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Long-distance bidirectional transport of organelles depends on the coordinated motion of various motor proteins
on the cytoskeleton. Recent quantitative live cell imaging in the elongated hyphal cells of Ustilago maydis has
demonstrated that long-range motility of motors and their endosomal cargo occurs on unipolar microtubules
(MTs) near the extremities of the cell. These MTs are bundled into antipolar bundles within the central part of
the cell. Dynein and kinesin-3 motors coordinate their activity to move early endosomes (EEs) in a bidirectional
fashion where dynein drives motility towards MT minus ends and kinesin towards MT plus ends. Although
this means that one can easily assign the drivers of bidirectional motion in the unipolar section, the bipolar
orientations in the bundle mean that it is possible for either motor to drive motion in either direction. In this paper
we use a multilane asymmetric simple exclusion process modeling approach to simulate and investigate phases
of bidirectional motility in a minimal model of an antipolar MT bundle. In our model, EE cargos (particles)
change direction on each MT with a turning rate � and there is switching between MTs in the bundle at the
minus ends. At these ends, particles can hop between MTs with rate q1 on passing from a unipolar to a bipolar
section (the obstacle-induced switching rate) or q2 on passing in the other direction (the end-induced switching
rate). By a combination of numerical simulations and mean-field approximations, we investigate the distribution
of particles along the MTs for different values of these parameters and of �, the overall density of particles
within this closed system. We find that even if � is low, the system can exhibit a variety of phases with shocks
in the density profiles near plus and minus ends caused by queuing of particles. We discuss how the parameters
influence the type of particle that dominates active transport in the bundle.
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I. INTRODUCTION

Spatial redistribution of organelles is of central importance
to all eukaryotic cells. Long-distance transport involves the
activity of molecular motors (powered by hydrolysis of ATP
[1]) along polymers of tubulin dimers, the so-called micro-
tubules (MTs). Bidirectional transport along MTs involves
coordination between opposing motor molecules kinesin and
dynein where kinesin takes cargos towards plus ends of
MTs and dynein towards minus ends [2]. Since the MTs
are approximately linear, this poses the question of how
bidirectional motility can occur on the same bundle (or even
the same MT) without forming blockages that would give a
loss of transport efficiency.

Various modeling studies have helped to illuminate the
cooperative aspects of the motility of cargos along MTs (see,
e.g., [3–5]). These tend to be based around extensions of the
asymmetric simple exclusion process (ASEP) on a single track
(see the review [6] and references therein). Extended ASEP
models for bidirectional transport have explored various ways
to overcome collisions between opposite-directed particles.
One approach assumes that particles bind to and unbind
from tracks [7–10] to allow particles to pass each other.
Another approach assumes that the exclusion principle only
applies to particles moving in the same direction and the
presence of a motor in the opposite direction modifies the
rate at which motors enter a site [11]. Alternatively, a high
direction-change rate can avoid clusters due to collisions [12].
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Moreover, Evans et al. introduced another possibility [13]
to avoid collisions by allowing particle interchanges when
they meet. Juhász introduced a two-lane ASEP [14] with
opposite-directed particles moving in separated lanes, thereby
avoiding collisions between opposite-directed particles. The
two-lane ASEP is equivalent to a two-species ASEP in some
sense as discussed in [15]. We consider a multilane model
in [16] where particles can change between protofilaments to
avoid collisions, using the fact that a single MT consists of 13
protofilaments [17], each of which provides a potential track
for motors.

Based on recent advances in live cell imaging techniques
and the use of the fungal model system Ustilago maydis, in
vivo observation of dynein indicates that collision between
opposite-directed motors rarely occurs [18,19]. This suggests
that we can adapt the two-lane model in [14] to investigate the
bidirectional transport of dynein motors on unipolar MTs. The
adapted two-lane model together with a more sophisticated
13-lane model provided an explanation for the formation
of dynein accumulation at MT plus ends [16,18,20]. The
suggested function [18] of the dynein accumulation at MT plus
ends is to prevent the cargo of early endosomes (EEs) falling
off the MT. More recent work on U. maydis has shown that the
majority of the fungal cell contains antipolar MT bundles and
that unipolar MTs are restricted to the cell poles [21].

Early endosomes are the main cargo of dynein and kinesin-3
in hyphal cells [22,23] and undergo long-distance bidirectional
motility [24]. Interestingly, experimental evidence suggests
that bidirectional long-distance motility of EEs along the
bipolar MTs is mainly mediated (dominated) by kinesin-3,
whereas dynein is mediating retrograde motility of EEs along
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the unipolar MT [21] and observes that EEs can travel over
the entire length of the MT array. In conclusion, [21] shows
that dynein and kinesin-3 cooperate and that cargo can hop
between MTs within the bundle. It is also shown that during
the EE transport, dynein can detach from the cargo and the
EE continues motility (carried by kinesin-3) after a short
pause. Moreover, short pauses of EEs before they continue
the directed motility are observed at minus ends of MTs
by visualizing both minus ends of MTs and EEs. These
observations suggest that EEs may change MTs at MT minus
ends by altering their active motor types.

Hopping between tracks has been modeled for unidirec-
tional traffic [25–29] where a single track splits into parallel
tracks. The junction between single and parallel tracks allows
particles on the single track to step into either of the parallel
tracks. Here we provide a model that is based on a previous
ASEP model [20], but which includes a junction mechanism
to describe bidirectional motility of cargo along an antipolar
microtubule bundle. In our model, the lattice is composed
of two MTs that are coupled at microtubule minus ends and
the arrangement of the antipolar MT bundle gives a central
unipolar and outer bipolar sections within the bundle.

A description of the model is given in Sec. II. In Sec. III
we show that the distribution of particles along the lattice
can exhibit a variety of phases depending on the system
parameters. We show that, even for a low overall density
of particles, particles can accumulate at minus ends as well
as at plus ends. Moreover, we find a type of phase where
density profiles of one type of particles can smoothly connect
between low and high density. The density profiles for these
different phases are well approximated by our mean-field
analysis. In Sec. IV we consider how the MT switching rates
q1 and q2 and the overall density � affect the contribution
of each type of motor to the transport of cargos. Finally, in
Sec. V we discuss the possible biological relevance and
limitations of this model.

II. LATTICE MODEL WITH ANTIPOLAR BUNDLING

In this section we introduce our simple model of antipolar
bundling of two MTs in the idealized cell [Fig. 1(a)]. The
bundle (where we refer to each MT as a track) is modeled in
Fig. 1(b) as a lattice of length N with tracks of length N − N1

and N2, respectively, that overlap in a common section of
length N2 − N1. Each track has lanes that permit motion in
each direction. The two plus ends of MTs are located at two
ends of the lattice and the other ends of two MTs (the minus
ends) are where the unipolar and bipolar sections meet. The
two tracks are antipolar bundled so that there is a plus end at
each extremity of the bundle. The middle section in the bundle
is referred to as the bipolar section and the outer sections are
referred to as the unipolar sections of relative length x1 and
1 − x2, respectively, where x1,2 := N1,2/N . Considering the
symmetric organization of the MT bundle shown in [21], we
assume henceforth a symmetric lattice with x1 + x2 = 1.

The lattice supports motion of two types of cargo particle:
Plus-type particles represent EEs that are driven by kinesin
towards the plus end of the track, while minus-type particles
represent EEs that are driven by dynein towards the minus end
of the track. As the particles may have more than one motor
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FIG. 1. (a) Schematic diagram of the hyphal tip cell of Ustilago
maydis where two MTs with plus ends at cell poles (tip and septum)
form an antipolar bundle. (b) Schematic diagram of bidirectional
transport on the bundle modeled as a discrete lattice. The two tracks
in the lattice represent two MTs of lengths 1 − x1 and x2 with (no-
flux) plus ends at two ends. Plus- (open) and minus-type (shaded)
particles on the tracks move on separate lanes [open (shaded)] for
particles moving forward to plus (minus) ends, respectively. Particles
can change type (and thus lane) within the same track with rate ω.
The forward rate on each track is set to be 1, except at the junctions
between the bipolar and unipolar sections. We assume that track
switching occurs only at the junctions between sections and with rates
q1,2 (q1,2 = 0 means that the MTs are uncoupled). (c) Assuming x1 =
1 − x2, we analyze steady solutions on the lattice (b) in terms of the
densities on the bipolar and unipolar sections as shown, with effective
boundary conditions that emerge via self-organization of the system.

type attached, they can change type and therefore direction
when both motors bind. We assume that any case of opposing
motors binding to the same track is resolved after a brief
tug-of-war event [30–33] between the counteracting motors
on the same particle. As collisions between opposite directed
motion of EEs in U. maydis are rarely observed [21], which is
similar to the dynein transport, we assume transport on each
track in a particular direction is on a separate lane as in the
two-lane model [14,20]. In summary, the lattice contains four
lanes, each of which supports one direction and a single type
of particle as illustrated in Fig. 1(b). We assume that particles
remain attached [18,21] and the system is closed, i.e., there is
no injection or exit of particles into or out of the lattice at the
extremities of the bundle. The resulting particle number con-
servation during the transport means, for example, that once
the end of a track is reached, a particle will remain there until it
changes direction and continues motility back into the bundle.

We make further simplifying assumptions on track switch-
ing of particles, based on experimental observations of EE
motility. In [21] it was shown that EEs carried by dynein
can switch to be kinesin carried during the transport without
reversal of transport direction. This implies that the motor type
can change without reversing direction as well as there being
a track switching and type change of EEs. It also demonstrates
the bipolar structure of MT bundles in U. maydis hyphae.
Moreover, [21] found that EEs often paused (in association
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with MT switching) near MT minus ends and suggested that
minus ends are obstacles for EEs. In our model, the antipolar
bundle of tracks means it is possible for a particle to switch
between tracks with a change of type, without reversing
transport direction. We assume track switching only occurs
on passing junctions associated with minus ends of either MT.
This simplification means we exclude the possibility of track
switching for plus-type particles. These minimal assumptions
on track switching are sufficient to allow particles to travel
across the entire lattice from one extremity to the other.
Because of the assumed symmetry x1 + x2 = 1 we can reduce
the lattice to Fig. 1(c), where the motion occurs independently
on the bipolar and unipolar sections and the junctions can be
thought of as imposing effective boundary conditions through
self-organization of the system at the junctions.

We identify a location in the lattice by (i,�,±), where i ∈
{0, . . . ,N − 1} denotes the site, � ∈ {1,2} denotes the track,
and ± denotes the lane direction on the track. Particles hop
from one location to another with a certain transition rate where
the possible transitions we consider are listed below.

(i) Forward motion. Plus- and minus-type particles can
move forward by one location along a given lane. We assume
equal rates for forward motion of plus- and minus-type
particles (justified because of the similar velocities observed
for in vivo transport [18,19]) and we assume homogeneous
rates on each lane except at the junctions (N2,1,−) and
(N1 − 1,2,−) (for minus-type particles). For convenience, we
set all forward rates to be p = 1 (equivalently, we give all
other rates in units of p).

(ii) Track switching. We allow minus-type particles at
junctions (N2,1,−) and (N1,1,−) to step forward onto the
second track (together with a type change) with rates q1 ∈ [0,1]
(obstacle-induced switching rate) and q2 ∈ [0,1] (end-induced
switching rate), respectively. Similarly, minus-type particles
at (N1 − 1,2,−) and (N2 − 1,2,−) can switch onto the first
track with the same obstacle-induced or end-induced rate. We
assume that the total rate of forward motion at sites (N2,1,−)
and (N1 − 1,2,1) is still p = 1.

(iii) Direction change. Plus- and minus- type particles can
change direction on the same track and site by changing
type (and therefore lane). We assume homogeneous and equal
direction-change rates w for all particles. We define � := wN ,
which characterizes the overall direction-change rate.

All transitions are assumed to be independent and in-
stantaneous and are subject to a simple exclusion principle.
This means that there can be at most one particle at each
location (i,�,±) of the lattice, and the presence of a particle
at one location prevents other particles from moving into that
location.

To describe the time evolution of this stochastic bidirec-
tional transport process we write the system state using

τ �
i,±(t) ∈ {0,1},

where 1 (0) denotes occupancy (vacancy) at location (i,�,±)
and time t ; the state changes according to the above transition
rates and the exclusion principle. The exclusion principle
ensures that τ �

i,±(t) ∈ {0,1} at all times. A special case is
q1 = q2 = 0, where the transport on each of the two tracks
is independent of the other and the process is no longer
ergodic. There is an extra symmetry in this case that involves

interchanging the plus- and minus- type particles. This is
caused by the assumption of equal forward-motion and turning
rates, but in general there is no symmetry between the particle
types. For the ergodic cases, the statistically stationary state
will be independent of initial condition. The symmetric lattice
structure gives a symmetric distribution of particles on two
tracks where the mean number of particles on each track is
equal.

For a statistically stationary state, the density (mean
occupancy) of plus- and minus-type particles at location
(i,�,±) is

ρl
i := 〈

τ l
i,+

〉
, σ l

i := 〈
τ l
i,−

〉
,

where 〈·〉 denotes the ensemble (or time) average. These
densities are related to the overall density � of particles by

� = �+ + �− =
∑N−1

i=0

(
ρ1

i + ρ2
i

)
2(N − N1 + N2)

+
∑N−1

i=0

(
σ 1

i + σ 2
i

)
2(N − N1 + N2)

,

where �± are the overall densities of plus- and minus-type
particles, respectively. As the system is closed, the overall
density � is conserved under the time evolution even though
�± may not be conserved. Meanwhile, the mean current (the
mean rate of stepping forward per unit time) at location (i,�,±)
is given by

J �
i,± = 〈

τ �
i,±

(
1 − τ �

i±1,±
)〉

away from the junctions (in units of p). At the junctions
between sections, the mean currents for minus-type particles
are

J 1
N2,− = (1 − q1)

〈
τ 1
N2,−

(
1 − τ 1

N2−1,−
)〉

+ q1
〈
τ 1
N2,−1

(
1 − τ 2

N2−1,+
)〉

and

J 1
N1,− = q2

〈
τ 1
N1,−

(
1 − τ 2

N1−1,+
)〉
,

with similar expressions for junctions at the second track. On
average, the net current in the unipolar section is zero and at the
junction between sections it is balanced: J 1

N2,− = J 1
N2−1,+ +

J 2
N2−1,−; however, there may be a nonzero net current in the

bipolar section.
We believe that exact analytical solutions of the density

profiles in our model with general parameters cannot be
found using methods such as matrix products [6] or a Bethe
ansatz [34] and therefore we use a combination of mean-field
approximations and numerical simulations to understand the
statistical behavior of the model.

For numerical simulation of the continuous-time discrete-
state model, we use the Gillespie algorithm [35]. Parameters
that govern bidirectional transport in U. maydis are used where
known from experiments; for example, we use x1 = 1 − x2 =
0.2, as microtubule minus ends in U. maydis hyphae are shown
to be approximately uniformly distributed in the middle at
about 10 in hyphal length away from cell poles where the MT
minus ends are almost absent [21]. For the parameter �, in vivo
experiments in [18,19] suggest a range of run length of order
10–70 μm in a hyphal length of L = 100 μm, which gives [36]
� ∈ [1,10]. A lattice length of N = 500 is used for simulations
unless otherwise stated. We choose an initial condition where
each track possesses an equal number of randomly distributed
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particles and run the simulation for at least 80 000 s, checking
that the system reaches a statistically steady state by examining
the convergence of finite-time averages.

A. Particle-hole symmetry of the system

The standard unidirectional ASEP on a single lane and the
two-lane ASEP developed by Juhász [14] share a common
feature: a particle-hole symmetry. Although this holds away
from the junctions, at the junction there is no such exact
symmetry. However, by adjusting the forward stepping rate of
plus-type particles when crossing the junctions between tracks
[i.e., an inhomogeneity in forward-motion rates for plus-type
particles at locations (N2 − 1,1,+) and (N1,2,+)], the model
can be adapted to give an exact particle-hole symmetry as
explained below.

Note that particles are of two types and we divide holes in
the lattice into two types. Minus-type holes refer to the holes
in lanes for plus-type particles (as the holes move to the minus
end). Similarly, plus-type holes refer to the holes in lanes
for minus-type particles. A track switching of a minus-type
particle from the unipolar to bipolar section corresponds to a
track switching of a plus-type hole in the other direction, while
a track switching of a minus-type particle from the bipolar to
unipolar section corresponds to a track switching of a plus-type
hole in the other direction.

If we adjust the forward rate for plus-type particles when
crossing the junction at locations (N2 − 1,1,+) and (N1,2,+)
to be p̂ = 1 − q2, then the system possesses the particle-hole
symmetry, i.e., the system is invariant under the exchange(

q1,q2,τ
�
i,±

) ↔ (
q2,q1,1 − τ �

i,±
)
.

This clearly maps (ρi,σi) to (1 − σi,1 − ρi) and so � to 1 − �.
Note that the uncoupled system with homogeneous rates for
plus-type particles (i.e., q1,2 = 0 and so p̂ = 1) is a special
case with exact particle-hole symmetry. For q1,2 small, the fact
that p̂ ≈ 1 means we still expect an approximate particle-hole
symmetry. In later sections, we focus on low and intermediate
overall densities and at least for q1 and q2 small, possible
phases for high overall densities can be deduced from this
approximate symmetry.

III. STATIONARY DISTRIBUTION OF PARTICLES
AND MEAN-FIELD ANALYSIS

The system we consider is closed, but we can think of
it as two half-closed unipolar end sections and two bipolar
middle sections. For the spatially symmetric case x1 = 1 −
x2 we assume the densities in the two unipolar (and bipolar,
respectively) track sections are the same and so can effectively
reduce this to a single bipolar and a single unipolar track as
shown in Fig. 1(c). Through self-organization of the system, a
statistically stationary solution will set up effective boundary
rates (i.e., injection rates α

u(b)
± and exit rates β

u(b)
± ) in Fig. 1(c)

and we can use these to perform an analysis as in [14,20] to
find the density profiles for statistically stationary states, given
knowledge of the densities at the junctions.

For a lattice of length N , consider a rescaled position
variable defined as x = i/N ∈ [0,1] and in the continuum limit
N → ∞ we express J �

±(x) = J �
i,± as the (mean) unidirectional

current and J �(x) := J �
+(x) − J �

−(x) as the net (mean) current.
Moreover, we reexpress the densities on each track as ρ�(x)
and σ �(x) for plus- and minus-type particles, respectively. The
overall density of plus- and minus-type particles can then be
reexpressed as

�+ =
∫ 1

0 [ρ1(x) + ρ2(x)]dx

2(1 − x1 + x2)
, �− =

∫ 1
0 [σ 1(x) + σ 2(x)]dx

2(1 − x1 + x2)
.

In the spatially symmetric lattice with x1 + x2 = 1 for
x ∈ [x1,1] we write ρ(x) := ρ1(x) = ρ2(1 − x) and σ (x) :=
σ 1(x) = σ 2(1 − x) so, for example, the overall density (in-
cluding both types of particles) can be expressed as

� =
∫ 1
x1

ρ(x) + σ (x)dx

2(1 − x1)
.

The density profile in the statistically stationary state for
plus- and minus-type particles in one section of the lattice is
then governed by the following equations (ignoring the second
derivative and second order of 1/N) and appropriate boundary
conditions (see [14,20] for details):

0 = (2ρ − 1)
dρ

dx
− �(ρ − σ ),

(1)

0 = (1 − 2σ )
dσ

dx
+ �(ρ − σ ).

Meanwhile, the unidirectional currents in each direction on
this section are

J+(x) = ρ(x)[1 − ρ(x)], J−(x) = σ (x)[1 − σ (x)]

and the net current is

J (x) = ρ(x)[1 − ρ(x)] − σ (x)[1 − σ (x)]. (2)

Taking the sum of (1), note that

dJ (x)

dx
= d

dx
[ρ(1 − ρ) − σ (1 − σ )] = 0,

which implies that there is a constant net current J (x) = J0

for the mean-field approximation in the stationary state in each
section. A positive (negative) net current indicates a net current
towards the plus (minus) end.

A. Spatial distribution in the unipolar section

As the unipolar section of the first track (x2 < x � 1) is
closed at one end, this corresponds to boundary conditions
ρ(1) = 1 and σ (1) = 0 and we assume that the end x = x2

of the unipolar section is associated with injection and exit
rates αu

+ and βu
− as in Fig. 1(c). In this section we analyze the

density profiles in the unipolar section for general αu
+ and βu

−.
As discussed in [20], the unipolar section has zero net current
due to the closed boundary at the right end. Thus J = ρ(x)[1 −
ρ(x)] − σ (x)[1 − σ (x)] = 0, leading to two possible solutions

ρ(x) = 1 − σ (x), ρ(x) = σ (x).

Hence, solving the ordinary differential equation (ODE) (1),
there are two possible solutions: complementary density

ρ(x) = 1 − σ (x) = 1 − � + �x (3)

and equal density ρ(x) = σ (x) = C. The boundary conditions
at x = 1 mean that a complementary density region starts from
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the plus end and extends toward the interior of the unipolar
section, while an equal density region can appear away from
the end.

For low injection and high exit rates, the constant in the
equal density case is C = ρ(x2) = αu

+. The density profile
of plus-type particles exhibits a shock between equal density
and complementary density regimes, while the density of
minus-type particles is continuous except near the left end. We
refer to this as an SL phase; the first letter refers to plus-type
particles, while the second one refers to minus-type particles:
S stands for shock, while L stands for low (less than 1/2). By
the approximate particle-hole symmetry, analogous to the SL
phase, there is an HS phase where the equal density is over
one-half and minus-type particles experience a shock.

For small enough turning rate �, the shock location xs

can be found by matching limx→x−
s

ρ(x) = limx→x+
s

1 − ρ(x)

between the two regions, meaning xs = 1 − αu
+

�
as long as

x2 < xs < 1. If 1 − αu
+

�
� x2 then the whole of the unipolar

section is filled with the complementary density regime and
we refer to this as an HL phase (H stands for high density).

In contrast, if the tuning rate � is high enough, a region
of maximal current with a density of 1/2 can appear near the
open end of the unipolar section for high enough injection
rate. This is referred as an MM phase (M stands for maximal
unidirectional current) and only occurs when 1 − � + �x2 <

1/2, i.e., if �x1 > 1/2.
In summary, the possible phases of density profiles for the

unipolar section with general left boundary conditions αu
+ and

βu
− are shown in Fig. 2 for both �x1 < 1/2 and �x1 > 1/2.

On the coexistence line αu
+ = βu

−, we have ρ(x2) = αu
+ = 1 −

σ (x2) and note that ρ(1 − αu
+

�
) = 1 − αu

+ in the complementary
density, thus a similar discussion as in [14] can be applied in the
region [x2,1 − αu

+
�

]. In the next section we consider a similar
approach to the bipolar section and hence on the entire bundle.
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FIG. 2. Phase diagram of the density profile in the unipolar
section with general left boundary conditions αu

+ and βu
− and closed

right boundary conditions, for �x1 < 1/2 (left panel) and �x1 > 1/2
(right panel), where x1 = 1 − x2 = 0.2. Numerical examples of
density profiles in the unipolar section for each phase are illustrated
with indicated boundary conditions (αu

+,βu
+). The top three density

profiles in the middle column use � = 1, while the bottom density
profile is using � = 10. In the density profiles, black dots are for
plus-type particles, while gray dots are for the minus type.

B. Analysis of spatial distribution along the entire bundle

We now consider the density profiles in the entire symmetric
bundle. In the uncoupled case (q1 = q2 = 0), the stochastic
process on each track is exactly the same as the two-lane ASEP
discussed in [14] assuming equal direction-change rates and
no-flux boundary conditions. The density profile on the first
track consists of three segments in general; for low overall
density, an equal-density segment occurs in the middle and
this is surrounded by complementary-density segments at the
ends of the track.

For either q1 or q2 positive, we analyze the density
profiles by considering two ASEPs on the first track with
corresponding boundary rates in each section. The boundary
rates are set by self-organization of the system and depend
on densities in the other sections. The density profiles can
exhibit a variety of phases even if the parameters � and � are
fixed. In the following subsections we show that a mean-field
approximation with appropriate boundary conditions agrees
well with numerical simulations for a variety of density profiles
and phases.

In the generic case where q1,q2 > 0, we can assume that
the net current J on a single track in the bipolar section is not
necessary zero. For a small net current there are nearly-equal-
and nearly-complementary-density solutions σ ≈ ρ and σ ≈
1 − ρ (see Appendix A for details). Having neither ρ nor σ

close to 1/2, i.e., assuming

min{1 − ρ,ρ} < ε, min{1 − σ,σ } < ε

for some small ε, gives a net current J = O(ε) from Eq. (2).
Furthermore, we approximate the constant net current J =
ρ(1 − ρ) − σ (1 − σ ) = (ρ − σ )(1 − ρ − σ ) by

J = sgn(1 − 2ρ)(ρ − σ ) + O(ε2),
(4)

J = sgn(1 − 2ρ)(ρ + σ − 1) + O(ε2)

for nearly-equal- and nearly-complementary-density regions,
respectively. The solutions of density profiles for plus-type
particle [see (A1)] can thus be approximated [with error O(ε2)]
as

ρ = −J�x + Ce, ρ = �x + Cc (5)

for nearly equal and nearly complementary densities, respec-
tively, and the corresponding densities of minus-type particles
can be approximated as

σ = ρ + sgn(2ρ − 1)J, σ = 1 − ρ − sgn(2ρ − 1)J. (6)

The constants Ce (c) in (5) are functions of the boundary rates
αb

± and βb
± that are set by self-organization in the closed system,

though for low J we are able to successfully estimate the
dependence on some of the parameters. Note that a minus-type
particle crossing the junction x = x2 from the unipolar to the
bipolar section switches to the other track with rate q1 (which
contributes to the injection of plus-type particles on the other
track in the bipolar section) and keeps on the same track with
rate 1 − q1 (which contributes to the injection of minus-type
particles). Therefore, by the spatial symmetry [which gives
σ 1(x2) = σ 2(x1)], we approximate the injection rates

αb
+ = σ (x2)q1, αb

− = σ (x2)(1 − q1). (7)
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Moreover, a minus-type particle on the second track switches
to the first track with rate q2 when crossing the junction at
x = x2 (which contributes to the exit of minus-type particles
in the bipolar section), a plus-type particle steps forward with
rate 1 when crossing the junction (which contributes to the
exit of plus-type particles), and both the minus- and plus-type
particles share the same target site when they move. Thus, by
spatial symmetry, we have βb

+ + βb
− = 1 − ρ(x2) and βb

− =
q2β

b
+. This gives exit rates

βb
+ = 1 − ρ(x2)

1 + q2
, βb

− = [1 − ρ(x2)]q2

1 + q2
. (8)

The boundary rates in (7) and (8) determine the constant
in nearly-equal- and nearly-complementary-density approx-
imation [see (A1)]. The following sections use the density
approximation in (A1) and (5), assuming low net current and
neither ρ nor σ close to 1/2, to obtain approximate density
profiles along the entire lattice.

C. Phases for low overall densities

For low overall density � 	 1/2, the unipolar sections
must have low density and thus the unipolar section will be
in an SL phase, where densities ρ(x) = σ (x) = σ̄ are equal
and constant away from the plus end. There will be a shock
at location xu

s = 1 − σ̄ /� in the unipolar section from (3).
When both types of particles in the bipolar section have low
density, these densities are determined by the injection rates
αb

± in (7) with σ (x2) = σ̄ . Thus, in the bipolar section, the
density profiles are governed by the parameters �, q1,2, and σ̄ .
If q2 = 0 then queueing appears at the minus ends in a similar
manner to the queueing at the plus end in the unipolar section.
By contrast, for a sufficiently large q2 any queuing particles at
the minus end are expected to move into the unipolar section
of another track. This leads to low densities for both types of
particles in the bipolar section and we refer to it as an LL-SL
phase for the entire system; the two letters (LL in this case)
before the hyphen refer to the bipolar section, while the other
two (SL in this case) refer to the unipolar section.

Explicit expressions of the mean-field approximation for
the density profiles can be found using the nearly-equal-
density approximations (5) and (6) for the bipolar section and
conservation of �. A detailed calculation of these expressions
are given in Appendix B, while Fig. 3(a) shows that the mean-
field approximations agrees well with numerical simulations
for this LL-SL phase. This LL-SL phase is lost for lower q1,2

as an additional boundary layer may arise near the junctions;
a shock of minus-type particles can form near the minus end.
We refer to this case as an LS-SL phase (i.e., in the bipolar
section minus-type particles are in shock state and plus-type
particles are in low density, while in the unipolar section a
shock forms for the plus type and the density of the minus
type is low) [see Fig. 3(b)]. In the mean-field approximation, a
shock for minus-type particles in the bipolar section stabilizes
at x = xb

s where

lim
x→xb+

s

σ (x) = 1 − lim
x→xb−

s

σ (x). (9)

The density ρ(x2) = σ̄ can also be used to give the approximate
boundary rate βb

− in (8) in terms of the parameters, using
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FIG. 3. Panels (a) and (b) show density profiles for LL-SL and
LS-SL phases on the first track with x1 = 1 − x2 = 0.2 and other pa-
rameters indicated. For plus-type (minus-type) particles, black (gray)
lines show the density solution from mean-field approximations and
squares (circles) show the averaged densities (over time interval
T = 60 000 s) using a Gillespie algorithm. Panels (c) and (d) show
the transition between LL-SL and LS-SL phases for indicated � and
�. Lines are from the mean-field approximation (10), while circles
are from numerical simulations; a shock is identified if ρ1

N1+1 > 0.5.

approximations of nearly equal and nearly complementary
densities (5) and (6) for right and left sides of the shock
in the bipolar section. Figure 3(b) shows that the mean-field
approximation agrees well with numerical simulations for this
phase.

The transition between LS-SL and LL-SL phases for low
overall density involves the shock in the bipolar section
meeting the junction between sections i.e., xb

s → x1. In other
words, the nearly equal density of minus-type particles σ (x)
in (B2) satisfies limx→x1 σ (x) = 1 − σ (x1) = βb

−, which gives

q2(1 − σ̄ )

1 + q2
= σ̄ q1 − σ̄ (2q1 − 1)

�(x2 − x1) + 1
. (10)

Recall that σ̄ is related to the overall density � by (B5).
Figures 3(c) and 3(d) show examples of this prediction on
the borderline between LL-SL and LS-SL phases in the
space (q1,q2) against numerical simulations where a shock
is identified by over one-half density of minus-type particles
at the penultimate site to the minus end. Qualitatively, this
prediction agrees well with the simulations.

D. Phases for intermediate overall densities

For intermediate overall densities, the system displays a
wide variety of phases for different parameter values. We
have not attempted to characterize all the possible phases
for this intermediate density, but we do investigate some
of these phases in detail: one with shocks of both types of
particles and a second with a smooth connection in the bipolar
section.

1. The SS-HL phase

Note that a small � could cause the unipolar section to
be in an HL phase with shocks for both types of particles
in the bipolar section. This is referred as an SS-HL phase;
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FIG. 4. Density profile on the first track with parameters indicated
shows an SS-HL phase. The markers for simulation and mean-field
approximations are as in Figs. 3(a) and 3(b).

see Fig. 4 for an example. In this phase, the density profiles
have nearly equal density in the middle separating two nearly-
complementary-density regimes in the bipolar section; the four
boundary conditions αb

±,βb
± given in (7) and (8) are all satisfied.

Therefore, we have

ρ(x1) = αb
+ < 1/2, ρ(x2) = 1 − βb

+,

σ (x1) = 1 − βb
−, σ (x2) = αb

− < 1/2.

If ρ and σ in the bipolar section are not close to 1/2,
then from (4) we approximate the net current by J = βb

+ −
αb

− = αb
+ − βb

−. We also approximate ρ(x2) and σ (x2) in the
boundary rates by the limit in the complementary density (3) as
x → x2, i.e., 1 − ρ(x2) ≈ σ (x2) ≈ x1�. Thus the net current
is approximated by

J = βb
+ − αb

− = αb
+ − βb

− =
(

1

1 + q2
− 1 + q1

)
x1�. (11)

Similar to the previous discussion, for the SS-HL phase the
relation between the shock locations in the bipolar section
and the overall density can in principle be found using (5)
and (6) to give approximate density profiles in the bundle.
Figure 4 shows that the approximated solution from the mean
field agrees well with numerical simulations.

Note that the approximation (11) of the net current suggests
that the direction of the net current is governed by q1,2 and
moreover that (1 − q1)(1 + q2) = 0 gives a zero net current.
We expect constant density in a region of the bipolar section
when there is zero net current, as in Sec. III A. Particularly
when the overall density � = 1/2, we find a maximum uni-
directional current region in the bulk where ρ1(x) = σ 1(x) =
1/2. This region can be estimated by identifying degenerated
shocks (with zero shock height) for both types of particles,
which can be approximated as [ 1

2�
+ (1 − q1)x1,1 − 1

2�
−

q1x1]. Note also that this maximum unidirectional current can
appear with an MM phase in the unipolar section.

2. Phases with smooth connection

For a nonzero net current J , the nearly equal density
solution is a monotonic function in position seen from (A1).
Thus, simply by increasing the overall density from a low
value, the maximum value of the density profiles in the
nearly-equal-density region would increase and eventually
reach 1/2. Figure 5 shows density profiles together with a
plot of ρ vs σ under different �; particularly for � = 5/16
and 9/16, the nearly-equal-density regions contain both high
and low densities and one of the types (the plus type in this
example) exhibits slower change between low and high density
than the other type. Moreover, Fig. 6 compares the density
profiles in different system sizes where the density profile
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FIG. 5. On the left are density profiles on the first track for four
different overall densities as indicated; dark lines are for plus-type
particles, while gray lines are for minus-type particles. On the right
is a plot of ρ vs σ from the corresponding left panel; the solid lines
show the relation J = ρ(1 − ρ) − σ (1 − σ ), where J is the constant
net current. Deviations of the dots from the solid lines are probably
due to finite-size or boundary-layer effects. Other parameters are
� = 5, q1 = 0.8, and q2 = 0.2.

in the middle is more shocklike for plus-type particles and
remains almost unchanged for the other type.

This suggests that, for this example, in the bipolar section
ρ smoothly increases through 1/2 with x while σ has a
shock separating low and high densities. We say this phase
has a smooth connection between low and high density for
one type of particles and we denote it as an SC (or a CS)
phase, depending on which type of particles exhibits a smooth
connection (we ignore the existence of additional shocks for
the type with a smooth connection in the bipolar section).
The letter S stands for shock, while the letter C stands for
connection; which type density smoothly connects is related
to the sign of the net current J : A positive J is associated with
plus-type particles having a smooth connection and vice versa.

If there is a CS (or an SC) phase in the bipolar section, there
are various possible phases in the unipolar section; see Figs. 5
and 7, where the unipolar section can be seen to be in HS, HL,
SL, or SS phases depending on parameters. Note that the SS
phase in the unipolar occurs when the boundary rate αu

+ = βu
−.

In contrast to the polynomial function of density profiles
shown in [14] with symmetric open boundary condition, both
density profiles exhibit shocks here due to the overall density
being fixed; this is consistent with the discussion in [14].
Furthermore, the smooth connection phases are generic in
the parameter space q1,2 [seen from Fig. 8 where each frame
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FIG. 6. Density profiles on the first track for system sizes N =
300 ( + ) and N = 1000 (•). Black shows ρ, while gray shows σ .
The shock width near x = 0.55 for ρ is shorter for the larger system
size, while σ shows a smooth connection through σ = 1/2. Other
parameters are � := ωN = 5, q1 = 0, q2 = 0.5, and � = 1/2.
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FIG. 7. Density profiles on the first track with indicated param-
eters showing smooth connection phases for intermediate overall
densities. A CS phase in the bipolar section indicates that minus-type
particles exhibit a smooth connection through density 1/2 at a point
where plus-type particles exhibit a shock, while for an SC phase
the plus-type particles exhibit the smooth connection. The markers
for simulation and mean-field approximations are as in Figs. 3(a)
and 3(b).

represents the density profiles for ρ(x) (left panel) and σ (x)
(right panel) via color for fixed q1 and changing q2 by every
0.1 between 0 and 1]. The parameter q1 ∈ {0,0.2,0.5,0.8,1} is
increased from the top frame to the bottom frame in both
panels. In addition, there are both SC and CS phases in
the parameter space (q1,q2). For instance, plus-type particles
exhibit a smooth connection for high q1, while minus-type
particles exhibit this for low q1.

The density profiles in smooth connection phases can also
be understood by mean-field approximations. When using
approximation (A1) for densities in the bipolar section, the
constants can in principle be worked out by considering
the fact of the overall density conservation, similar to the
previous discussion on the LL-SL phase. However, due to
the nonlinearity in the expression (A1), we examine the
mean-field approximation for the CS (or SC) phase by
choosing appropriate J and boundary conditions to satisfy the

FIG. 8. A variety of phases arise in the bundle for fixed � = 7/16
and � = 5 when varying the switching rates q1,2. Each frame in the
left and right panels represents densities of plus- and minus-type
particles for fixed q1 when varying q2 by every 0.1 between 0 and 1.
The fixed parameter q1 ∈ {0,0.2,0.5,0.8,1} increases from the top to
bottom frame in both panels.

overall density � and the densities in the unipolar section.
Take Fig. 7(a) as an example where minus-type particles
smoothly connect low and high densities and also form a
shock in the bipolar section, and in the unipolar section
densities are in an HS phase with an equal high density that
is constant away from the plus end, say, σ̄ . In the CS-HS
phase, given a net current J and σ̄ with boundary conditions
αb

+ = σ̄ q1 and αb
− = σ̄ (1 − q1), we would have the nearly

equal and nearly complementary densities by approximation
(A1) in the bipolar section and would also have the equal
and complementary densities from Sec. III A in the unipolar
section. The parameters J and σ̄ are chosen in order to match
the shock condition for the minus-type particle in the bipolar
section as in (9) and the overall density �. Particularly, in
this example, the mean-field solution with σ̄ = 0.753 and
J = −0.065 satisfies the shock condition and the overall
density; Fig. 7(a) shows the agreement between the mean-field
approximation with chosen parameters and the simulation.
Similar comparisons for smooth connection phases with an
HL, SL, or SS phase in the unipolar section are shown in
Figs. 7(b)–7(d).

E. Phases for high overall densities

When the system has high overall density, the vacancies
are in low overall density. From the discussion of particle-
hole approximate symmetry in Sec. II, we can see that an
HH-HS and SH-HS phase can appear. Moreover, note that
the approximate symmetry may break when q1 is large, in
which case we find another phase where plus-type parti-
cles are in high density in both sections while minus-type
particles exhibit a shock. We refer to this as an HS-HS
phase (see Fig. 9). In this phase the boundary rates αb

− and βb
±

aresatisfied and Fig. 9 shows that the mean-field approximation
agrees with numerical simulations on the density profiles.

IV. DOMINANCE OF PARTICLES IN TRANSPORT

Both types of particles are essential for bidirectional
transport along the bundle of tracks in the unipolar section.
However, the possibility of nonzero net flux already indicates
that one type of particle is more responsible for the transport
in the bipolar section. Indeed, in vivo experiments of EEs
suggest that kinesin-3 is the main motor for long-range EE
motility across an antipolar MT bundle [21]. In the following
we discuss the contribution of each type of particle to the
transport in terms of occupancy as well as current in our model.
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FIG. 9. Density profiles on the first track with indicated parame-
ters show an HS-HS phase. The markers for simulation and mean-field
approximations are as in Figs. 3(a) and 3(b).
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A. Dominance in occupancy

For the transport in the entire bundle, one way to quantify
the dominance in occupancy is to estimate the fraction of
plus-type particles in the entire bundle, 0 � F+ � 1, where

F+ := �+
�

=
∫ 1
x1

ρ1(x)dx

2�(1 − x1)

for a symmetric lattice x1 + x2 = 1. Recall that � is an overall
density of particles in the bundle, which is preserved during
the transport and so is considered as a parameter. Note that
F+ = 1/2 in the case q1 = q2 = 0 as in this case the tracks
decouple and the assumption of equal turning rates means that
the densities have a symmetry ρ(x) = σ (1 − x).

Track switching is accompanied by a change of type from
minus to plus, thus increasing either q1 or q2 is the potential
to increase the number of plus-type particles and thus increase
F+. If F+ is close to 1 then plus-type particles are in significant
dominance in terms of occupancy in the entire bundle. For

� = 0 and q1,2 > 0 together with a sufficiently low overall
density � we get close to the maximum F+ = 1.

When considering the fraction of plus-type particles within
each section, it is clear that in the unipolar section there are
more plus-type than minus-type particles for any parameters.
In contrast, the fraction in the bipolar section

Fb
+ :=

∫ x2

x1
ρ(x)dx∫ x2

x1
ρ(x) + σ (x)dx

is not as easy to estimate for general overall density �.
For low overall density, the system is in either the LL-SL

or LS-SL phase and the mean-field approximation predicts the
corresponding density profiles well. For sufficiently large q2

[i.e., larger than the critical value satisfying (10)] there will be

low densities for both types of particles in the bipolar section,
approximately independent of q2. Both fractions F+ and Fb

+
can be expressed using the approximated density profiles,
ignoring boundary layers. Thus, in this phase the fraction in
the entire bundle is approximately

F+ ≈
1
2 σ̄�(x2 − x1)2 + σ̄ q1(x2 − x1) + 1 − 1

2 σ̄ 2/� + (x1 − σ̄ /�)σ̄

σ̄ /� + (1 − 2σ̄ /�)σ̄
, (12)

where σ̄ is associated with � as in (B5), and the fraction in
the bipolar section is

Fb
+ ≈ 1

2
+ 2q1 − 1

2�(x2 − x1) + 2
. (13)

Both fractions show an independence of q2 and linear
dependence on q1. Comparatively, the latter expression for the
fraction in the bipolar section is a simpler function of � and q1

for fixed x1,2. We can see that this expression agrees well with
simulations from Fig. 10. Moreover, from this approximation,
q1 = 1/2 gives an approximately equal contribution in the
bipolar section for each type of particles. This agrees with a

zero net current in (B3), which leads to equal density in an LL
phase. Moreover, the sign of q1 − 1/2 determines which type
of particle is in dominance and by decreasing � the dominance
can be enhanced. Particularly, for a small �,

lim
q1→1

Fb
+(q1) ≈ 1, lim

q1→0
Fb

+(q1) ≈ 0.

That is to say, for sufficiently low �, plus-type particles dom-
inate in the bipolar section for sufficiently large switching rate
q1; in contrast, minus-type particles dominate for sufficiently
small q1.
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FIG. 10. Fraction of plus-type particles in the bipolar section. On the left the lines are from the approximated equation (13) for � ∈
{0.1,1,2,5,10}, with bolder lines for larger �, while circles are for simulations, with larger circles for larger �. Other parameters are � = 1/16
and q2 = 1. The right panels examine the independence of this fraction on the overall density � and switching rate q2 if sufficiently large; pluses
and circles are for � = 3/16 and 1/16, respectively, in both the top and bottom panels. Simulated data presented use q1 = 0.2; quantitatively
similar figures can be obtained for other q1.
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FIG. 11. Fraction of plus-type particles F b
+ (left panel) and the

ratio of the average current for plus-type particles Rb
+ (right panel)

in the bipolar section with varying q1 (marked by ∗) or q2 (marked
by + ) for � = 5 and � = 7/16. Simulated data presented use fixed
q1 = 0.8 (q2 = 0.1) and varying q2 (q1); qualitatively similar figures
can be obtained for other values of q1,2.

For intermediate overall density, the plus-type and/or
minus-type particles form shocks near the junctions between
sections. In contrast to low overall densities where Fb

+ is
highly dependent on q1 and weakly dependent on q2, in
the intermediate overall densities, the fraction in the bipolar
section Fb

+ shows a relatively weak dependence on both
switching rates q1,2. The left panel of Fig. 11 shows as an
example with an overall density � = 7/16 of how the fraction
in occupancy varies changes with the rates q1,2.

B. Dominance in current

The directed currents J± are also important quantities to
characterize the transport capacity: A large current indicates
efficient transport. In contrast with the standard unidirectional
ASEP on a single lane (where both the density and current are
constant along the bulk of the lane), in our model neither the
density nor the directed current of each type of particles on a
single track is constant (see Fig. 12 for examples). Thus we
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FIG. 12. Numerical current profiles (bottom) with corresponding
density profiles (top) for overall densities � = 3/16 (left) and � =
9/16 (right). Other parameters are � = 5, q1 = 0.8, and q2 = 0.4.
Black dots are for plus-type particles, while gray dots are for the
minus type.

consider the average unidirectional current

〈J±〉x :=
∫ 1

0 J±(x)dx

1 − x1

and define an overall current 〈J 〉x := 〈J+〉x + 〈J−〉x . The
dominance in current of particles can be investigated by
looking at the ratio of average current for plus-type particles

R+ := 〈J+〉x
〈J 〉x = 〈J+〉x

〈J+〉x + 〈J−〉x .

We similarly define the ratio of average currents within each
section. In the unipolar sections, plus- and minus-type particles
equally contribute to the average currents as the net current is
zero. Thus the ratio in the entire bundle R+ depends only on
the ratio within the bipolar section

Rb
+ :=

∫ x2

x1
J+(x)dx∫ x2

x1
[J+(x) + J−(x)]dx

.

It is not difficult to see that when the density profiles in the
bipolar section are in the LL phase (ρ,σ 	 1/2), dominance
in current is equivalent to dominance in occupancy, Rb

+ ≈ Fb
+

(see Fig. 12, left panel); however, when shocks form in the
bipolar section, higher densities (above one half) can give a
lower current (see Fig. 12, right panel).

Dominance in occupancy does not imply dominance in
current. More interestingly, by comparing the two panels
in Fig. 11, Rb

+ shows a larger range than Fb
+ on changing

parameters. Thus, for an intermediate overall density, it is
important to consider the current rather than simply the
occupancy when trying to determine which type of particles
dominant the transport. In addition, we can see that the ratio
in current Rb

+ shows a larger range on changing q1 than on
changing q2 in this example. This suggests that q1 is more
important than q2 for determining dominance in current.

V. DISCUSSION

In this paper we introduce an ASEP-type model to describe
the bidirectional motility of particles on an oriented bundle
of tracks. This aims to model the motion of cargo-motor
complexes undergoing transport along an antipolar MT bundle
within a cell. Our model is certainly a great simplification
of cell transport processes. It is parametrized by the particle
turning rate � (inversely proportion to the run length), the
overall density � (the proportion of sites that are occupied
by particles), and the obstacle- or end-induced switching rates
q1,2 (i.e., the rate at which particles switch MTs at the junctions
between the unipolar and bipolar sections). We use numerical
simulations and mean-field approximation to investigate the
dependence of the stationary density profiles within the bundle
on these parameters.

We observe that, as expected, the switching rates q1,2

have a major effect on the distribution of particles along the
bundle. Although we have not fully explored the dependence
of phases on parameters, we highlight below a number of
interesting features about the system. Even for low overall
density �, particles (cargo-motor complexes) can queue to
form accumulations at minus ends in addition to any plus-end
queuing observed in simpler situations [20]. The critical value
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of the end-induced switching rate q2 above which shocks
are formed at minus ends is investigated in Sec. III C. For
intermediate overall density �, we find a variety of phases,
including smooth connection phases where the density profile
of one type of particle on a track smoothly passes through
one half, while the other type displays a shock in the limit
N → ∞. We discuss a variety of other phases and have
investigated the role of the switching rates q1,2 in determining
which motor is dominant in the transport. For low overall
densities, the obstacle-induced switching rate q1 influences
the fraction of particles of one type within the bipolar section
in an approximately linear way. For high overall density �,
our study shows that although the fraction of occupancy by
different type particles does not vary much with rates q1,2, the
particle type that actually contributes most to the current (i.e.,
transport) may vary much more.

Our model is inspired by in vivo experimental observations,
although the model has been simplified in many ways as we
now discuss. It is probable that hopping between MTs is not
restricted to the ends of the bipolar section, but may occur
throughout the bipolar section [21]. This would allow more
possibilities for transition events and the possibility of plus-
type particles (in addition to minus-type particles) switching
MTs. A switch in transport direction can result from hopping
between MTs and the activity of kinesin-3 alone or it could
be a consequence of dynein binding to the cargo, which in
the case of EEs was shown to override kinesin-3 activity [19].
Our model also assumes only two MTs and only two lanes
on each track, but it is known that numerous MTs form a
bundle [21] and each MT consists of 13 protofilaments [17].
Thus many more tracks might support bidirectional motility
of the cargo-motor complexes and allowing opposite-directed
particles moving on the same protofilament will certainly give
additional effects such as increasing the jamming at MT plus
ends, as discussed in [16]. The complex geometry of the bundle
may contribute to additional effects of cooperative transport,
already considered for unidirectional transport in [29].

Notwithstanding these simplifications, we suggest the
model is useful in a number of ways, especially when improved
measurement of in vivo transition rates become possible, and
we highlight some of these below.

(i) For low overall density of particles, it is possible to
have an accumulation of particles at minus ends of MTs. As
in vivo experiments so far show no obvious accumulation of
early endosome cargos throughout the entire cell [21], if this
model is accurate then it suggests that the switching rate q2

must be relatively high in vivo. There are clearly other possible
explanations due to features not included in the model such
as a high turning rate of minus-directed organelles at minus
ends (which might be due to an accumulation of motors at
the minus end taking dynein to plus ends) can avoid such an
accumulation of EEs; this mechanism would be a similar to
that suggested in [18,20], where an accumulation of dynein
motors increases the turning rate of EEs near plus ends and so
avoids accumulations of EEs.

(ii) For low overall density of cargos, the fraction of
occupancy calculated in Sec. IV predicts how the proportion
of EEs carried by kinesin-3 among all EEs (carried by
either kinesin-3 or dynein) varies with the parameters. This
fraction can in principle be explored experimentally to test the

validity of the modeling assumptions for in vivo bidirectional
transport.

The model discussed in this paper gives in some sense the
simplest system that incorporates both bidirectional transport
on a single MT and the antipolar bundling found in the living
cell. As such, it has enabled us to investigate the interplay
between the two possible causes of bidirectional transport:
two populations of motors and the presence of antipolar
arrangements of MTs.
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APPENDIX A: DENSITY PROFILES FOR
NONZERO NET CURRENT

In the bipolar section, the net current J (as discussed in
Sec. III) given by J = ρ(1 − ρ) − σ (1 − σ ) is constant when
the system is in a statistically stationary state. This density-
current relation gives

σ = 1

2
± 2ρ − 1

2

(√
4J

(2ρ − 1)2
+ 1 − 1

)
± 2ρ − 1

2
,

which implies that the nearly-equal- and nearly-
complementary-density solutions are

σ = ρ + 2ρ − 1

2

(√
4J

(2ρ − 1)2
+ 1 − 1

)

σ = 1 − ρ − 2ρ − 1

2

(√
4J

(2ρ − 1)2
+ 1 − 1

)
.

Thus the first order ODE (1) from the mean-field approxima-
tion reads

0 = dρ

dx
+ �

2

(
±

√
4J

(2ρ − 1)2
+ 1 − 1

)
,

with a general solution of nearly equal or nearly complemen-
tary density[ (

1 + 4J

(2ρ − 1)2

)3/2

± 1

]
(2ρ − 1)3 = ∓12J�x + C

(A1)

for any nonzero net current J on taking options in “±” and
“∓”.

APPENDIX B: MEAN-FIELD ANALYSIS
FOR AN LL-SL PHASE

When both types of particles in the bipolar section are in
low densities, they are dominated by the injection rates αb

±,
which are approximated by

αb
+ = σ̄ q1, αb

− = σ̄ (1 − q1), (B1)

where σ̄ is the equal density in the unipolar section. Hence,
from (5) and (6), the densities on the first track in the bipolar
section are approximated by

ρ = −J�(x − x1) + αb
+, σ = −J�(x − x2) + αb

−. (B2)
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Together with the approximation J = ρ − σ , we find

J = αb
+ − αb

−
�(x2 − x1) + 1

= σ̄ (2q1 − 1)

�(x2 − x1) + 1
, (B3)

which gives a zero net current if q1 = 1/2. The density
expressions (B2) together with the symmetry ρ1(x) = ρ2(1 −
x) and σ 1(x) = σ 2(1 − x) give

ρ1(x) + σ 2(x) = ρ2(x) + σ 1(x) = σ̄ , x ∈ (x1,x2).

Thus

� =
∫ 1
x1

ρ(x) + σ (x)dx

2(1 − x1)
= σ̄ /� + (1 − 2σ̄ /�)σ̄

2(1 − x1)
. (B4)

That is, given a low overall density �, a sufficiently large
q2, and assuming densities are low in the bipolar section, we
have

σ̄ = 1 + �

4
−

√
(1 + �)2

16
− (1 − x1)��. (B5)

Substituting (B5), (B3), and (B1) into (B2) gives the analytical
approximation of the density profiles in the bipolar section
in an LL-SL phase. This, together with density profiles in
the unipolar sections, gives the density profiles in the entire
bundle.
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