoxon: W = 1555, P = 

0.01813) but not for VarTD (W = 2193, P = 0.5685).  

 There was a significant difference between relative percentage biomass of the 

nine diet groups in average hawksbill turtle stomach content samples and the 
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relative abundances of these same groups from average reef-based habitat 

photoquadrats (!2=164.89, Pperm<0.001); that is, many of the same species were 

present in stomach content samples and the habitat, but not consumed at the same 

relative proportions. For example, sponges were found in much higher proportions 

and brown algae at lower proportions in hawksbill turtle stomach content samples 

than in reef habitats (Figure 2a). Green turtle stomach content samples and 

seagrass-based habitats also had significantly different relative proportions 

(!2=25.67, Pperm<0.001), although there was an apparent similarity in seagrass 

proportions (Figure 2b). These data, which are based on the amounts of each diet 

item, have differing inferences to the results of the taxonomic distinctness routines, 

which are based on presence-absence data and Linnaean relatedness. 
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Discussion 
Knowledge of supporting habitats is essential to inform our understanding of the 

foraging ecology and role of sea turtles in coastal ecosystems. In this study we used 

an interdisciplinary approach that linked habitat to the diet of two sympatric marine 

turtle species; to our knowledge, this study is the first to examine taxonomic 

distinctness of the diet of marine turtles. These taxonomic routines are especially 

useful for comparison of data sets collected over different temporal or spatial scales 

and sampling effort (Clarke & Warwick 1998, 2001b). We demonstrated clear niche 

separation between the two turtle species, but found no evidence of diet shifts with 

size (ontogenetic shifts) from stomach contents, although AvTD suggested a non-

linear change with size in green turtles (see supplementary information, Figure S3). 

Apart from seagrasses, the relative proportions of prey species in green turtle 

stomachs did not statistically match those in seagrass habitats, especially for red 

algae, green algae and sponge proportions. This suggests a selective feeding 

strategy and a functional linkage between consumer and habitat that supports the 

findings of others (Table 1, Bjorndal 1980, Mortimer 1981, Bjorndal 1997, Van Dam 

& Diez 1997, León & Bjorndal 2002, Seminoff et al. 2002, Rincon-Diaz et al. 2011, 

Santos et al. 2011). In green turtles, the AvTD routine indicates that for nearly half of 

the stomach content samples, the relatedness of species in the diet was less 

taxonomically distinct than that of the species available in the surrounding habitat, 

also suggesting a degree of selective feeding. The relatively low distinctness in their 

diet is likely a result of the narrow taxonomic distinctness of the three seagrass 

species that make up the majority of green turtle diet (in terms of biomass), which 

are derived from just two families. However, the several algae species (>5% 

frequency, mainly Chlorophytes: Table 1) found in green turtle stomachs may have 

elevated the taxonomic distinctness of the stomach samples so that 57% fell within 

the funnel of taxonomic expectation. Although green turtles can be found in both reef 

and seagrass habitats, the lower taxonomic distinctness of green turtle diets 

compared to hawksbill turtles may be largely a result of seagrass-based habitats 

having lower species diversity than reef-based habitats.  

Conversely, since hawksbill turtles are most commonly associated with reef-

based habitats (but see Bjorndal & Bolten 2010), we might expect hawksbills to have 

a diet more diverse than that of green turtles and one that reflects the diversity of 
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species found in reef systems. In terms of taxonomic breadth (AvTD), we 

demonstrated that this is the case, with every sample falling within the funnel of 

taxonomic expectation, suggesting they are generalists/indiscriminate feeders that 

graze randomly (sensu Carr & Stancyk 1975) and have a diet representative of 

available species. However, in terms of relative abundance of diet type, hawksbill 

turtle diet was not representative of reef habitat, a finding that supports selective 

feeding mostly on sponges and algae (Bjorndal 1997, Van Dam & Diez 1997, León & 

Bjorndal 2002, Rincon-Diaz et al. 2011). This may be due to several reasons: 1) 

sponges house many symbiotic, parasitic and commensal animal and plant species 

(which may have more nutritional value than the sponges themselves) - increasing 

the apparent taxonomic breadth of diet, 2) sponges may not be easily digestible or 

nutritious (Bjorndal 1985) and may remain in the stomach longer than other readily 

digestible taxa, 3) presence-absence data in taxonomic distinctness routines gives 

equal weighting to rare species; these routines are diversity measures that examine 

the relatedness of species rather than their abundance, and 4) sponges are from a 

phylum of especially wide taxonomic breadth; two species of sponge may be as 

distinct from each other as two unrelated species drawn at random. (This also 

applies to algae, which encompass several kingdoms and phyla). Caution must 

therefore be taken when making comparisons with other studies that used 

abundance or biomass measures because the taxonomic distinctness routines tells 

us about relatedness not relative proportions. Nevertheless, the breadth of diet as 

determined by AvTD is a useful companion to relative diet proportions. Furthermore, 

the findings using this measure are reflected in a stable isotope analyses (SIA) of the 

same population of hawksbill turtles that show highly mixed diet sources that are not 

dominated only by sponges, suggesting more of a generalist diet (see Stringell et al. 

in prep., Chapter 6).   

Many of the diet species identified in turtle stomachs are found across the 

different habitat types and at most locations. For example, the sponge C. caribensis 

occurred in both reef and seagrass habitats. The form of Chondrilla (C. caribensis f. 

caribensis) commonly found in hawksbill and green turtle stomachs from our study is 

more usually associated with seagrass habitats, and over 16% of hawksbill 

stomachs contained seagrass, suggesting the importance of seagrass habitats to 

foraging hawksbill turtles (Bjorndal & Bolten 2010). Several sponge species were 

also found in green turtle diet. While consumption of sponges by green turtles has 
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been previously reported (Bjorndal 1990), the extent of the finding is surprising. 

Sixteen percent of samples contained C. caribensis, indicating this sponge is likely to 

be purposefully consumed. Further, Figure 3 illustrates that one green turtle had a 

diet dominated by sponges, perhaps representing active consumption of these taxa.  

One caveat that may have implications on making inferences from our data is 

that habitat surveys were restricted to shallow depths (<10m), while foraging turtles 

clearly dive much deeper (e.g. Blumenthal et al. 2009). Diving ability in marine turtles 

scales with body size (Schreer & Kovacs 1997) and size partitioning by depth is well 

known (Musick & Limpus 1997). Once turtles recruit from the pelagic zone and settle 

in TCI they are probably limited to shallow habitats that contain seagrass and patch 

reefs, while larger turtles are able to forage at greater depths where other food types 

are found. Consequently, we may have surveyed the habitat of smaller turtles but not 

larger ones. Therefore the relative abundance of species in our habitat surveys may 

not fully represent what is found in turtle stomachs. Most published studies that link 

habitat type to stomach contents are also restricted to shallow survey depths and 

typically survey only those species that were identified in stomachs (Van Dam & Diez 

1997, León & Bjorndal 2002, Rincon-Diaz et al. 2011), biasing the availability of 

species in random surveys. The taxonomic distinctness routines remove this bias by 

using species lists (Clarke & Warwick 1998, 1999, 2001b). In our case, a 

comprehensive list of species recorded primarily from the Bahamas region was used 

and random draws taken from this list were directed by the relative frequencies of 

species found in our habitat surveys. This provides a much more robust assessment 

of habitat linkage than surveys of only those species selected from stomach 

samples. Nevertheless, taxonomic distinctness assesses diversity rather than 

abundance, and complements rather than replaces analyses of relative abundance. 

Further work with this diversity measure would be advantageous for building our 

knowledge of foraging ecology in marine turtles. 

 Stomach contents represent only a snapshot of feeding by marine turtles and 

may not adequately relate to what is assimilated into bodily tissue over time. This is 

a key disadvantage with stomach content analysis (Duffy & Jackson 1986, Barrett et 

al. 2007).  Diet varies considerably between individuals and locations (Bjorndal 

1997) but can also vary in individuals through time, as demonstrated by the different 

diet components found along the alimentary canal of a green turtle (Arthur et al. 

2009). Additionally, some prey species may have been completely digested in 
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stomach samples, precluding their identification. Videos from animal-borne cameras 

on green turtles from California (Seminoff et al. 2006) suggest the importance of 

cnidarians and algae to green turtle diet, so it is possible that soft bodied 

invertebrates and readily digestible (non-cellulose based) algae are 

underrepresented in our study, although we note that most stomach samples in our 

study were surprisingly well preserved, an observation also shared by Mortimer 

(1981).  

 Green turtles undergo ontogenetic shifts where small oceanic-pelagic 

juveniles recruit to coastal-benthic habitats and switch from omnivorous/carnivorous 

to herbivorous feeding, as demonstrated using SIA (Reich et al. 2007, Arthur et al. 

2008, and Stringell et al. in prep., Chapter 6). Stringell et al. in prep. (Chapter 6) 

suggest that a similar ontogenetic shift also occurs in hawksbills. Part of the present 

study was to investigate if a similar shift in forage could be observed in stomach 

content with increasing size of turtles. We might expect to see a shift from 

omnivory/carnivory to herbivory in green turtles and to omnivory - at a lower trophic 

level due to intake of sponges rather than higher animal taxa - in hawksbills. Our 

stomach content analyses results do not show this shift: there were no apparent 

differences in prey contributions with size in either species. One possible explanation 

is that small recruits were unlikely to have been well represented in our sample of 

the fishery - small turtles are less desirable to eat due to low meat yield for 

processing time and are below legal catch size (Stringell et al. 2013, Chapter 1). 

Additionally, the size at which hawksbills recruit to coastal habitats is thought to be 

smaller than that of green turtles (Meylan et al. 2011), therefore the smallest 

hawksbill in our study may well have been resident for some time. In a SIA by 

Stringell et al. in prep. (Chapter 6), a possible change from herbivory to omnivory 

was noted in large juvenile sized green turtles where seagrasses contributed less to 

the diet. This was not reflected in the stomach content analyses. Larger size green 

turtles (large juveniles to adults) were also not well represented in the fishery, most 

likely due to the effort required to catch them and their relative abundance at these 

sizes (Stringell et al. 2013, Chapter 1). Although the present study had a large 

sample size, some size classes were not well represented and further sampling of 

small and large animals would help address this bias.  

 Given the sponge and algae dominated, yet taxonomically broad, diet of 

hawksbills, and the selective grazing of green turtles, these sympatric turtle species 
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are likely to play key grazing roles in Caribbean seagrass and reef systems. 

Generally there was little overlap in the significant components of diet samples 

between the sympatric turtle species, suggesting niche separation.  Both green and 

hawksbill turtles are among the largest grazers in the tropics and are thought to have 

critical roles in regulating the structure and function of reef and seagrass habitats 

(Bjorndal & Jackson 2003). Some sponge species, notably C. caribensis, are 

superior competitors with corals in reef habitats (Hill 1998, Wulff 2012). Hawksbills, 

as spongivores, thus undoubtedly play a key role in the ecological interactions 

between this species and many other sponges, corals and algae. We are gradually 

building a more complete picture of the ecological dynamics that relate habitat to 

consumers and predators. Heithaus et al. (2007) suggested that declines in 

seagrass beds in Bermuda may be linked to increases in green turtle populations 

(Murdoch et al. 2007), which coincide with declines in tiger sharks in the northwest 

Atlantic (Baum et al. 2003). This suggests top-down effects of marine predator 

declines may be profound (Heithaus et al. 2008) not only on regulating the 

abundance and distribution of grazers (turtles) but on the structure and function of 

habitats (Thayer et al. 1984). Furthermore, reefs and seagrass beds are vulnerable 

to climate change, as are the consumers that rely on them (Harley et al. 2006, Orth 

et al. 2006, Hoegh-Guldberg et al. 2007, Hawkes et al. 2009, Poloczanska et al. 

2009, Witt et al. 2010, Fuentes et al. 2011, Hamann et al. 2013). 

 Along with climate change, removal of large grazers (turtles, manatees) in the 

Caribbean over an historic timeframe has been implicated in widespread ecosystem 

changes to reef and seagrass habitats (Bjorndal & Jackson 2003). Present day turtle 

fishery harvests in the Caribbean are a fraction of what they used to be 

(McClenachan et al. 2006) but substantial harvests still exist, notably in Nicaragua 

(Lagueux et al. 2003) and TCI (Stringell et al. 2013). Although the green turtle 

harvest in TCI is considerably smaller than that of Nicaragua, it is nevertheless 

substantial and the TCI hawksbill harvest is one of the largest in the western Atlantic 

(Stringell et al. 2013, Chapter 1). This fishery is therefore likely to have an effect on 

coastal ecosystem functioning if turtles play their supposed keystone roles.  
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Table 1. Frequency (proportion of turtles in which present) and average (±SD and range) proportion of biomass of taxonomic diet 

groups found in stomach content samples of green turtles (n=92) and hawksbill turtles (n=45). 

 

  Green turtle   Hawksbill turtle 

Diet group Proportion 
of turtles 

 Biomass  Proportion 
of turtles 

 Biomass 

 Mean ±SD Range   Mean ±SD Range 
Seagrasses 0.99  0.91 0.17 (0.00 - 1.00)  0.22  * 0.01 (0.00 - 0.04) 
Red algae 0.26  0.01 0.10 (0.00 - 0.97)  0.49  0.10 0.20 (0.00 - 0.70) 
Brown algae 0.08  * 0.01 (0.00 - 0.10)  0.49  0.02 0.04 (0.00 - 0.18) 
Green algae 0.32  * 0.02 (0.00 - 0.18)  0.49  * 0.01 (0.00 - 0.07) 
Unknown algae 0.03  * * (0.00 - 0.01)  0.04  * 0.01 (0.00 - 0.07) 
Sponges 0.28  0.07 0.14 (0.00 - 0.55)  1.00  0.88 0.21 (0.30 - 1.00) 
Cnidarians 0.03  * * (0.00 - 0.04)  0.02  * * (0.00 - 0.01) 
Invertebrates 0.03  * * (0.00 -    *   )  0.09  * * (0.00 -    *   ) 
Plastic 0.04   * * (0.00 -    *   )   0.09   * * (0.00 -    *   ) 
* = <0.01 (trace) 
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Figure 1. Map of Turks and Caicos Islands (TCI) and location in Wider Caribbean 

Region (inset, DR=Dominican Republic). Numbers indicate the following survey 

sites: 1=Man-o-War, 2=Ocean Hole, 3=Southern Bush, 4=Larmer Creek, 

5=Jacksonville, 6=Eastside, 7=Nuisance Point, 8=Tuckers Reef, 9=Shark Alley, 

10=Harbour, 11=Long Cay, 12=Six Hills, 13=Middle Reefs, 14=Fish Cay, 

15=Ambergris, and 16=Ambergris Airport. See supplementary Table S1 for further 

information on sites, habitats and sampling effort. 
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Figure 2. Average relative percentages (± 1 SD, error bars) of taxonomic diet groups 

found in reef (A) or seagrass (B) habitat photoquadrats (abundance: n=736) and 

hawksbill (A) and green (B) turtle stomach samples (biomass: n=137). Habitats are 

represented by black bars and turtle species by pale grey.   
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Figure 3. Non-metric multidimensional scaling ordination of stomach content with 

vector overlay of most contributing species (R>0.5 Spearman’s correlation; derived 

from SIMPER analysis). Stomach content biomass data are standardised, square 

root transformed Bray-Curtis similarities. Three hawksbill turtle outliers (not shown) 

lie outside of plot boundary to the northeast and were dominated by Sidonops 

neptuni in their diet.  
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Figure 4. Species diversity measures of stomach content samples against hawksbill 

turtle size (CCL, cm). (A) species richness, (B) Simpson’s index (calculated on 

biomass), (C) average taxonomic distinctness, (D) variation in taxonomic 

distinctness. 
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Figure 5. Species diversity measures of stomach content samples against green 

turtle size (CCL, cm). (A) species richness, (B) Simpson’s index (calculated on 

biomass), (C) average taxonomic distinctness, (D) variation in taxonomic 

distinctness. 
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Figure 6. Average (A) and variation (B) in taxonomic distinctness of stomach 

contents from two turtle species (n=45 hawksbill turtles, n=92 green turtles). Lines 

indicate the median and upper and lower 95% probability intervals of taxonomic 

distinctness created from randomised draws of sublists of 2 to 20 species from a 

regional master list of 565 species. Weighting of Linnaean tree step lengths was 

guided by taxon richness of the master list and frequencies of species found in the 

habitat surveys were used to weight the selection of the random species.  
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Chapter 5: Supplementary Information 

 

Methods 
Habitat surveys 
At each habitat in each location, a minimum of two (usually four) quadrats were 

surveyed in situ and species enumerated for comparison with photoquadrat data. To 

test the efficiency of the photographic survey method, photoquadrats were compared 

to in situ quadrats that were assumed to be better resolved than photographs. 

Square root transformed species abundance data (Bray-Curtis similarities) from 

photoquadrats were compared with paired in situ samples using a mixed effects 

permutational multivariate analysis of variance (PERMANOVA), with the combined 

factor of location and habitat as a random effect. There was no significant difference 

between in situ and photoquadrat data (PERMANOVA: PseudoF1df = 2.48, Pperm = 

0.07) and thus photoquadrat data were used in further analysis and considered 

representative of the habitat. 

 Photoquadrat images were selected for analysis at random. The cumulative 

number of species per habitat in each site was plotted against the number of 

quadrats analysed to create species area curves. The number of quadrats analysed 

in each habitat was determined by the asymptote of these species area curves (see 

Table S1). A total of 736 images were analysed on screen. Species abundance was 

enumerated by cell frequency counts (the quadrat was divided into 25 cells). 

Additionally, broader-scale rapid assessments of habitats at each location were 

carried out and seagrass shoot densities estimated (see Supplementary Tables S3 

and S4). 

 Species were identified to the lowest taxonomic level and species unidentified 

in the field from in-situ quadrats and rapid assessments were sampled and identified 

in the laboratory. Most algae, seagrass and coral species were identified to species 

or genus level. Most turf algae were given a grouping description, e.g. filamentous 

turf, and gorgonians were mostly identified to family level. Sponges are known to be 

difficult to identify in the field (Ackers & Moss 2007) and where possible, samples 

were taken, identified to lowest taxonomic level and each occurrence ascribed a 

morphotype (growth form) following Bell and Barnes (2001) and Bell et al. (2006). 
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Species identification from turtle stomach contents 

Seagrasses were usually identifiable with the naked eye. Algae were viewed and 

photographed under a 120X light microscope (Leica M165C, Leica Microsystems 

Ltd, Heerbrugg), tissue sections taken where necessary and identified using a 

variety of reference tools (e.g. Taylor 1967, Littler et al. 1989, Littler & Littler 2000, 

Guiry & Guiry 2012). Sponges were identified by gross morphology, skeletal and 

spicule slide preparations (Ackers & Moss 2007) by consulting a variety of reference 

materials (e.g. Weidenmayer 1977, Zea et al. 2009, Kluijver et al. 2012, Van Soest et 

al. 2012). Other species present in stomachs (e.g. octocorals, gorgonians) were 

identified using various sources (e.g. Humann & Deloach 1992, Sanchez & Wirshing 

2005, Kluijver et al. 2012, Sheppard 2012). Taxa that had two or more unidentified 

species were numbered to distinguish them, and unidentified sponge species were 

given a descriptive name of its morphology (see Data analysis: habitat taxonomic 

distinctness for further details). 

 

Data analysis: habitat 

Bray-Curtis similarities from photoquadrat data were visualised between habitats 

using a non-metric multi-dimensional scaling (MDS) ordination and a vector plot 

overlaid to indicate species most correlated (Spearman’s rank correlation) to the 

pattern (Clarke 1993) (supplementary Figure S1). Habitats were also described 

qualitatively following the classification scheme of Mumby and Harborne (1999) (see 

Table S4; site and habitat locations and descriptions are given in Table S1, see 

Figure 1 (main text) for map of locations). 

 

Data analysis: habitat taxonomic distinctness 

Average Taxonomic Distinctness (AvTD) and variation in Taxonomic Distinctness 

(VarTD) were assessed by habitat type (Clarke & Warwick 1998, Clarke & Warwick 

2001: supplementary Figure S2). These diversity measures are based on the 

relatedness of species drawn at random from a sample, are independent of the 

number of species (a better statistical sampling property than richness related 

estimators), and can be used to compare data from differing sampling effort, spatial 

and temporal scales (such as stomach samples and habitat species lists) (Clarke & 

Warwick 1998, Clarke & Warwick 2001). Here, taxonomic distinctness is defined 

from a Linnaean tree (taxonomic aggregation file) of macrobenthic species likely in 
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TCI. A master list of 565 species was created from species identified in the habitat 

surveys, stomach content analysis and from searches of databases of sponge, 

gorgonian, coral, seagrass and algae species previously recorded in TCI and 

neighbouring Bahamas from the World Register of Marine Species (WoRMS) 

database (Appeltans et al. 2012). Taxa that had two or more unidentified species 

were numbered to distinguish them, for example Haliclona 1, Haliclona 2. 

Unidentified sponge species were initially given a descriptive name of its morphology 

(sensu Bell & Barnes 2001: e.g. orange encrusting sponge) and for more than one 

unidentified sponge morphology per group, each was numbered (e.g. orange 

encrusting 1, orange encrusting 2 etc.). Morphological groupings were propagated 

through the aggregation file in order to preserve its taxonomic structure. To 

determine how representative the habitat photoquadrat data were in relation to the 

species composition expected in the region, the two taxonomic distinctness 

measures were used in a TAXDTEST (Clarke & Gorley 2006), where photoquadrat 

sample data were superimposed on a funnel plot of expected AvTD and VarTD 95% 

probability limits created from randomised draws of sublists of 2 to 20 species from 

the regional master list. The weighting of Linnaean tree step lengths was guided by 

taxon richness of the master file (Clarke & Warwick 1999) and the simulation of 

random draws was weighted by the frequencies of species found in the habitat 

surveys (Clarke & Gorley 2006). 
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Table S1. Summary of TCI sampling sites, their habitats and descriptions with tidal state and height (m) (tidal phase indicated by S 
= Springs, N = Neaps) and sampling water depth at time of sampling. Grid references and map code refers to Figure 1. The 
number of photoquadrat pictures taken (n=1061) and analysed (n=736) after analysis of species area curves and number of 
species identified from these are given. Seagrass density (m-2) at eight location/habitats estimated by rank (where 1 is sparse and 
5 is dense) and quantified using validated photoquadrat shoot counts.

Site Habitat Habitat 
group

Date (time) first 
surveyed

Time of LW 
(height, m)

Depth 
(m) Location (map code)

Photoquadrats 
analysed 
(taken)

Area 
analysed 
(m2)

Approx. 
survey 
area (km2)

No 
species

Mean 
seagrass 
shoots.m-2 

(Rank 1-5)

Description (habitat characteristics and dominant species)

Ambergris Reef Reef 20/10/2010 (12:52) 13:42 (0.05) 1 21.321566, -71.642364 (15) 48 (49) 12 0.38 38 -
Rocky patch reef (likely to be remains of dead reef) colonised by abundant fleshy brown algae 
(e.g. Sargassum, Dictyota). Soft corals common (e.g. Briareum asbesinum, Pseudopterogorgia), 
occasional sponges and coral species.

Ambergris Seagrass Algae Seagrass 20/10/2010 (10:32) 13:42 (0.05) 1 21.319006, -71.637057 (15) 24 (37) 6 0.75 12 55.7 (4) Soft muddy sand with Arenicola mounds. Seagrass with dense patches of algae (Batophora spp, 
Penicillus spp and Acetabularia spp.) and occasional sponges.

Ambergris Airport Seagrass Seagrass 20/10/2010 (12:02) 13:42 (0.05) 1 21.298467, -71.648736 (16) 30 (56) 7.5 1.19 19 -
Patches of seagrass on sand with occasional hard substrate (usually conch shells). Algae such 
as Laurencia spp and Penicillus spp dominant. Occasional soft corals e.g. Briareum asbesinum 
and corals e.g. Porites porites.

Eastside Patch Reef Reef 17/10/2010 (13:51) 11:21 (0.18) 2 21.559640, -71.485860 (6) 38 (65) 9.5 0.48 32 - Algal dominated (e.g. Turbinaria spp) hard bottom with patches of dead coral structure. 
Gorgonians, such as Plexaura spp, common and occasional coral patches

Fish Cay Hard Bottom Reef 14/10/2010 (13:13) 08:14 (0.2) 4 21.574620, -71.520810 (14) 32 (105) 8 0.21 28 -
Hard bottom with fleshy brown algae (mainly Sargassum spp, Padina spp and Lobophora spp ) 
and some green algae (e.g. Halimeda spp and Dictyoshpaeria cavernosa). Occasional 
gorgonians (mainly Gorgonia spp) and some corals and sponges.

Fish Cay Patch Reef Reef 16/10/2010 (11:25) 10:22 (0.21) 2 21.357757, -71.629195 (14) 33 (35) 8.25 0.43 35 -
Largely dead elkhorn coral with fleshy brown algae and encrusting algae (e.g Porolithon spp). 
Patches of live coral growth (e.g. Acropora palmata, Porites, Montastrea spp) and occasional (? 
m-2) gorgonians.

Harbour Gorgonian Reef 08/10/2010 (14:45) 15:46 (-0.03) 3 21.485954, -71.533581 (10) 45 (51) 11.25 0.09 41 -
Hard bottom with turf algae and a fine layer of silt. Large gorgonians common (including  
Pseudopterogorgia spp, Plexaurella spp and Pterogorgia spp). Sparse patches of algae (e.g. 
Halimeda spp), some sponges (e.g. Ircinia spp) and corals (e.g. Millepora spp). 

Harbour Hard Bottom Reef 07/10/2010 (15:35) 14:55 (-0.04 S) 1.5 21.487173, -71.530855 (10) 28 (32) 7 0.09 21 - Hard bottom with turf algae and patches of Halimeda, Dasycladus and Sargassum with a 
covering of silt. Low relief compared to patch reefs, with occasional corals.

Harbour Seagrass Seagrass 07/10/2010 (15:00) 14:55 (-0.04) 2 21.486382, -71.528381 (10) 38 (49) 9.5 0.08 15 78.2 (5) Dense seagrass patches (Thalassia testundinum and Syringodium filiforme) with green algae 
common (mainly Dasycladus vermicularis, Penicillus spp and Halimeda spp)

Harbour (Shark Alley) Patch Reef Reef 22/10/2010 (11:38) 15:01 (0) 2 21.484459, -71.535330 (9) 46 (15) 11.5 0.08 37 -
Patch reef with some areas of dead coral with encrusting algae (e.g. Porolithon), and some 
patches of live coral (e.g. Millepora spp, Montastrea spp, Dendrogyra cylindricus). Small patches 
of algae (e.g. Halimeda spp) and occasional gorgonians.

Harbour (Tuckers Reef) Patch Reef Reef 11/10/2010 (11:00) 05:30 (0.06) 1 21.484740, -71.528120 (8) 40 (45) 10 0.11 23 - Patchy reef with Millepora spp, Acropora palmata, Porites and Gorgonia spp. Surrounded by 
hard bottom with turf algae. Some patches of dead coral with encrusting algae.

Jacksonville Seagrass Algae Seagrass 21/10/2010 (11:49) 15:23 (0.02) 0.6 21.748160, -71.599424 (5) 18 (68) 4.5 0.08 8 15.6 (2) Sparse seagrass patches (Thalassia testundinum) dominated by green algae (e.g. Halimeda 
spp). Sponges such as Haliclona spp common. Dead seagrass present.

Larmer Seagrass Seagrass 21/10/2010 (10:08) 15:23 (0.02) 2 21.751532, -71.641136 (4) 14 (19) 3.5 0.38 7 65.4 (4) Seagrass patches on soft muddy sand with large Arenicola mounds. Some Penicillus spp and 
Laurencia spp.

Long Cay Patch Reef Reef 14/10/2010 (14:45) 08:14 (0.2) 6 21.454344, -71.572886 (11) 6 (6) 1.5 0.55 12 -
Dead elkhorn coral colonised by encrusting algae and fleshy brown algae (e.g. Turbinaria, 
Sargassum). Occasional corals (e.g. Acropora palmata, Porites spp, Montastrea spp), and 
gorgonians (e.g. Gorgonia spp)

Middle Reefs Patch Reef Reef 16/10/2010 (14:26) 10:22 (0.21 N) 2.5 21.439322, -71.590720 (13) 26 (51) 6.5 0.94 18 -
Patches of live and diverse coral (e.g. Millepora spp, Acropora palmate, Agarcia spp, Montastrea 
spp) with some patches of dead coral skeleton with encrusting algae. Occasional small 
encrusting sponges.

Newsons Point Algae Seagrass 17/10/2010 (10:49) 11:21 (0.18) 1 21.572490, -71.522300 (7) 22 (25) 5.5 0.35 9 - Dense algae patches (mainly Laurencia spp, Batophora spp, and Penicillus spp) on soft muddy 
sand.

Newsons Point Coralline Algae Seagrass 17/10/2010 (10:37) 11:21 (0.18) 1 21.572380, -71.522430 (7) 34 (61) 8.5 0.39 17 39.7 (3) Dense algae (mainly coralline algae and Penicillus spp) on sand with seagrass dominant. 
Sponges common (e.g. Chondrilla nucula) and occasional corals (Porites porites).

Newsons Point Seagrass Seagrass 17/10/2010 (12:16) 11:21 (0.18) 0.5 21.590110, -71.506220 (7) 28 (28) 7 0.85 10 62.7 (4)
Dense (4/5) seagrass (Thalassia testundinum) patches with green algae (mainly Penicillus spp 
and Halimeda spp) and red algae (mainly Laurencia spp). Sponges such as Tedania ignis and a 
brown papillate sponge common

Ocean Hole Seagrass Algae Seagrass 09/10/2010 (12:41) 04:54 (-0.02) 1 21.726916, -71.811821 (2) 34 (54) 8.5 0.82 8 31.9 (2) Soft muddy sand with worm holes and mounds. Sparse patches of seagrass with patches of 
Batophora spp and Halimeda spp. Papillate sponges present.

Ocean Hole (Man-o-War) Seagrass Algae Seagrass 09/10/2010 (10:51) 04:54 (-0.02) 0.5 21.713000, -71.845160 (1) 26 (47) 6.5 0.62 7 148.5 (5) Dense patches of seagrass (Thalassia testundinum and Halodule beaubettei) with dense 
patches of Laurencia spp and some Penicillus spp. 

Six Hills Gorgonian Reef 12/10/2010 (14:06) 06:20 (0.11) 3 21.460890, -71.629040 (12) 24 (37) 6 0.18 27 - Located in an area of strong currents. Hard bottom with fleshy brown algae and large gorgonians 
common (e.g. Eunicea spp, Plexaura spp). Occasional sponges and corals (e.g. Millepora spp)

Six Hills Patch Reef Reef 12/10/2010 (13:02) 06:20 (0.11) 1 21.459680, -71.631570 (12) 40 (52) 10 0.42 34 -
Dead elkhorn coral colonised by encrusting algae and fleshy brown algae (e.g. Turbinaria, 
Sargassum). Occasional corals (e.g. Acropora palmata, Porites spp, Montastrea spp), and 
gorgonians (e.g. Gorgonia spp)

Southern Bush Algae Seagrass 13/10/2010 (12:46) 08:14 (0.17) 1.5 21.660250, -71.664220 (3) 36 (44) 9 1.06 14 - Dense patches of algae dominated by Laurencia spp, Halimeda spp and green algae film.

Southern Bush Seagrass Algae Seagrass 13/10/2010 (12:13) 08:14 (0.17) 1.5 21.671507, -71.665913 (3) 27 (30) 6.75 0.78 11 - Soft muddy sand with worm holes and mounds. Sparse patches of seagrass with patches of 
Batophora spp and Halimeda spp. Papillate sponges present.
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Table S2. Species in diets of green turtles (n=92) and hawksbill turtles (n=45). 
Frequency (proportion of stomachs in which present), average biomass proportion ± 
SD, and max. proportion (min. was zero in all cases) of species across stomach 
samples. Bold species represent those found in >10% of stomach samples. Asterisk 
denotes trace amount (<0.01 by proportion). Comparison studies that found same 
top prey species by weight are indicated next to taxon name: 1-Mortimer (1981); 2-
León and Bjorndal (2002); 3-Santos et al. (2011); 4-Seminoff et al. (2002); 5-Van 
Dam and Diez (1997); 6-Bjorndal (1997); 7-Rincon-Diaz et al. (2011); 8-Bjorndal 
(1980). Table is split into three parts for clarity. Parts A and B represent herbivorous 
diet items. 

 

 

 

  

A

Mean ± SD Max Mean ± SD Max
Seagrass Magnoliophyta Thalassia testudinum 1,6,8 0.95 0.73 ± 0.32 1.00 0.16 * ± 0.01 0.04

Syringodium filiforme 1,6 0.58 0.16 ± 0.30 1.00 0.18 * 0.00
Halodule beaudettei 3,6 0.58 0.02 ± 0.04 0.20 0.02 * 0.00
Alismatales 0.03 * *  -  - -

Unknown algae Plantae Plantae 2 0.03 * 0.01 0.02 * ± 0.01 0.07
Plantae 1  -  - - 0.02 * *

Red algae Rhodophyta Digenea simplex 0.01 0.01 ± 0.09 0.86 0.09 0.01 ± 0.05 0.34
Chondria spp 0.05 * ± 0.01 0.09 0.09 * *
Corallinaceae 0.04 * 0.05 0.09 0.01 ± 0.03 0.13
Ceramium spp 0.02 * ± 0.01 0.05  -  - -
Rhodophyta 3 0.01 * ± 0.01 0.05  -  - -
Spyridia filamentosa 0.02 * 0.02  -  - -
Laurencia spp 0.05 * * 0.07 0.01 ± 0.08 0.54
Hypnea spp 0.04 * 0.01  -  - -
Hypnea musciformis 0.01 * *  -  - -
Rhodophyta 0.01 * * 0.07 0.02 ± 0.10 0.69
Gelidium pusillum 0.02 * * 0.02 * *
Rhodophyta 2 0.01 * *  -  - -
Gelidium spp  -  -  - 0.02 * *
Gelidiopsis spp  -  -  - 0.04 * *
Rhodophyta 1  -  -  - 0.02 * *
Rhodophyta 4  -  -  - 0.02 * 0.01
Rhodophyta 5  -  -  - 0.02 * *
Ceramiaceae  -  -  - 0.02 * *
Gelidiella acerosa  -  -  - 0.18 0.03 ± 0.10 0.50
Gracilaria spp  -  -  - 0.02 * ± 0.01 0.05
Kallymenia spp  -  -  - 0.09 0.02 ± 0.10 0.67
Halymenia duchassaingii  -  -  - 0.02 0.01 ± 0.08 0.51
Lejolisia exposita  -  -  - 0.02 * *
Gracilaria cervicornis  -  -  - 0.02 * 0.01
Polysiphonia spp  -  -  - 0.02 * *

Group Phylum Species
Green turtle Hawksbill turtle

Frequency
Biomass Biomass

Frequency
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Table S2. Cont. 

 

B

Mean ± SD Max Mean ± SD Max
Brown algae Ochrophyta Dictyota dichotoma var. intricata 0.01 * ± 0.01 0.10  -  - 0.00

Padina spp 0.02 * 0.03 0.22 0.01 ± 0.02 0.14
Rosenvingea intricata 0.02 * 0.01 0.04 * *
Dictyota menstrualis 0.01 * * 0.02 * *
Rosenvingea sanctae-crucis 0.01 * * 0.04 * ± 0.02 0.14
Canistrocarpus cervicornis  -  - - 0.04 * *
Dictyota spp  -  - - 0.13 * 0.01
Sphacelaria spp  -  - - 0.04 * 0.01
Rosenvingea spp  -  - - 0.02 * ± 0.02 0.16
Zonaria spp  -  - - 0.02 * *
Dictyopteris spp  -  - - 0.09 * ± 0.01 0.04
Sargassum spp  -  - - 0.09 * 0.02

Green algae Chlorophyta Acetabularia spp 0.05 * ± 0.02 0.18 0.04 * *
Batophora oerstedii 0.18 * 0.01 0.13 * 0.01
Halimeda spp 0.08 * 0.01 0.04 * 0.01
Acetabularia polyphysoides 0.04 * 0.01  -  - -
Chlorophyta A 0.11 * * 0.02 * 0.01
Dasycladus vermicularis 0.03 * 0.01 0.02 * *
Caulerpa verticillata 0.03 * * 0.04 * *
Penicillus capitatus 0.01 * * 0.02 * *
Cladophora spp 0.01 * * 0.02 * ± 0.01 0.07
Cladophoraceae 0.01 * *  -  - -
Chaetomorpha spp 0.01 * * 0.02 * 0.01
Dictyosphaeria cavernosa  -  - - 0.09 * 0.02
Microdictyon marinum  -  - - 0.07 * 0.01
Chlorophyta B  -  - - 0.04 * 0.01
Chlorophyta C  -  - - 0.02 * *
Chlorophyta D  -  - - 0.02 * *
Avrainvillea spp  -  - - 0.07 * 0.02
Halimeda monile  -  - - 0.02 * *
Udotea spp  -  - - 0.02 * *
Bryopsidales  -  - - 0.02 * *

Biomass BiomassPhylum Species
Green turtle Hawksbill turtle

Frequency Frequency
Group

C

Mean ± SD Max Mean ± SD Max
Sponge Porifera Chondrilla caribensis f. caribensis 2,5,6,7 0.16 0.04 ± 0.12 0.55 0.47 0.27 ± 0.40 1.00

Cinachyrella alloclada 0.02 0.01 ± 0.06 0.44 0.11 0.05 ± 0.19 0.98
Sidonops neptuni 2,5,6 0.02 0.01 ± 0.04 0.30 0.24 0.17 ± 0.35 1.00
Niphates erecta 0.03 * ± 0.04 0.32  -  - -
Tedania spp 0.01 * ± 0.02 0.19  -  - -
Pandaros acanthifolium 0.01 * ± 0.01 0.11  -  - -
Spirastrella cunctatrix 0.01 * *  -  - -
Higginsia strigilata 0.01 * *  -  - -
Porifera A  -  - - 0.02 * *
Erylus formosus  -  - - 0.07 0.04 ± 0.16 0.90
Porifera B  -  - - 0.02 0.02 ± 0.15 1.00
Halichondria (Halichondria) melanadocia  -  - - 0.29 0.16 ± 0.32 1.00
Clathria (Thalysias) juniperina  -  - - 0.04 0.01 ± 0.08 0.53
Erylus goffrilleri  -  - - 0.02 * 0.03
Scopalina ruetzleri  -  - - 0.09 0.08 ± 0.26 1.00
Timea mixta  -  - - 0.07 0.01 ± 0.08 0.55
Stelletta pudica  -  - - 0.04 0.02 ± 0.11 0.61
Desmacella meliorata  -  - - 0.04 * ± 0.01 0.04
Lissodendoryx spp  -  - - 0.02 0.02 ± 0.15 1.00
Tethya spp  -  - - 0.02 0.02 ± 0.15 0.98
Porifera C  -  - - 0.02 * *

Cnidaria Cnidaria Alcyonacea 0.02 * 0.04  -  - -
Hydrozoa 0.01 * *  -  - -
Cnidaria  -  - - 0.02 * 0.01

Invert Platyhelminth Digenia spp  -  - - 0.04 * *
Mollusca Gastropoda 0.02 * * 0.04 * *

Mollusca 0.01 * *  -  - -
Arthropoda Crustacea 0.01 * *  -  - -

Pycnogonum spp 0.01 * *  -  - -
Echinodermata Ophiuroidea  -  - - 0.02 * *

Other - Plastic 0.04 * * 0.09 * *
- Sediment 0.11 * * 0.43 0.04 ± 0.02 0.07
- Shell - - - 0.02 * *
- Wood - - - 0.02 * *

BiomassGroup Phylum
Frequency Frequency

Species
Green turtle Hawksbill turtle

Biomass
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Table S3. Rapid assessment of habitats: biological characteristics measured using the SACFOR abundance scale (see 
http://jncc.defra.gov.uk/page-2684), substrate type (%), physical characteristics ranked 1-5 (5= high relief, many patches, high 
density, unstable sediment, many crevices, deep sediment). 
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Harbour Seagrass A C  R  0 0 0 0 100 0 2 3 4 4 1 3 
Harbour Hard bottom  C  O  90 0 0 30 40 0 3 4 2 4 4 1 
Harbour Gorgonian  C C F F 100 0 10 10 10 10 4 2 2 4 3 1 
Harbour Reef  O    90 0 0 0 10 0 5 3 3 5 4 1 
Tuckers Reef Reef  C F A F 50 0 20 40 10 0 5 4 2 4 5 1 
Shark Alley Seagrass  C C A O 0 0 0 0 100 100 1 4 5 2 1 5 
Man o War Algae A A   R 0 0 0 0 100 50 1 5 1 1 1 4 
Ocean Hole Reef  S C   O 30 0 10 10 5 0 5 4 4 4 5 1 
Six Hills Gorgonians   A O A F 100 0 10 10 5 0 4 3 3 4 2 1 
Six Hills Seagrass   A A F F 0 0 0 0 100 40 1 4 4 1 1 5 
Southern Bush Algae  S A    0 0 0 0 100 40 1 5 2 1 1 5 
Southern Bush Hard bottom O S    100 0 20 10 5 0 3 3 4 3 2 1 
Fish Cay Reef  S F O F 40 20 10 20 0 0 5 5 3 5 5 1 
Fish Cay Reef  C O S O 40 0 10 10 0 0 5 5 4 5 4 1 
Long Cay Reef  C F A F 40 0 30 40 0 0 5 5 4 5 5 1 
Middle Reefs Algae   C O A F 20 0 0 0 100 0 2 5 5 3 1 2 
Newson’s 
Point 

Seagrass  A A  F O 0 0 0 0 70 30 2 5 4 3 1 3 

Newson’s 
Point 

Algae R A  R O 0 0 0 0 70 30 4 5 5 2 1 3 

Newson’s 
Point 

Reef A C   O 40 20 10 50 10 0 4 5 3 4 3 1 

Eastside Algae  C A A O 0 0 5 0 100 10 1 5 4 2 1 1 
Ambergris  Seagrass  A A   R 0 0 0 0 90 30 3 5 4 2 1 3 
Ambergris Reef A A  R O 100 20 20 30 10 0 4 5 4 4 4 1 
Ambergris Algae   A F A R 0 0 0 0 100 30 3 2 3 2 1 2 
Jacksonville Seagrass  A C   R 0 0 0 0 100 10 1 5 1 2 1 2 
Larmer  O A   C             
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Table S4. Classification of habitats surveyed. Dense = >1 individuals m-2 for solitary species, or >50% cover for algae/seagrass. 
Based on the classification scheme outlined by Mumby and Harborne (1999). 

First Tier Second Tier Third Tier Code Examples 
 Characteristics Dominant Biota Characteristics Secondary Biota   
Hard 
Substratum 

Patch Reef Brown turf algae (Phaeophyta, 
e.g. Turbinaria spp) 

Dense algae overgrowing 
coral rubble 

Cnidaria Gorgonians, 
Porifera 

PRDPha Six Hills, 
Ambergris, Fish 
Cay, East Side, 
Shark Alley 

Cnidaria (e.g. Acropora spp, 
Millepora spp, Porites spp) 

Dense patchy coral with 
sparse algae 

Encrusitng algae (e.g. 
Porolithon spp) 

PRDCni Middle Reef, 
Tuckers,  

Hard 
substratum 

Green turf algae (Chlorophyta 
e.g. Halimeda spp) 

Continuous sparse turf 
with occasional corals 

Cnidaria, Porifera HBSChl Harbour 

Brown turf algae 
(Phaeophyceae e.g. 
Sargassum spp) 

Continuous dense turf 
with occasional corals 

Cnidaria, Porifera HBDPha Fish Cay 

Gorgonian Gorgonians (Alcyonacea) turf 
algae  

Dense  Algae turf (e.g. Sargassum, 
Halimeda) Porifera 

GODAlc Harbour, Six Hills 

Soft 
Substratum 

Muddy Sand 
with mounds 

Seagrass e.g. (e.g. Thalassia 
spp) 

Dense Porifera, Chlorophyta MSDTha Newson’s Point, 
Harbour, Larmer 

Green algae (e.g. Halimeda 
spp, Penicillus spp) 

Sparse, patchy Seagrass (e.g. Thalassia 
spp), Porifera 

MSSHal Jacksonville, 
Ocean Hole 

Green algae (e.g. Batophora 
spp) 

Dense Seagrass (e.g. Thalassia), 
Porifera 

MSDBat Southern Bush, 
Ambergris 

Algae dominated (e.g. 
Laurencia spp, Penicillus spp) 

Dense, patchy Porifera MSDLau Newson’s Point, 
Man o war 

Hard sand Seagrass (e.g. Thalassia spp) Sparse, patchy seagrass 
with algae 

Laurencia spp, Cnidaria HSSLau Ambergris Airport 

Corallinaceae dominated Dense Thalassia spp, Porifera, 
Cnidaria 

HSDCor Newson’s Point 
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Figure S1. Non-metric multi dimensional scaling ordination of habitat photoquadrats 
and vector overlay of most contributing species (R>0.5 Spearman’s correlation; 
derived from SIMPER analysis). 
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Figure S2. Average (A) and variation (B) in taxonomic distinctness of habitat 
quadrats. Lines indicate the median and upper and lower 95% probability intervals of 
taxonomic distinctness created from randomised draws of sublists of 2 to 20 species 
from a regional master list of 565 species. See supplementary text for details. 
 



240 

 
Figure S3.  Trellice plot of relative percentage biomass of five main diet groups (brown, green and red algae, seagrasses and 
sponges) found in stomach content indicates no apparent relationship exists with turtle carapace size class. Hawksbill turtles 
(Eretmochelys imbricata, ei) top panel, green turtles (Chelonia mydas, cm) bottom panel. 
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Abstract 
Understanding the foraging ecology of marine vertebrates is essential for their 

effective conservation. Marine turtles are thought to be keystone consumers in 

tropical coastal ecosystems where green turtles (Chelonia mydas) as herbivores and 

hawksbill turtles (Eretmochelys imbricata) as spongivores maintain seagrass and 

reef habitats respectively. In this study, we use carbon and nitrogen stable isotope 

ratios in their prey and their tissues to examine the diet, isotopic niche width and 

trophic position of sympatric marine turtle species in the Turks and Caicos Islands, 

Caribbean. Isotopic niche metrics were significantly different between the turtle 

species reflecting inter-specific niche separation. Isotope ratios changed significantly 

with increasing carapace size in all three tissues (plasma, red blood cells and scute) 

of green turtles and scute tissue of hawksbills, demonstrating likely ontogenetic 

shifts. Bayesian mixing models also indicated that diet sources changed with size in 

green turtles from omnivory at small sizes to herbivory at mid-sizes; seagrass 

contributions were less dominant at larger sizes, suggesting a potential signal for the 

onset of developmental migrations. Hawksbill diet was highly mixed but likely similar 

across size classes. Together, these results suggest that the two turtle species likely 

play key roles in their respective habitats, with little competition for resources 

between the species. Conservation of these large grazers may be crucial for 

maintaining healthy reef and seagrass habitats. 
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Introduction 
Marine turtles are widely believed to be keystone consumers and their decline 

through overexploitation in recent centuries has been implicated in the deterioration 

of reef and seagrass systems in the Caribbean (Jackson 1997, Jackson et al. 2001, 

Pandolfi et al. 2003, Orth et al. 2006, Waycott et al. 2009). It has been suggested 

that green turtles (Chelonia mydas) as herbivores improve seagrass pastures: 

affecting structure, productivity and nutrient composition of seagrass (Thayer et al. 

1982, Thayer et al. 1984, Moran & Bjorndal 2005, 2007, Christianen et al. 2012). 

Hawksbills (Eretmochelys imbricata) as spongivores remove large amounts of 

sponge biomass, reducing competition with corals for space (Hill 1998) and thus 

influencing reef succession and diversity (Meylan 1988, Bjorndal 1997, Van Dam & 

Diez 1997). 

 Understanding trophic role and niche width of marine vertebrates is often 

challenging (Layman et al. 2007) and for marine turtles has been primarily limited to 

data from stomach sampling (Mortimer 1981, Bjorndal 1997, Brand-Gardner et al. 

1999, León & Bjorndal 2002, Seminoff et al. 2002, Arthur & Balazs 2008, López-

Mendilaharsu et al. 2008, Arthur et al. 2009, Rincon-Diaz et al. 2011, Santos et al. 

2011, Witherington et al. 2012).  Data obtained from stomach contents has its 

limitations for diet analyses because it represents a ‘snapshot’ of feeding rather than 

diet integration over longer time frames, and under-represents soft-bodied or easily 

digestible species (Duffy & Jackson 1986, Barrett et al. 2007). A combination of 

biochemical methods with conventional stomach sampling provides a more detailed 

interpretation of diet in situations where either method on its own may give less 

powerful results (Hedd & Montevecchi 2006). 

Stable isotope analysis (SIA) offers tremendous potential insights into trophic 

ecology and spatial resource use (Hobson 1999, Post 2002). The use of nitrogen 

and carbon stable isotopes in foraging studies depends on different dietary items 

having different isotopic signatures, which are reflected in the tissues of consumers 

(Inger & Bearhop 2008). During metabolism, 14N is lost to nitrogenous waste 

products and the heavy and stable isotope (15N) is preferentially retained in the body 

(DeNiro & Epstein 1981). Consumer tissues are thus enriched in heavy isotopes of 

nitrogen relative to their food source (15N:14N, expressed as !15N), usually by about 

3 to 5‰ (Post 2002). This trophic enrichment ensues predictably through the food 
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chain so that !15N is a good indicator of trophic position. Stable carbon isotope ratios 

(13C:12C, expressed as !13C) change little through the food chain (generally 0 to 1‰, 

Caut et al. 2009) but rather tend to trace the importance of different carbon pools to 

a consumer which can represent different habitats and geographic locations (DeNiro 

& Epstein 1978). For example, different !13C in primary producers (C3, C4 and CAM 

plants, marine algae) result from differing photosynthetic metabolisms (Inger & 

Bearhop 2008), and !13C decreases from marine benthic to pelagic habitats and 

from marine coastal to oceanic realms (Hobson 1999). SIA therefore provides 

quantitative information on resource and habitat use, because prey is assimilated 

and reflected in body tissues (Newsome et al. 2007).  

In marine turtles, stable isotope ratios have been used successfully to identify 

foraging habitats and diets (for examples see Godley et al. 1998, Hatase et al. 2002, 

McClellan et al. 2010). Preliminary work has been carried out on isotopic turnover 

rates and discrimination factors in a range of turtle tissues (for captive animal studies 

see Seminoff et al. 2006, Seminoff et al. 2007, and Reich et al. 2008; for wild animal 

studies, see Revelles et al. 2007, and McClellan et al. 2010). Stable isotope turnover 

rates in blood plasma and red blood cells are thought to be in the order of weeks and 

months respectively (Seminoff et al. 2007, Reich et al. 2008). Turtle carapaces are 

composed of keratinized “scutes” covering the bony shell of turtles. Scutes are 

continuously growing tissues that are metabolically inert after synthesis. They “fix” a 

permanent record of resource use at the time of formation, representing multiple 

years: the oldest fraction being found at the posterior surface (Vander Zanden et al. 

2010). Utilising different tissue types from individual turtles, therefore, allows insights 

over different temporal scales to assess changes in isotopic signals within and 

among individuals. Recent research confirmed the likely ontogenetic shift of green 

turtles from epipelagic-oceanic habitat and omnivory during the first three to five 

years of their lives to coastal-benthic habitats and a largely herbivorous diet (Reich 

et al. 2007, Arthur et al. 2008). Similar studies, however, have not been carried out 

for hawksbill turtles, although they may also undergo ontogenetic shifts as they 

recruit to coastal feeding grounds and develop spongivorous diets (Witherington et 

al. 2012). 

Stable isotope ratios have been applied to the ecological niche concept 

(Hutchinson 1957) so that an n-dimensional hypervolume can be constructed from 

trophic components, 15N/14N, and environmental components, 13C/12C, and the 
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‘isotopic space’ quantified to provide a measure of isotopic niche width (Bearhop et 

al. 2004, Layman et al. 2007, Newsome et al. 2007, Jackson et al. 2011). Several 

metrics have been proposed to represent different properties of isotopic niche space 

(Layman et al. 2007), which have been further developed within a Bayesian 

framework to provide more robust estimates of these metrics (Jackson et al. 2011). 

Comparisons of isotopic niche parameters within and among populations of 

sympatric marine turtle species may reveal insights into their foraging and ecological 

roles in coastal ecosystems. To elucidate their foraging ecology further, SIA and 

Bayesian mixing models of key dietary items and consumer tissues offer great 

promise over conventional diet studies (Moore & Semmens 2008, Parnell et al. 

2010). Likely contribution values of putative diet sources can be assessed in order to 

characterise the consumer’s diet and trophic role. 

In this study we sample turtles from two years of capture-mark-recapture 

surveys and an extant turtle fishery in the Caribbean, to obtain stomach contents and 

tissue samples of a large number and wide size range of sympatric marine turtle 

species. In Stringell et al. in prep. (Chapter 5), we undertook conventional dietary 

sampling from stomach content analysis. In the present companion study, we use 

stomach content to direct the collection of wild dietary source material, and use 

these with the tissues of sea turtles to investigate temporal, spatial and size related 

variation in resource use patterns and isotopic niche width. We address these 

hypotheses: (i) Are there any size specific changes in isotopic ratios that suggest 

ontogenetic shifts and inferred trophic status, and are these isotopic signals 

consistent across different temporal scales, that is, plasma (days to weeks), red 

blood cells (weeks to months) and scute (months to years)? (ii) Is there isotopic 

niche separation between the two turtle species and among size classes? From 

these we hope to achieve the following insights: Do they eat what we think they do? 

Are the trophic profiles suggestive of these species playing their supposed keystone 

roles?  
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Methods 
Study Site 

The Turks and Caicos Islands (TCI) is a UK overseas territory in the Wider 

Caribbean Region located at the southeastern end of the Bahamas (21o 45N, 71o 

35W).  The low lying limestone islands are characterised by shallow soft sediment 

areas with mangrove swamps and tidal creeks on the leeward side of the islands, 

contrasting with the fringing reefs and steep drop-offs on the windward side. The 

archipelago support regionally significant foraging stocks of hawksbill and green 

turtles (Richardson et al. 2009), which are subject to one of the largest, legitimate 

turtle fisheries in the Caribbean (Stringell et al. 2013, Chapter 1). 

 

Turtle sampling 

Over a period of two years (November 2008 to December 2010), we carried out 

extensive in-water capture-mark-recapture (CMR) surveys and monitored the legal 

turtle fishery in TCI at landing sites (see Stringell et al. 2013, Chapter 1 for details of 

the fishery). Turtle capture location was recorded using a hand-held GPS or 

estimated following fisher interviews. Turtle size was measured along the midpoint of 

the carapace (Curved Carapace Length, cm (CCL): Bolten 1999). Turtle size was 

grouped into seven green turtle and eight hawksbill turtle size classes: group 1, 20-

30cm; group 2, 30-40cm; ! ; group 8, 90-100cm. Each turtle that was not butchered 

was released and tagged (metal flipper and passive integrated transponder (PIT) 

tags: Balazs 1999) unless tags were already present (Richardson et al. 2009). The 

sex of turtles was determined by gross morphology of the gonads of butchered 

animals, external morphology in adults, or from circulating testosterone 

concentrations from blood plasma samples (see Stringell et al. in prep., Chapter 4, 

for further detail). 

 Samples were collected from each turtle for use in stable isotope analyses 

(SIA) and a range of tissues was selected to represent different time-frames of diet 

integration: blood plasma informing a time scale of days to weeks; red blood cells 

(RBC), a time scale of weeks to months; and scute (keratin), a time scale of months 

to years (Seminoff et al. 2007, Reich et al. 2008). Blood was extracted from the 

dorsocervical sinus of each turtle while alive (Owens & Ruiz 1980) and plasma 

separated from RBC using a centrifuge (10,000 RPM); both tissue samples were 
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frozen until processing. Scute samples from green turtles were biopsied from the 

posterior (oldest) surface of the second lateral/costal carapace scute following Reich 

et al. (2007). In hawksbill turtles, the scute was too thick for biopsy sampling; 

instead, scute samples were cut from the trailing edge of the second lateral scute. 

(See supplementary information for further details). Sampling pseudo-replication was 

avoided by including only samples taken from marked individuals on one occasion.  

 Stomach content samples from 45 hawksbills and 92 green turtles of various 

sizes were collected directly from butchered animals and content identified to lowest 

taxonomic level (see Stringell et al. in prep., Chapter 5 for details) in order to 

determine the proportion of diet sources for use in SIA mixing model priors and to 

direct the collection of diet source samples from the wild. Voucher species of 

observed and putative turtle prey, for use as source samples in stable isotope 

analysis, were collected from the wild at several sites during CMR surveys. Samples 

were frozen until processing. 

 

Laboratory analysis 

Sample pre-processing 

Diet source samples were defrosted and washed in distilled water and 

scraped/picked clean of extraneous particles and epiphytes. Some epiphytes, e.g. 

hydroids on Sargassum spp., were analysed separately for stable isotope ratios 

where weight allowed. We used some of the stomach contents as sources in SIA 

because we were unable to collect them from the wild (e.g. because of water depth 

or low occurrence). 

 All tissue and habitat voucher samples were dried at 60°C and ground into 

powder and weighed into tin capsules to the nearest 0.1mg. For animal material, 

0.7mg was usually sufficient to obtain carbon and nitrogen peak sizes within the 

desired range (as defined by laboratory standards), as was 1.2mg for plant material. 

Occasionally, sample weight had to be reduced or increased depending on carbon 

and nitrogen content. Lipids were not extracted from turtle tissue samples because 

carbon:nitrogen ratios were generally less than 3.5 (Post et al. 2007).  

 Diet source samples containing carbonate - Coralline algae, gorgonians, and 

sponges - were split into two, and half these samples were acid treated to remove 

carbonate, which is known to affect the !13C values (carbonates result in a higher 

!13C than organic carbon, DeNiro & Epstein 1978) (see supplementary methods for 
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further details). Decarbonated samples were used to determine !13C values and 

untreated samples were used for !15N. To determine if lipid extraction was required 

for source samples, several of the more common species were split into two, and 

lipids were extracted from half using a standard Soxhlet with a 2:1 mixture of 

methanol and ether solvents. Pre-treated samples were then compared to their 

paired non-treated samples in SIA. If necessary, a post hoc lipid correction factor 

was then applied to carbon isotope ratios (!13C) (Post et al. 2007). However, 

differences in !13C were not significantly different between the lipid extracted and 

untreated samples (all t-tests were P>0.119), and we therefore did not correct for 

lipids. 

 
Stable Isotopes analysis 

SIA was carried out at the Natural Environment Research Council Life Sciences 

Mass Spectrometry Facility, East Kilbride, Scotland. Carbon and nitrogen isotope 

measurements were determined simultaneously using an ECS 4010 elemental 

analyser (Costech, Milan, Italy) interfaced with a ConFlo III and Delta V Plus mass 

spectrometer (Thermo Fisher, Bremen, Germany). Three internal standards - Sigma 

Aldrich gelatine, alanine solution and glycine - were run every 10 samples to monitor 

instrument drift and allow for any corrections to sample values from standard curves. 

Aliquots of an additional laboratory standard, tryptophan, were also run to determine 

the carbon and nitrogen contents of the source and consumer samples, and percent 

and weight of carbon and nitrogen were calculated. Delta notation was used for 

stable isotope abundances in parts per thousand (‰) relative to international 

standards: Vienna Peedee belemnite (13C) and atmospheric N2 (15N): 

 

    !X=(Rsample/Rstandard "1) x1000     (1) 

 

Where Rsample and Rstandard are ratios of 13C/12C and 15N/14N in the sample and 

international standard respectively. Measurement precision (SD) was estimated to 

be 0.08‰ for !15N and 0.02‰ for !13C (derived from gelatine standards, n=157). 

 

Data analysis 

All multivariate statistical routines were carried out in PRIMER v6 software (Clarke & 

Gorley 2006) with the PERMANOVA+ add on (Anderson et al. 2008) and univariate 
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and Bayesian tests in R v 2.12 (R Development Core Team 2012).  

 

Turtle size and isotopic changes 

Isotope ratios from plasma, RBC and scute tissues were compared separately with 

turtle size (CCL) as a continuous variable using generalised additive models (GAMs: 

Wood 2011). Additionally, isotopes were compared together via Euclidean distances 

in a permutational multivariate analysis of variance (PERMANOVA: Anderson et al. 

2008) to compare size-classes for each tissue and species.  

 

Isotopic niche metrics  

Using Stable Isotope Bayesian Ellipses in R (SIBER: Jackson et al. 2011) in the 

Stable Isotope Analysis in R package (SIAR: Parnell et al. 2010), we compared the 

total isotopic niche width (convex hulls) of the turtle population between species. We 

also compared various isotopic niche descriptors using Bayesian versions of the 

Layman isotopic niche metrics (see Layman et al. 2007 for details): !15N range - 

dNR; !13C range - dCR; total area - TA; mean distance to centroid - CD; mean 

nearest neighbour distance - MNND; standard deviation of nearest neighbour 

distance - SDNND). We then examined the isotopic niche width of turtle size classes 

within and between turtle species by comparing their Bayesian standard ellipse 

areas (SEAb) calculated using SIBER. Ellipse areas were compared statistically by 

calculating the proportion of posterior ellipses of one size class that were smaller or 

larger than those of another size class; a proportion <0.05 or >0.95 was considered 

significant (McCarthy 2007). The same approach was used to test for significant 

differences in ellipse areas and each niche metric between species. 

 

Mixing models 

Isotopic discrimination between hawksbill turtles and potential prey was accounted 

for using Trophic Enrichment Factors (TEF, "dt) measured in similarly sized juvenile 

loggerhead turtle (Caretta caretta) tissues (Reich et al. 2008); blood plasma ("dt 

!13C: #0.38±0.21‰, "dt !15N: 1.50±0.17‰), RBC ("dt !13C: 1.53±0.17‰, "dt !15N: 

0.16±0.08‰), and scute ("dt !13C: 1.77±0.58‰, "dt !15N: #0.64±0.09‰). For green 

turtles, blood plasma ("dt !13C: #0.12±0.03‰, "dt !15N: 2.92±0.03‰) and RBC ("dt 

!13C: #1.11±0.05‰, "dt !15N: 0.22±0.03‰) TEFs were taken from green turtles 

(Seminoff et al. 2006), and scute TEFs from loggerheads (as above, Reich et al. 
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2008).   

 Isotope mixing models are widely used to estimate proportional contribution of 

sources (putative prey items) to a mixture (consumer tissue) to infer diet composition 

(Phillips & Gregg 2001, 2003, Phillips et al. 2005, Moore & Semmens 2008, Jackson 

et al. 2009, Parnell et al. 2010). In our study, we had many diet source items with 

wide variation in isotope ratios, uncertainty in TEFs (e.g. hawksbill tissues and green 

turtle scute TEFs taken from loggerhead trials, Reich et al. 2008) and several turtle 

size-class groups we wished to run simultaneously, each with variability in isotope 

values. Therefore, a Bayesian framework was appropriate to model this natural 

variation and uncertainty in order to generate robust probability estimates of source 

proportions (Parnell et al. 2010). We used SIAR with concentration dependence 

(Phillips & Koch 2002) in the model and uninformed (uniform) priors, with 500,000 

MCMC iterations, a 50,000 burn-in and thinning by 45 to reduce sample 

autocorrelation (Jackson et al. 2009, Parnell et al. 2010). We also ran SIAR with 

informed priors consisting of proportions of diet items observed in previous stomach 

content analysis (see Stringell et al. in prep., Chapter 5), and compared model 

solutions to those using uniform priors. Before running SIAR, sources were grouped 

into eight taxonomically coherent groups (bluegreen algae, red algae, green algae, 

brown algae, seagrasses, sponges, cnidarians, and other invertebrates), and 

consumers classified into size class mixture groups (as before). To test for significant 

differences in source contributions among turtles sizes, we calculated the proportion 

of contributions from the MCMC process of one size group that were greater than 

those of another group (as before). Separate mixing models were run for plasma, 

RBC and scute tissues. 
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Results 
Isotopic profiles and inter-species niches 

As blood plasma tissue is the most rapid turnover of the tissues tested and likely to 

represent diet incorporation in the order of days to weeks, we chose to report on 

plasma results to most closely represent the likely time frame of foraging that 

stomach content samples contain (for coherence with data presented in Stringell et 

al. in prep, Chapter 5).  

 Isotopic profiles differed markedly between the turtle species; Hawksbill turtles 

generally had higher !15N nitrogen levels and lower !13C carbon isotope levels than 

green turtles, indicative of their higher trophic position and food sources of a more 

oceanic/offshore signature (although some overlap in isotopic location is evident, 

Figure 1). Seagrass sources were isotopically close to most green turtle samples, 

while other sources, especially sponges, red algae, and cnidarians, were closer to 

hawksbill turtle samples (Figure 1). Isotope biplots for RBC and scute indicate similar 

isotopic locational differences as seen with blood plasma (supplementary Figure S1) 

 The isotopic niche space (convex hulls) of green turtles was much wider than 

that of hawksbill turtles, with significantly higher Bayesian Layman metrics for green 

turtles in all cases (P<0.05) (Figure 2). This was similarly the case for blood and 

scute tissues (supplementary Figure S2).  

 

Turtle body size 

Ontogenetic shifts  

The sizes of turtles sampled ranged from 19.6 to 92.2cm in hawksbill turtles and 25.1 

to 102.6cm in green turtles (Figure 3). In hawksbill turtle scute tissue there was a 

significant linear increase of approximately three units (‰) in !13C isotopic values 

with increasing body size (from "18‰ in smaller sizes [20cm] to "15‰ in larger size 

turtles [90cm]), and a decline of approximately two units (‰) in !15N isotopic values 

(from +6 to +4‰), although the weak R2 of the model for !15N is noted (Figures 4-5). 

There were no significant changes with size for either isotope signatures in hawksbill 

plasma or RBC.  Conversely, green turtles show a significant non-linear change with 

increasing body size in both isotopes and all three tissues, with an increase of 

approximately seven units (‰) in !13C (from "15‰ to "7‰) and a decrease of 

approximately three units (‰) !15N (from +6‰ to +3‰) (Figures 4-5).  
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 PERMANOVAs on the combined stable isotope Euclidean distances for each 

tissue and species across turtle size classes revealed similar patterns: In hawksbill 

turtle scute, but not plasma or RBC, there was a significant change (an increase 

largely driven by !13C) in isotope ratios with size class which explained 37% of the 

model (Pseudo-F7=5.90, Pperm<0.001); In all green turtle tissues there were 

significant differences among size classes (driven by an increase in !13C and a 

decrease in !15N with size) and in all pairwise comparisons, isotope distances in 

smaller size classes were generally significantly different from larger sizes of green 

turtles. 

 

Intra- and inter-species isotopic niches  

As before, we report on blood plasma results for coherence with stomach content 

samples (Stringell et al. in prep, Chapter 5). Standard ellipse locations shifted from 

lower !13C and higher !15N isotopic space in small (young) green turtles to lower 

!15N and higher !13C isotopic space in larger (older) turtles, while in hawksbill turtles, 

isotopic ellipse locations overlapped across size-classes (Figure 6). Bayesian 

standard ellipse areas (SEAb) in hawksbill turtles, however, generally increased in 

area and variation with body size (except for the largest size class). But in green 

turtles, SEAb decreased from the 40-50cm size class with increasing body size 

(these patterns are more pronounced in RBC and scute tissues; supplementary 

Figure S3).  

 For 20-30, 40-50 and 50-60cm size classes, green turtle SEAb from blood 

plasma tissue (Figure 6) were significantly larger than those of hawksbill turtles 

(P<0.01), the SEAb area of the 80-90cm hawksbill size class was larger than that of 

green turtles (P<0.05), and other comparisons were not significant. For blood 

samples, green turtle SEAb were larger than hawksbill turtles for only the 20-30 and 

40-50cm size classes (P<0.01) and for scute samples, green turtle SEAb of 20-30 to 

50-60cm size classes were significantly larger than hawksbill turtles (P<0.05) (not 

shown). 

 

Mixing models: diet changes with size 

For the mixing models, over 100 samples of each tissue (only plasma is reported 

here) were analysed for each turtle species (supplementary Table S1) and over 300 

samples of 118 taxa were used as grouped diet sources (supplementary Table S2). 
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Larger size classes (>70cm) in both turtle species and the smallest size class (20-

30cm) in green turtles generally suffered from low sample sizes (minimum of 4; 

Figure 3, supplementary Table S1).  

 Green turtles showed a marked statistically significant increase in seagrass 

consumption with increasing body size until a significant drop in contributions at the 

two largest size classes (all 10k iterations of source contributions were larger in the 

60-70cm size class than 20-30, 70-80 and 80-90cm size classes: P<0.0001, Figure 

7); the same patterns were observed for RBC and scute (Figures not shown). 

Models suggest that other dietary items are consumed in those size classes where 

seagrasses make up less of the diet (in order to sum to one; supplementary Figure 

S4).  

 Hawksbill turtles, however, showed a varied diet through all size classes, 

although there appears to be an increase in sponge and red algae consumption in 

40-50 and 50-60cm size classes (although not statistically significant; Figure 7, 

supplementary Figure S5). While Figure 7 shows the results of plasma tissue, the 

same patterns were observed for RBC and scute (Figures not shown).  

 Using priors of the relative proportions from turtle stomach content samples 

(Stringell et al in prep, Chapter 5), the mixing models on plasma samples gave more 

variable but elevated contributions for sponges in hawksbill turtles (no significant 

differences among size classes). In green turtles, the same pronounced increase 

(P<0.0001 between 20-30 and 60-70cm size classes) in seagrass contributions 

through the sizes and a significant decline (P<0.001 between 60-70 and 80-90cm 

size classes) in the larger sizes, albeit with high uncertainty (the 70-80cm size class 

was uninformative, most likely due to small sample size) (Figure 7). Proportions of 

other sources in the diet resulting from mixing models using plasma tissue and 

uniform priors are shown in supplementary Figure S4 and S5. Diet proportions from 

weighted priors (not shown) indicated similar patterns but with wider variation. 
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Discussion 
Isotopic profiles and inter-species niches 

While it is known that green and hawksbill turtles feed at different trophic levels 

(Bjorndal 1997), suggesting different ecological niches - green turtles being 

herbivorous and hawksbill turtles spongivorous - a direct comparison of the feeding 

ecology of these sympatric species from a single location has so far not been carried 

out. This study uses SIA to quantify isotopic niche space to infer ecological niche 

separation between the two species.  As expected, the !15N isotopic profile of 

hawksbill turtles suggests they feed at a higher trophic level than green turtles. The 

interpretation of the differences in !13C profiles between the species is likely a 

reflection of key habitat differences: Hawksbills are typically found on hard-

bottom/coral reef habitats and forage on filter-feeding sponges that are influenced by 

oceanic food sources; Green turtles are typically found on sheltered sediment-based 

seagrass beds. Our results indicate a high degree of separation in all isotopic niche 

metrics between these species, with some overlap, perhaps associated with green 

and hawksbill turtles feeding on sponges in similar habitats, most likely from 

seagrass pastures (Bjorndal & Bolten 2010). These results imply little competition for 

resources between the turtle species.  

 The wider isotopic niche space of green turtles than that of hawksbills, is 

contrary to that expected by the narrow taxonomic structure of green turtle diet as 

determined from stomach content samples, but the isotopic niche width is likely to be 

very much enlarged by the likely ontogenetic shift in diet from small to large sizes. 

The comparatively narrow isotopic niche width of the hawksbill turtle population, 

however, supports the findings of the stomach content analysis where the 

predominant diet was sponges (Stringell et al in prep, Chapter 5). 

 One pervading issue with isotopic niche metrics is that the breadth of isotopic 

!-space may be deceptive because not only may it represent broad taxonomic 

differences in diet sources but also the magnitude of differences in isotopic 

signatures of those resources (Newsome et al. 2007). 

 

Ontogenetic shifts 

Green turtles 

Our results demonstrate an ontogenetic shift in green turtles as also described by 
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Reich et al. (2007) and Arthur et al. (2008). As they shift from a carnivorous or 

omnivorous diet to a herbivorous one, a non-linear increase in !13C and decrease in 

!15N isotope ratios is seen respectively. This pattern is confirmed in all three 

sampled tissues that represent different time periods over which diet is incorporated, 

indicating a gradual change to herbivory and incorporation of coastal signatures. If a 

rapid ontogenetic and isotopic change were anticipated on recruiting to the coast, we 

would have expected to see herbivorous (low !15N values) and coastal (high !13C) 

isotopic signatures in plasma tissue, and perhaps RBCs, across all size classes. It 

would seem that green turtles may recruit to the coastal feeding grounds of TCI at a 

wide range of small sizes and develop herbivory gradually, perhaps causing the 

gradual decline in !15N and increase in !13C with size in plasma and RBCs rather 

than abrupt changes expected if diet shifts are immediate.  

 Both the GAM models, and particularly the mixing models, indicate that as 

green turtles approach 70cm there appears to be a further shift in isotopic ratios, 

perhaps indicating another change in dietary components.  Although this change 

may be due to small sample sizes in the larger size classes, this might coincide with 

the sizes at which green turtles begin developmental migrations to adult foraging 

grounds, a life stage that may require changes in nutritional demands. If this 

represents a genuine shift in diet, then it is contrary to consensus (Meylan et al. 

2011), but is evident in both GAM plots of !13C and !15N vs. size (Figures 4-5) and in 

the SIAR mixing models, where a shift in dietary sources best explains this change in 

consumer isotopic values (Figures 2, 6, and 7). Large individuals, however, may 

have been out to sea, incorporating an oceanic influence to their stable isotope 

ratios. For example, satellite tracking of several of these larger size green turtles 

captured in TCI, has revealed that some undertook long distance developmental 

migrations to Cuba and North Carolina (authors’ unpublished data); perhaps we 

sampled sub-adult turtles from other natal origins consisting of differing isotopic 

signatures. It is possible, therefore, that differences in seagrass signatures from wide 

geographic areas may influence these inferences (Vander Zanden et al. 2013). 

Further sampling of these larger sized turtles may elucidate this hypothesis further. 

 

Hawksbill turtles 

Our data from scute tissue suggest that as hawksbill turtles increase in size, !13C 

isotopic ratios increase and !15N decreases. The linear shift in !13C with size is likely 
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to represent a shift in location. As in other marine turtle species, this may suggest an 

ontogenetic shift from pelagic/oceanic habitats to benthic/neritic feeding grounds 

(and an increased intake of lower trophic level diet items (decrease in !15N)) with 

increasing size (Musick & Limpus 1997, Bolten 2003, Reich et al. 2007, Arthur et al. 

2008, This Study). Hawksbill plasma and RBC, however, did not show any significant 

differences with size suggesting that recruitment to the coastal feeding grounds 

might have occurred at sizes smaller than those sampled; ontogenetic shifts were 

only detectable in the scute tissue which represents a longer history of resource use. 

This ‘missing’ size range is likely to have high growth rates in comparison to larger 

sizes (Chaloupka & Limpus 1997) and therefore may represent a short life stage. 

This implies that a change in habitat and/or diet could have occurred abruptly, and is 

coherent with the classical (abrupt) ontogenetic shift model (Bolten 2003, Carr 1986, 

1987, Snover et al. 2010). To assess if the observed significant variation in isotope 

ratios with increasing body size was dependent only on the smallest size classes, we 

excluded the smallest size classes (in 5cm increments) from the data and re-ran the 

GAM models. Removing sizes up to 30cm CCL revealed no significant decrease in 

!15N in the remaining sizes (P=0.227, R2=0.01), but retained the significant increase 

in !13C (P=<0.001, R2=0.18), perhaps suggesting an ontogenetic diet shift that 

occurs abruptly and a habitat shift that changes gradually. Only by excluding size 

classes up to 50cm did the remaining sizes show no significant change in carbon 

isotope ratios (P=0.07, R2=0.04), implying that by this body size, any ontogenetic 

habitat shift is likely to be permanent. The abrupt ontogenetic diet shift differs 

markedly to that observed in green turtles in this study, which represents a gradual 

non-linear change across size classes and plastic foraging behaviour, as known for 

loggerhead turtles, for which the classical ontogenetic model is no longer supported 

(McClellan & Read 2007). 

 The change in !15N with increasing hawksbill turtle body size (inclusive of all 

size classes) could represent an increasing intake of lower trophic level diet items, 

but probably not a change in consumer trophic level, which is typically accompanied 

by a larger change (fractionation) of approximately 3.4‰ per level (Post 2002). The 

decline in !15N may indicate that, compared to earlier life stages, the diet of larger 

sized hawksbill turtles might be composed of more algae material that generally has 

lower !15N composition than higher taxa (supplementary Table S2); most (73%) 

hawksbill turtle stomach samples had algae species in them and contributed 
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approximately 12% to the average diet in terms of relative abundance (biomass), but 

there were no significant change in diet with size (Stringell et al in prep, Chapter 5). 

However, the use of !15N as a resource axis may not provide a quantifiable measure 

of trophic level until we have a better understanding of the environmental and 

physiological factors that determine the magnitude of changes in !15N (Newsome et 

al. 2007). 

 

Intra-species isotopic niches  

Green turtle isotopic niche width (ellipse area) generally decreases from 40cm CCL 

with increasing body size, indicating that diet may become more specialised (and 

isotopically narrow) as turtles age (Vander Zanden et al. 2013). This change from a 

known omnivorous/carnivorous diet in the pelagic small juveniles to a benthic 

herbivorous diet in juveniles after recruiting to coastal environments is well 

documented (Bjorndal 1985, Bjorndal 1997, Arthur et al. 2008, Reich et al. 2008).  

 Hawksbill turtle isotopic niche width increases significantly with body size, up 

to adult sizes of 80-90cm, indicating diet becomes more isotopically broad. At >90cm 

there is a decline in mode ellipse area to a level similar to that of small sizes. It is 

possible that this is an artefact of small sample sizes, but these data could suggest 

that hawksbill turtles may start off with a more specialised diet and become a more 

generalist feeder or change to alternative specialised diet with increasing size, 

although stomach content analysis did not support this hypothesis (Stringell et al in 

prep, Chapter 5). 

 

Mixing models: diet changes with size 

Green turtles 

Green turtle diet is composed largely of seagrasses and algae, with an apparent 

change in diet with size as expressed by an increase to a peak in seagrass 

consumption at 60-70cm size classes followed by a decrease as other diet items 

(sponges and algae) contribute to the diet. Larger turtles forage at greater depth 

(Musick & Limpus 1997) and thus may access a wider variety of food, and as a result 

have different trophic signatures to smaller turtles. This pattern, however, was not 

reflected in the stomach content analyses (see Stringell et al in prep, Chapter 5) 

which indicated no significant differences in diet proportions (biomass) with size. It is 

clear that SIA probably more realistically reflects what turtles are consuming and 
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assimilating into their tissues: stomach content analysis is a ‘snapshot’ of feeding 

which may not be representative of a varied diet of an individual over time (Duffy & 

Jackson 1986, Barrett et al. 2007) - SIA has the advantage of assessing diet that has 

been integrated over different time frames depending on the tissue examined 

(Newsome et al. 2007). 

 

Hawksbill turtles 

Mixing models also indicated a highly mixed diet for hawksbill turtles, much more 

than suggested by the stomach content, which was dominated by sponges (Stringell 

et al in prep, Chapter 5), and there was little change with size. This was the case 

even when model priors were used that were heavily weighted towards sponge 

dominance as determined by stomach content analysis. Sponges house many 

symbiotic, parasitic and commensal species that increases the apparent taxonomic 

breadth of diet; it maybe that residents of sponges have more nutritional value than 

sponges themselves, although invertebrates (a putative proxy for sponge dwellers) 

did not contribute greatly to the SIAR mix. It is also possible that sponges are 

digested and incorporated/metabolised far less than we think (e.g. see Bjorndal 1990 

for green turtles).  

 The highly mixed nature of the hawksbill turtle diet indicated by the mixing 

models might be indicative of source samples that overlap isotopically and may not 

be as distinct from each other as required for discrimination. Isotopic measurements 

can only distinguish among resources with contrasting isotopic signatures (Newsome 

et al. 2007) and the discrimination factors of sources may differ markedly (Post 2002, 

Vander Zanden et al. 2012). However, picking and choosing source diet items that 

are distinct seems counterintuitive and biased when diet is known to be 

taxonomically broad (see Stringell et al in prep, Chapter 5, for review).   

 Appropriate trophic enrichment factors (TEFs) are critical in getting good 

mixing models and source partitioning (Seminoff et al. 2006, Newsome et al. 2007, 

Reich et al. 2008). There are no published TEFs for hawksbill turtles, so their closest 

relative (loggerhead turtles) was used here instead. Further work is required to 

determine TEFs for the hawksbill turtle, which may provide clearer signals of diet 

contributions in the current mixing models.  
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Concluding remarks 

Our study suggests ontogenetic habitat and diet shifts in two sympatric marine turtle 

species. Green turtles reveal gradual size partitioning and ontogenetic structuring in 

the foraging patterns of this species; from a pelagic, oceanic and carnivorous phase 

in early life stages to a neritic, benthic and herbivorous phase in later life stages 

where they predominantly feed on and incorporate seagrasses. Data on hawksbill 

turtles suggest they may have a gradual ontogenetic habitat shift and an abrupt 

ontogenetic diet shift with a change in trophic feeding that represents a much more 

varied diet than expected, that is, not only dominated by sponges. This mixed diet 

was confirmed by stomach content analysis (Stringell et al in prep, Chapter 5) and 

has several implications. 1) Previous studies of hawksbill turtle diet have been 

somewhat limited by stomach content analyses. Taxa other than sponges that may 

be incorporated from the diet into bodily tissue may not be well represented in 

stomach content leading to biased inferences on feeding ecology.  2) The 

incorporation of diet items other than sponges, especially algae, may be a result of 

changes in the availability of diet, for example, increases of algal cover in depleted 

coral reef systems (Mumby 2009, McMurray et al. 2010), likely in response to 

overfishing (Mumby et al. 2006, Pawlik et al. 2013). Only a longer term analysis of 

potentially changing isotopic profiles coupled with habitat surveys of known foraging 

grounds might indicate such ecosystem changes.  

 Isotope ratios are subject to variation among individuals, locations and 

seasons, which may mask signals in either !13C or !15N (McClellan et al. 2010, 

Vander Zanden et al. 2012). Although our study had a large sample size for analysis, 

samples were limited from some locations and seasons and in some size classes, 

particularly small hawksbills and large green turtles. Targeting future sampling to 

certain locations, seasons and size classes would allow a more complete range of 

factors to be analysed to further explore the findings of this study. Additionally, 

incorporating other methods, such as satellite tracking and genetics, may further 

elucidate life history traits such as migrations between serial foraging grounds, 

reproductive migrations and foraging strategy dichotomies (Hatase et al. 2002, 

Hawkes et al. 2006, McClellan et al. 2010). 

 Analysis of the isotopic niches of sympatric species, such as marine turtles, and 

monitoring the degree of overlap in normally well separated niches, might provide a 

valuable indicator of broad ecological changes. Green and hawksbill turtles are 
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among the largest-bodied grazers in the tropical coastal ecosystems and are likely to 

have key roles in regulating the structure and function of reef and seagrass habitats 

(Bjorndal & Jackson 2003). With marine turtles widely considered as keystone 

species, knowledge of their foraging ecology in coastal ecosystems is essential for 

effective conservation and SIA has a primary role in delivering these insights. 
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Figure 1. Biplot of !13C and !15N stable isotope values (‰) for hawksbill turtle (A, n=108) and green turtle (B, n=108) blood plasma 
samples (circles). Filled circles are turtles for which we also had stomach content samples (n=45 hawksbills and n=92 greens). Diet 
sources (±SD) are bluegreen algae (bl), red algae (r), green algae (g), brown algae (b), seagrasses (sg), sponges (sp), cnidarians 
(c), and other invertebrates (i).  
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Figure 2. Inter-species isotopic niche metrics for hawksbill turtle (A, C) and green 
turtle (B, D) blood plasma samples. Standard convex hulls (joining the extreme most 
means of the turtle size classes: smallest, 20-30cm, ! , largest, 90-100cm, CCL) for 
the all-size population are shown for illustration of one possible iteration of the total 
niche width (A, B), and various Bayesian Layman niche metrics are given (C, D): 
"15N range - dNR; "13C range - dCR; total area - TA; mean distance to centroid - CD; 
mean nearest neighbour distance - MNND; standard deviation of nearest neighbour 
distance – SDNND (see Layman et al. 2007 for details on metrics). The Bayesian 
metrics can be compared between the turtle species. 
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Figure 3. Size frequency histogram of hawksbill (dark grey) and green turtles (light 

grey) sampled in this study. Sizes are curved carapace length (CCL) taken from 

turtles that were sampled for blood plasma tissue for use in stable isotope analysis 

(n=108 for each species). 
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Figure 4. Size (CCL, cm) and !13C isotope ratios for blood plasma (A, n=108; B, 

n=108), red blood cells (C, n=107; D, n=123) and scute (E, n=121; F, n=120) tissues 

from hawksbill turtles (Ei) and green turtles (Cm). Significant GAMs shown with R2
adj 

values of fit: Green turtle: Plasma, F4.9=5.95, P<0.0001, n=108; Blood, F3.6=37.58, 

P<0.0001, n=123; Scute, F3.5=25.95, P<0.0001, n=120. Hawksbill scute: F1.9=26.14, 

P<0.0001.   
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Figure 5. Size (CCL, cm) and !15N isotope ratios for blood plasma (A, n=108; B, 

n=108), red blood cells (C, n=107; D, n=123) and scute (E, n=121; F, n=120) tissues 

from hawksbill turtles (Ei) and green turtles (Cm). Significant GAMs shown with R2
adj 

values of fit: Green turtle: Plasma, F4.8=7.01, P<0.0001; Blood, F4.2=29.05, 

P<0.0001; Scute, F4.6=23.33, P<0.0001. Hawksbill scute: GAM d15N, F1=7.11, 

P=0.009. 
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Figure 6. Intra-species isotopic niche space for hawksbill turtle (A, C) and green 
turtle (B, D) blood plasma tissue across turtle size classes (cm, CCL). Standard 
ellipse areas are sample-size corrected (SEAc: A, B). Corresponding Bayesian 
standard ellipse areas (SEAb) are shown for each size class (C, D) and can be 
compared among sizes and turtle species. Medians of SEAc (cross) and mode of 
SEAb (dot) are overlaid on the box plots of SEAb, which represent the 50%, 75% 
and 95% credible intervals from dark to light grey. 
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Figure 7. Mixing model contribution proportions across turtle size classes (cm, CCL). 
Proportions of sponges to hawksbill turtle diet (A, C), and seagrasses to green turtle 
diet (B, D) are derived from plasma tissue. Top panel (A, B) shows results from 
models with uninformative (uniform) priors and bottom panel (C, D) with priors based 
on relative percentage of diet composition in stomach content samples (taken from 
Stringell et al. in prep., Chapter 5). Box plots represent the 50%, 75% and 95% 
credible intervals from dark to light grey.   
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Chapter 6: Supplementary Information 
 

Methods 
Turtle sampling 

Blood was extracted from the dorsocervical sinus of each live turtle (Owens & Ruiz 

1980) using sterile 0.8x25mm or 0.8x38mm needles (depending on animal size) and 

6ml BD Vacutainer sampling tubes internally coated with Lithium Heparin 

anticoagulant, which does not effect SIA (see Lemons et al. 2012). Blood samples 

were stored on ice in the field and transferred to a refrigerator within hours before 

being centrifuged for 10mins at 10000 RPM. Blood plasma was pipetted into 

cryovials and stored at -20°C until transferred to the UK for long-term storage at 

!80°C. Red blood cells (RBC) were frozen in Vacutainers at -20°C. Scute sampling 

in green turtles followed Reich et al. (2007) where sterile biopsy punches (2mm or 

6mm depending on turtle size) were used to take full scute depth samples from the 

posterior (oldest) of the second lateral/costal carapace scute.  

 

Collection of diet sources 

Throughout October 2010, shallow (<10m depth) snorkelling surveys were carried 

out at several locations throughout TCI to describe the epibenthic macrofaunal 

communities of reef-based and seagrass dominated habitats (see Stringell et al. in 

prep., Chapter 5, for details of methods). Voucher species of observed and putative 

turtle diet, for use as sources samples in stable isotope analysis, were collected from 

the wild at several sites during these and earlier capture-mark-recapture surveys 

during the two year period. Samples were frozen until processing. 

 

Laboratory analysis 

Sample pre-processing 

All scute samples were thoroughly cleaned with isopropyl alcohol, rinsed in distilled 

water, dried at 60°C for at least 24 hr. and ground into powder using a Dremmel 

hand drill with a stainless-steel bit. Plasma, RBC, and habitat voucher samples were 

dried at 60°C and powdered using a mortar and pestle. Ground samples were 
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weighed into tin capsules to the nearest 0.1mg. Occasionally sample weight had to 

be reduced or increased depending on carbon and nitrogen content in SIA - in these 

cases samples were repeatedly analysed (if sample volume allowed) until sufficient 

mass was present for accurate detection (sometimes considerable weight was 

required when nitrogen content was low).  

 Carbonate containing diet voucher samples were treated with 10% 1M 

hydrochloric acid for 24 hours to remove carbonate content (method adapted from 

Topçu et al. 2010). The process was repeated until effervescence stopped. Samples 

were thoroughly washed with distilled water and left to stand for several hours, the 

liquid decanted off and the washing process repeated. Finally, the liquid was 

decanted off and the resultant solids dried at 60°C for at least 24hours.  
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Table S1. Mean ± SD of stable isotope values (‰) by turtle species, tissue type and 
size class (CCL). Shaded values indicate average across sizes and total sample 
size. 

 
  

Turtle Tissue Size (cm) Mean !13C SD !13C Mean !15N SD !15N n
Hawksbill Plasma 20-30 -16.06 0.68 5.97 0.80 11

30-40 -15.57 1.51 6.11 0.69 12
40-50 -15.79 1.24 6.16 0.67 23
50-60 -15.63 1.59 6.25 0.87 29
60-70 -15.14 2.11 6.38 1.11 11
70-80 -14.38 2.15 5.88 0.90 7
80-90 -15.53 2.18 6.46 0.98 9
90-100 -16.85 1.43 6.61 0.26 4

-15.61 1.61 6.21 0.82 106
Blood 20-30 -16.39 0.38 5.19 0.50 13

30-40 -16.01 1.22 4.76 0.53 10
40-50 -15.85 1.02 4.83 0.69 26
50-60 -15.60 1.70 4.77 1.02 28
60-70 -14.81 2.30 4.41 1.36 11
70-80 -14.52 2.35 4.12 1.46 7
80-90 -15.18 2.29 4.98 0.91 9
90-100 -16.50 1.05 4.78 0.44 4

-15.64 1.62 4.77 0.92 108
Scute 20-30 -17.65 0.61 5.93 0.96 17

30-40 -17.31 0.63 5.47 1.14 12
40-50 -16.48 1.03 5.45 1.41 28
50-60 -15.78 1.32 5.29 0.92 30
60-70 -14.70 2.21 4.19 1.59 10
70-80 -14.45 2.46 4.65 1.31 8
80-90 -14.62 2.49 4.73 2.07 10
90-100 -15.60 1.33 5.42 0.94 4

-16.08 1.76 5.26 1.33 119
Green Plasma 20-30 -12.90 2.92 5.59 1.73 7

30-40 -9.01 1.99 3.40 1.56 15
40-50 -8.33 2.57 1.90 1.81 32
50-60 -7.91 2.63 2.50 1.40 21
60-70 -7.05 1.08 2.68 1.08 24
70-80 -7.09 0.75 3.06 1.40 4
80-90 -7.92 0.34 2.37 0.49 4

-8.29 2.53 2.70 1.72 107
Blood 20-30 -16.04 1.83 6.25 0.97 7

30-40 -12.76 1.93 4.59 1.00 14
40-50 -10.04 2.49 2.21 1.68 39
50-60 -7.58 1.91 1.80 0.97 28
60-70 -7.97 1.64 1.87 0.73 27
70-80 -7.76 0.97 2.93 1.11 6
80-90 -7.83 0.78 2.31 0.82 4

-9.50 3.02 2.57 1.71 125
Scute 20-30 -15.34 1.69 6.26 0.63 6

30-40 -12.85 3.48 5.76 1.43 15
40-50 -9.89 2.56 3.27 1.38 37
50-60 -7.51 2.23 2.96 1.03 28
60-70 -7.83 2.06 2.84 0.97 23
70-80 -7.91 1.52 3.90 1.11 9
80-90 -8.66 1.50 4.23 0.76 4

-9.40 3.21 3.65 1.58 122
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Table S2. Taxonomic diet source groups used in the SIAR mixing models and their 
mean ±SD carbon and nitrogen isotopes (‰). The number of taxa and samples for 
each source group are given. 

 
Sources No.   

Taxa 
No. 

Samples Mean  !13C SD  
!13C Mean  !15N SD  

!15N 

Bluegreen algae 1 5 -13.47 7.09 1.74 0.59 
Red algae 29 76 -15.21 5.34 2.48 1.38 

Green algae 29 77 -12.86 3.85 1.43 2.54 
Brown algae 11 37 -13.63 2.69 1.34 1.25 
Seagrasses 3 27 -7.07 1.55 -0.50 2.55 

Sponges 28 61 -14.29 3.24 2.36 1.87 
Cnidarians 10 19 -11.82 4.89 3.12 0.93 

Invertebrates 8 12 -11.89 7.16 2.45 1.34 
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Figure S1. Biplot of !13C and !15N stable isotope values (‰) for hawksbill turtles (Ei: 
A, C) and green turtles (Cm: B, D) and two tissues: red blood cells (squares; A, B) 
and scute (triangles; C, D). Filled symbols are those turtles that also had stomach 
content samples (n=45 hawksbills and n=92 greens; see Stringell et al. in prep., 
Chapter 5). Diet sources (±SD) are bluegreen algae (bl), red algae (r), green algae 
(g), brown algae (b), seagrasses (sg), sponges (sp), cnidarians (c), and other 
invertebrates (i).  
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Figure S2. Convex hulls (joining the extreme most means of turtle size classes: 

CCL, cm) of the all-size turtle populations from three tissue types: Top panel, plasma 

(A, B); middle panel, red blood cells (C, D); bottom panel, scute (E, F). Left panel, 

hawksbill turtles (Ei: A, C, E); right panel, green turtles (Cm: B, D, F).  
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Figure S3. Sample-size corrected Standard Ellipse Areas (SEAc) for turtle size 

classes (CCL, cm) and three tissue types: Top panel, plasma (A, B); middle panel, 

red blood cells (C, D); bottom panel, scute (E, F). Left panel, hawksbill turtles (Ei: A, 

C, E); right panel, green turtles (Cm: B, D, F).  
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Figure S4. Diet source contributions to green turtle blood plasma samples across 
turtle size classes (CCL, cm). Data are from SIAR mixing models. Each panel 
represents one of eight sources: bluegreen algae, red algae, green algae, brown 
algae, seagrasses, sponges, cnidarians, and other invertebrates.   
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Figure S5. Diet source contributions to hawksbill turtle blood plasma samples across 
turtle size classes (CCL, cm). Data are from SIAR mixing models. Each panel 
represents one of eight sources: bluegreen algae, red algae, green algae, brown 
algae, seagrasses, sponges, cnidarians, and other invertebrates.   
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