Logic for Web Scientists

Nicholas Gibbins

February 27, 2014

1 Sets

Definition: Set

A set is an unordered collection of objects, without duplicates. A set A containing the objects a, b and c is written as $A = \{a, b, c\}$.

Definition: Empty Set

The *empty set* (written \emptyset or $\{\}$) is the set containing nothing.

Definition: Set Membership

An object a is a member of a set A (written $a \in A$) if it is contained within that collection.

Note: $a \in A$ can be read as "a is a member of A" or "a belongs to A".

Definition: Set Equality

Two sets which contain the same objects are considered to be equal (the order of the objects is unimportant).

Example: If
$$A = \{a, b, c\}$$
, $B = \{b, a, c\}$ and $C = \{a, b, d\}$, then $A = B$ but $A \neq C$

Definition: Cardinality

The cardinality of a set A (written |A| or #A) is the number of members of A.

Example: If
$$A = \{a, b, c\}$$
, then $|A| = 3$

Definition: Subset

A set A is a subset of a set B (written $A \subseteq B$) if every member of A is also a member of B.

Example: If
$$A = \{a, b\}$$
, $B = \{a, b, c\}$ and $C = \{a, c, d\}$, then $A \subseteq B$, but $A \not\subseteq C$

Definition: Strict Subset

A set A is a *strict subset* of a set B (written $A \subset B$) if every member of A is also a member of B, and $A \neq B$.

Example: If $A = \{a, b\}$, $B = \{a, b, c\}$ and $C = \{a, b\}$, then $A \subset B$, but $A \not\subset C$

Definition: Set Intersection

The *intersection* of two sets A and B (written as $A \cap B$) is the set containing every object which is **both** a member of A and a member of B.

Example: If $A = \{a, b, c\}$ and $B = \{a, c, d\}$ then $A \cap B = \{a, c\}$

Definition: Set Union

The *union* of two sets A and B (written as $A \cup B$) is the set containing every object that is a member of A or a member of B, or a member of both A and B.

Example: If $A = \{a, b, c\}$ and $B = \{a, c, d\}$ then $A \cup B = \{a, b, c, d\}$

Mnemonic: \cup stands for U(nion)

Definition: Set Difference

The difference of two sets A and B (written as A - B) is the set of every object that is a member of A but not a member of B.

Example: If $A = \{a, b, c\}$ and $B = \{a, c, d\}$ then $A - B = \{b\}$

Note: $(A - B) \neq (B - A)$

Definition: Powerset

The powerset of A (written $\mathbb{P}(A)$ or 2^A) is the set containing all possible subsets of A, including A and the empty set.

Example: If $A = \{a, b, c\}$, then

$$\mathbb{P}(A) = \{\{a,b,c\},\{a,b\},\{a,c\},\{b,c\},\{a\},\{b\},\{c\},\{\}\}\}$$

2

Note: $|\mathbb{P}(A)| = 2^{|A|}$.

Definition: Set Comprehension

Rather than explicitly list the members of a set as $A = \{a_1, \ldots, a_n\}$, we can define a set by specifying the properties that its members must have. This is known as set comprehension.

Set comprehension is expressed using set-builder notation, for which the general form is $\{x:\phi(x)\}$, where x is a variable and $\phi(x)$ is a predicate containing x which holds true for all members of the set. $\{x:\phi(x)\}$ can be read as "the set of x for which $\phi(x)$ is true".

Example: $\{x: x \in \mathbb{Z} \land x > 0\}$

The set of positive integers - \mathbb{Z} is the set of integers.

Read as: "the set of x's where x is an integer and x is greater than zero".

Example: $\{x: x \in \mathbb{Z} \land x = x^2\}$

The set of integers which are equal to their square: $\{0,1\}$

Example: $\{\langle x, y \rangle : x \in A \land y \in B\}$

The set of pairs $\langle x, y \rangle$ where x is a member of set A and y is a member of set B. This is the definition of the Cartesian product $A \times B$ using set-builder notation.

Definition: Tuple

A *tuple* is an ordered collection of objects, which may include duplicates. The tuple containing a, b, c and a, in that order, is written $\langle a, b, c, a \rangle$

Definition: Arity

The degree or arity of a tuple is the number of objects in the tuple.

Definition: Pair

A tuple containing two objects (a tuple of arity 2) is known as a pair.

Definition: Cartesian Product

The Cartesian product of two sets A and B (written $A \times B$) is a set of pairs, where each pair contains one member from A and one member from B, and which contains all possible combinations of members from A and B.

Example: If $A = \{a, b, c\}$ and $B = \{c, d, e\}$, then

$$A \times B = \{ \langle a, c \rangle, \langle a, d \rangle, \langle a, e \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle b, e \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle c, e \rangle \}$$

Note: $|A \times B| = |A| * |B|$

Definition: Binary Relation

A binary relation R from set A to set B is a set of pairs, where each pair contains one member from A and one member from B.

Example: If $A = \{a, b, c\}$ and $B = \{c, d, e\}$, then a possible relation R from A to B might be:

$$R = \{\langle a, c \rangle, \langle a, e \rangle, \langle b, d \rangle, \langle c, c \rangle, \langle c, d \rangle, \}$$

Note: $R \subseteq A \times B$

Definition: Domain

The domain of a binary relation R is the set that the relation goes from.

Example: The domain of R in the above example is A.

Definition: Range

The range of a binary relation R is the set that the relation goes to.

Example: The range of R in the above example is B.

Mnemonic: the range of a cannon is the distance to which it can fire a cannonball.

2 Logic

Definition: Predicate

A predicate is a truth-valued expression. That is, a predicate can either be true or false. **Example:** " $a \in A$ " is a predicate (either a is a member of A, in which case " $a \in A$ " is true, or a is not a member of A, in which case " $a \in A$ " is false). " $A \times B$ " is not a predicate, because its value is a set.

Definition: Logical Operators

Predicates may be combined to form *compound predicates* by using the *logical operators*: conjunction (\land) , disjunction (\lor) , negation (\neg) and implication (\Rightarrow) .

Definition: Conjunction (logical and)

The *conjunction* of two predicates ϕ and ψ (written as $\phi \wedge \psi$, and read as " ϕ and ψ ") is true if both ϕ and ψ are true.

Mnemonic: \wedge stands for A(nd)

ϕ	ψ	$\phi \wedge \psi$
false	false	false
false	true	false
true	false	false
true	true	true

Definition: Disjunction (logical or)

The disjunction of two predicates ϕ and ψ (written as $\phi \lor \psi$, and read as " ϕ or ψ ") is true if either ϕ is true or ψ is true (or if both ϕ and ψ are true – \vee is the inclusive-or).

ϕ	ψ	$\phi \lor \psi$
false	false	false
false	true	true
true	false	true
true	true	true

Definition: Negation

The negation of a predicate ϕ (written as $\neg \phi$, and read as "not ϕ ") is true if ϕ is false.

ϕ	$\neg \phi$
false	true
true	false

Definition: Implication

ϕ	ψ	$\phi \Rightarrow \psi$
false	false	true
false	${\it true}$	true
${ m true}$	false	false
true	${\it true}$	true