
D.Horvath ¹	GENERATIVE TOPOGRAPHIC MAPPING OF
I. Baskin ²	CONFORMATIONAL SPACE
G. Marcou ¹	¹ Laboratoire de Chémoinformatique, UMR 7140 CNRS-Univ.
A.Varnek ¹	Strasbourg, 1 rue Blaise Pascal, Strasbourg 67000, France
	² Moscow State University, Russia
	dhorvath@unistra.fr

Herein, Generative Topographic Mapping (GTM) [1] was challenged to produce planar projections of the high-dimensional conformational space of complex molecules (the 1LE1 peptide). GTM is a probability-based mapping strategy, and its capacity to support property prediction models serves to objectively assess map quality (in terms of regression statistics). The properties to predict were total, non-bonded and contact energies, surface area and fingerprint darkness. Map building and selection was controlled by a previously introduced evolutionary strategy allowed to choose the best-suited conformational descriptors, options including classical terms and novel atom-centric autocorrellograms. The latter condensate interatomic distance patterns into descriptors of rather low dimensionality, yet precise enough to differentiate between close favorable contacts and atom clashes. A subset of 20K conformers of the 1LE1 peptide, randomly selected from a pool of 2M geometries (generated by the S4MPLE tool [2]) was employed for map building and cross-validation of property regression models.

The GTM build-up challenge reached robust three-fold cross-validated determination coefficients of $Q^2=0.7...0.8$, for all modeled properties. Mapping of the full 2M conformer set produced intuitive and information-rich property landscapes. Functional and folding subspaces appear as well-separated zones, even though RMSD with respect to the PDB structure was never used as a selection criterion of the maps.

^{1.} Kireeva N. et al. Mol. Inf., 2012, 31: 301-312.

^{2.} Hoffer L. et al. Molecules (Basel, Switzerland), 2015, 20: 8997-9028.