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Abstract

This paper proposes a discrete-time hazard regression approach based on the relation

between hazard rate models and excess over threshold models, which are frequently

encountered in extreme value modelling. The proposed duration model employs a

�exible link function and incorporates the grouped-duration analogue of the well-

known Cox proportional hazards model and the proportional odds model as special

cases. The theoretical setup of the model is motivated, and simulation results are

reported to suggest that it performs well. The simulation results and an empirical

analysis of US import durations also show that the choice of link function in discrete

hazard models has important implications for the estimation results, and that severe

biases in the results can be avoided when using a �exible link function as proposed

in this study.

Keywords: Discrete-Time Duration Model, Hazard Rate, Threshold Excess Model, Link

Function Estimation, Duration of Trade.

1 Introduction

This study considers the modelling of duration times, that is, the time until the occurrence

of some speci�c event is the variable of primary interest. In theory, time is a continuous
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variable, and the usual approach for modelling duration times is as follows: Let Tc be a

continuous, non-negative random variable denoting the (continuous) duration time. Then,

the main tool in modelling duration is the hazard function λc(t), which at time t is de�ned

by

λc(t) := lim
dt→0+

P (t ≤ Tc < t+ dt|Tc ≥ t)

dt
, (1)

where P (t ≤ Tc < t+dt|Tc ≥ t) is the probability that duration ends between time points

t and t + dt, given the duration time is at least t. So the hazard function can be seen

as the instantaneous rate of �death� given that the subject or unit of interest �survives�

until time t.

In many empirical studies, however, time is observed on a discrete scale, for example,

in weeks or months. When analyzing the duration of bilateral trade, for instance, the

grouping of duration times is even coarser, and durations are typically measured in years.

So let, in general, k intervals be given by [a0, a1), [a1, a2), . . . . . . , [aq−1, aq), [aq,∞), where

q = k− 1. Discrete time means that T = t is observed if failure occurs within the interval

[at−1, at). The corresponding discrete-time hazard rate is then given by

λ(t) := P (at−1 ≤ Tc < at|Tc ≥ at−1). (2)

Using connections between the hazard function and the so-called survival function Sc(t) =

P (Tc > t), it can be shown (see, e.g., Lawless, 1982) that

λ(t) = 1− exp

{
−
∫ at

at−1

λc(s) ds

}
. (3)

This is the conditional probability that duration ends in the tth interval given the tth

interval is reached. For simplicity, let T be the random variable `discrete time' with

possible values T ∈ {1, . . . , k}. That means T = t is observed if failure occurs within the

interval [at−1, at), and the discrete hazard function is given by

λ(t) = P (T = t|T ≥ t), t = 1, . . . , q.

With this speci�cation, the model can also be applied to duration data that are intrin-

sically discrete, i.e., discrete duration data that are not a grouped version of continuous

duration times.

Most applications are targeted at modelling and investigating the in�uence of some

covariates on duration times. For doing so, discrete duration models including covariates

are typically parameterized as

λ(t|xit) = F (γ0t + xTitγ), (4)

where F (·) is a �xed response function, which is assumed to be strictly monotonically

increasing. The parameters γ0t represent the baseline hazard, which allows the hazard rate
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to vary across periods. The contribution of the predictors is captured by the term xTitγ,

where xit = (x1,it, . . . , xp,it)
T is a p-dimensional column vector of (possibly time-varying)

predictors for observation i ∈ {1, . . . , N}, and γ = (γ1, . . . , γp)
T are the corresponding

regression coe�cients.

Since usually there is little a priori knowledge about the duration dependence of the

hazard rate, it is common to model γ0t in the most �exible way possible by means of

period-speci�c dummy variables. However, also a (�exible) functional speci�cation for γ0t

may be chosen to reduce the number of parameters in the model. Since the discrete-time

hazard is a conditional probability, the response function F (·) needs to be chosen such

that 0 ≤ λ(t|xit) ≤ 1 for all t. A popular choice is the complementary log-log (cloglog)

link function, as, when including period-speci�c intercepts γ0t, this speci�cation represents

the exact grouped-duration analogue of the well-known Cox (1972) proportional hazards

(PH) model (see, e.g., Kalb�eisch and Prentice, 1973, or Prentice and Gloeckler, 1978).

However, the PH assumption implied by the cloglog model is sometimes not supported

by economic theory and empirically questionable, for instance, in labor economics when

individual unemployment spells are analyzed (see, e.g., van den Berg, 1990a,b, Blanchard

and Diamond, 1994, and McCall, 1994).

Obvious, and also quite popular, alternatives to the cloglog link are the cumulative

distribution functions of the standard normal or the logistic distribution. The hazard

rate can then be estimated using conventional stacked probit or stacked logit regression

models. While this approach is very appealing due to its simplicity, it su�ers from the

drawback that the choice of a stacked probit or logit model is rather ad hoc, and little is

known about the underlying continuous-time processes leading to these grouped-duration

speci�cations. Moreover, as shown in this study, the choice of link function is not in-

nocuous in a duration context, as it a�ects both the estimated covariate e�ects and the

predicted hazards. Therefore, a �exible speci�cation of the link function is proposed here,

which can be motivated by the asymptotic distribution of threshold excesses of the un-

derlying continuous duration variable Tc. The hazard model proposed incorporates the

well-known cloglog and logit models as special cases, which reduces the choice between

these two models to the estimation of a single additional parameter. Besides nesting the

two most commonly applied discrete-time hazard models, the model can also produce

estimation results that are entirely di�erent from those obtained from the cloglog and

logit speci�cations.

The remainder of the paper is organized as follows. Section 2 introduces the mod-

elling approach, in particular the new type of �exible link function. Section 3 discusses

extensions to frailty models and estimation of model parameters. Section 4 evaluates

the performance of the proposed model using simulations, Section 5 provides a real data

application, and Section 6 concludes.
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2 The Duration Model Proposed

An interesting family of response functions, which is a special case of the type IV gener-

alized logistic distribution (see, e.g., Johnson et al., 1995), uses the speci�cation

λ(t|xit) = Fξ(γ0t + xTitγ), (5)

where Fξ is the distribution function

Fξ(u) = 1− (1 + ξ exp{u})−1/ξ (6)

with shape parameter ξ. For ξ = 1 one obtains the logistic distribution function, for the

limit ξ → 0 one obtains the cloglog model with F0(u) = 1 − exp{− exp{u}}. Thus, this
family comprises the two models that are most widely used in discrete survival modelling,

the logistic and the grouped proportional hazards model. The function Fξ(u) = 1− (1 +

ξ exp{u})−1/ξ is also known as the distribution function of the log-Burr distribution (see

Burr, 1942, or Tadikamalla, 1980). The corresponding density is left-skewed for ξ < 1

and right-skewed for ξ > 1. If ξ = 1 it is symmetric, which is well known for the logistic

distribution. The family has been considered by Prentice (1975, 1976) in the modelling of

binary data and by Hess (2009) in discrete survival modelling. Prentice has shown that ξ

can be consistently estimated along with the other parameters by maximum likelihood. A

Wald test based on the estimate of ξ can be used to test the parameter within the family

of distributions. If the logistic model holds (ξ = 1), the asymptotic distribution of ξ̂ is

normal, more concisely, N(1, 4(π2 + 3)/(n(π2− 6))), where n denotes the total number of

binary observations. In the limiting case, ξ → 0, the asymptotic distribution of ξ̂ is equal

to the distribution of a random variable de�ned as

ξtrunc =

{
ξ∗ if ξ∗ ≥ 0

0 if ξ∗ < 0,

where ξ∗ ∼ N (0; π2/(n(π2 − 6))).

2.1 An Underlying Continuous-Time Process

The choice of the log-Burr distribution as the response function can be motivated by

the asymptotic distribution of threshold excesses of the continuous duration variable Tc.

The derivation of the hazard speci�cation requires two assumptions about the cumulative

distribution function of Tc, G(t), which is directly linked to the grouped hazard through

the relation

λ(t) =
G(at)−G(at−1)

1−G(at−1)
.

First, it is assumed that G(t) is continuous and has unbounded support on [0,∞). Second,

it is assumed that G(t) belongs to the domain of attraction of any one of the extreme
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value distributions. Formally, this second assumption requires that there are sequences

of constants {aN} and {bN}, with aN > 0 for all N , and a non-degenerate distribution

function H(z) such that for the maximum of N independent duration times, MN =

max
1≤i≤N

(T ic), lim
N→∞

P ((MN − bN)/aN ≤ z) = H(z) for all z at which H(z) is continuous (see

Pickands, 1975).

The requirement that G(t) has unbounded support on the positive real line is needed

to ensure that ξ ≥ 0, which, in turn, ensures that λ(t|xit) ≤ 1. In principle, one could

allow ξ to be negative, but this would require restrictions on the parameters γ0t and

γ . For example, ξ = −1 would yield the discrete proportional hazards model λ(t|xit) =

exp{γ0t+xTitγ}.1 This hazard speci�cation, however, requires the restriction γ0t+x
T
itγ ≤ 0

to rule out hazard rates that are larger than one.

The second assumption requires that G(t) belongs to the maximum domain of attrac-

tion of some non-degenerate function H(z). Then, as shown by Fisher and Tippett (1928),

H(z) necessarily belongs to one of the extreme value distributions, with types I, II, and

III widely known as the Gumbel, Fréchet, and Weibull families, respectively. This limit

theorem for maxima is similar in scope to the central limit theorem for averages, and valid

for the vast majority of common distribution functions. In particular, the theorem ap-

plies to the exponential, Weibull, Gamma, log-normal, and Burr distributions, which are

the commonly encountered parametric speci�cations in duration modelling. Given these

assumptions, a functional speci�cation for the grouped-duration hazard can be derived

using well-known results from extreme value theory.

As �rst shown by Pickands (1975), the generalized Pareto distribution arises as a

limiting distribution for excesses over thresholds, if the parent distribution is continuous

and belongs to the domain of attraction of an extreme value distribution. Speci�cally,

for any random variable Tc with distribution function G(t), ful�lling the two assumptions

above, and for a given large threshold τ , the conditional distribution of Tc given that

Tc ≥ at−1 ≥ τ , which can be expressed as P (at−1 ≤ Tc < at−1 + z|Tc ≥ at−1), is

approximately of the form

1−
(

1 +
ξz

σ(at−1)

)−1/ξ
.

The expression above describes the generalized Pareto distribution with scale parameter

σ > 0 and shape parameter ξ. With G(t) having unbounded support on the positive real

line, it holds that ξ ≥ 0 and 0 < z < ∞ (see, e.g., Coles, 2001). While σ is a function

of the threshold level at−1, it can be shown that ξ is constant for all at−1 above a level τ

at which the asymptotic motivation for the generalized Pareto distribution is valid (see,

1Strictly speaking, this model exhibits proportional interval hazards only if the predictors in x do

not vary over duration time t. Note also that the cloglog model, although being the grouped-duration

analogue of the Cox (1972) proportional hazards model, does not exhibit proportional interval hazards

(see, e.g., Sueyoshi, 1995).
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e.g., Leadbetter et al., 1983, and Embrechts et al., 1997, for extensive surveys on the

generalized Pareto distribution). Setting z = 1 leads�under the common assumption of

equal unit interval length�to the discrete-time hazard rate representation

λ(t) = P (at−1 ≤ Tc < at|Tc ≥ at−1) = 1−
(

1 +
ξ

σ(at−1)

)−1/ξ
. (7)

As in standard extreme value models, explanatory variables can be incorporated into

the model by writing

λ(t|xit) = 1−
(

1 +
ξ

σ(γ0t + xTitγ)

)−1/ξ

for some positive-valued function σ(·).2 In view of the requirement σ > 0, a natural

formulation is σ(γ0t+x
T
itγ) = exp{−(γ0t+x

T
itγ)}, resulting in the hazard rate speci�cation

λ(t|xit) = 1−
(
1 + ξ exp{γ0t + xTitγ}

)−1/ξ
. (8)

The right-hand side of (8) describes the cumulative distribution function of the log-Burr

distribution given in (6) with argument u = γ0t + xTitγ . Due to its relation to the gener-

alized Pareto distribution, the discrete-time duration model resulting from the functional

speci�cation in (8) will from now on be referred to as the Pareto hazard model.

2.2 Illustration of the Impact of Response Functions

This section provides a brief illustration of the importance of the response function for

estimation results. The results shown are based on a simulated data set consisting of

5000 individual duration times. The data generating process (DGP) used to create the

simulated data set employs the log-Burr distribution as the response function. Speci�cally,

the true hazard rates are given by

λ(t|xit) = 1− (1 + ξ exp{γ0t + x1,iγ1 + x2,iγ2})−1/ξ ,

where γ1 = γ2 = 1, and ξ = 5. The (time-invariant) variables x1,i and x2,i are generated as

independent random draws from a normal distribution with zero mean and unit variance

and a demeaned Gamma distribution with unit variance, respectively. The baseline hazard

is speci�ed as γ0t = − ln(t). All durations exceeding t = 12 periods are arti�cially right-

censored.

To illustrate the impact of the choice of response function on estimation results, four

di�erent hazard models are used to analyze the simulated data: Pareto models with ξ = 0

2A detailed discussion of covariate modelling in the context of threshold excess models is provided by

Davison and Smith (1990).
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(cloglog), ξ = 1 (logit), and ξ = 5, and a probit model which is not nested in the class

of Pareto models. In all the models estimated, the true set of explanatory variables is

used, and the baseline hazard is modeled �exibly by means of duration dummies for each

discrete time interval t ∈ (1, . . . , 12). Table 1 provides an overview of the impact of the

response functions on the estimated covariate e�ects.

The �rst two rows of Table 1 show the estimates of γ1 and γ2 obtained from the

four di�erent hazard models. To enable a meaningful comparison of the estimated co-

e�cients, which in these models are identi�ed only up to a scale factor, the estimates

are standardized using the conversion factors proposed by Amemiya (1981). Using these

conversion factors, the coe�cient estimates are weighted by a factor F ′(ū), where F ′(·)
is the �rst derivative of the response function used, and ū is the mean of the index func-

tion u = γ0t + xTitγ at estimated values of γ. When comparing results obtained from

response functions that di�er vastly in skewness, as is the case here, standardization by

means of Amemiya conversion factors appears to work better than the frequently used

standardization based on the variances of the response functions. However, coe�cient

standardization in this type of models is a delicate issue, and hazard ratios will therefore

be used as well when analyzing the strength of covariate e�ects.

Table 1: Covariate E�ects Obtained from Di�erent Response Functions

Estimated models

Cloglog Logit Pareto (ξ = 5) Probit

γ̃1 0.713 0.815 0.953 0.843

γ̃2 0.590 0.738 0.967 0.788

γ̃1/γ̃2 (≡ γ1/γ2) 1.209 1.104 0.986 1.070

Hazard Ratio at t = 1 (x1) 1.566 1.643 1.659 1.626

Hazard Ratio at t = 12 (x1) 1.625 1.784 2.177 1.968

Note: The values for γ̃1 and γ̃2 are standardized using the conversion factors proposed by Amemiya

(1981). The hazard ratios are calculated for an increase in x1 from zero to one, keeping x2 �xed at its

expected value of zero.

The results shown in Table 1 indicate that the covariate e�ects are quite accurately

estimated when the correct response function is used, and that they are substantially

underestimated when any of the misspeci�ed response functions is used. The third row of

Table 1 shows the ratios of the estimated covariate e�ects, and the results indicate that

the relative e�ects of explanatory variables are also biased when the response function

is misspeci�ed. Lastly, rows four and �ve show estimated hazard ratios at the shortest

and longest duration observed. The hazard ratios are calculated for an increase in x1

from zero to one, keeping x2 �xed at its expected value of zero. When the response
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function is misspeci�ed, the estimated hazard ratios are smaller than their counterparts

obtained from the correct speci�cation. This con�rms the above result that the choice of

response function a�ects the strength of the estimated covariate e�ects. Moreover, the

(relative) di�erence in the hazard ratios at t = 1 and t = 12 varies substantially between

the models. For example, when using the cloglog model, the hazard ratio increases only

by about 4%. This is well in line with the notion that the cloglog model is the grouped-

duration analogue of Cox's proportional hazards model. The Pareto model with ξ = 5

and the probit model, however, are decidedly non-proportional, and the estimated hazard

ratios increase by about 31% and 21%, respectively.

Figure 1 illustrates the impact of response functions on the estimated hazards. The

�gure shows the estimated hazard rates obtained from the cloglog model relative to the

true hazard rates generated by the Pareto model with ξ = 5. Speci�cally, the true hazard

rates are grouped into percentiles, and for each group the corresponding estimated hazards

are summarized by means of box plots. The �gure shows that the hazard estimates

obtained from the cloglog model are substantially biased. Small and large hazard rates

are overestimated, whereas medium-sized hazard rates are underestimated.
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Figure 1: Predicted hazards obtained from a misspeci�ed link function; true model:

Pareto (ξ = 5); estimated model: cloglog.
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In summary, this illustration suggests that a misspeci�cation of the response function

in discrete-time duration models has the following negative impacts on the estimation

results. First, the estimated e�ects of a single covariate, as measured by standardized

coe�cients and hazard ratios, are biased. Second, the estimated relative e�ects of two

covariates are biased. Third, the imposed degree of proportionality in the hazard rates is

incorrect. Fourth and last, the estimated individual hazard rates are biased. An in-depth

analysis of these four implications of the choice of the response function is provided in

Sections 4 and 5.

3 Extension to Frailty Models and Estimation

3.1 Frailty Models

The basic model (4) does not account for potential unobserved heterogeneity among in-

dividuals. As the neglect of unobserved heterogeneity may lead to severe bias in the

estimated hazard function (see, e.g., Salant, 1977, Vaupel et al., 1979, and Vaupel and

Yashin, 1985, for early discussions of this phenomenon), it is important to allow for unob-

served sources of variation in the hazard. An extended model, which includes unobserved

heterogeneity, is the so-called frailty model. It assumes for the ith observation the hazard

rate

λ(t|xit, bi) = F (bi + γ0t + xTitγ), (9)

where bi is a random e�ect that is assumed to follow a �xed distribution with density

f(·), typically chosen as the normal distribution. It has sometimes been argued in the

duration literature that a misspeci�cation of the heterogeneity distribution may severely

bias the estimation results (see, e.g., Heckman and Singer, 1984, for continuous time

and Baker and Melino, 2000, for discrete time). However, Nicoletti and Rondinelli (2010)

have shown in an extensive simulation study that using normal random e�ects in discrete-

time models works well, even if the true heterogeneity distribution is not Gaussian. This

�nding is supported by several empirical studies (see, e.g., Trussell and Richards, 1985,

Meyer, 1990, and Dolton and van der Klaauw, 1995). Moreover, the misspeci�cation

biases reported by Baker and Melino (2000) have later been shown to be incorrect (see

Mroz and Zayats, 2008). This suggests that using normal random e�ects is a sensible

approach when estimating discrete-time duration models.

3.2 Estimation Including Censoring

In the modelling of survival data censoring is a phenomenon that has to be expected. In

the case of right censoring, which is considered here, it is only known that T exceeds a

certain value but the exact value is not known. Let Ci denote the censoring time and Ti
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the exact failure time for observation i. In random censoring it is assumed that Ti and

Ci are independent random variables. The observed time is given by ti = min(Ti, Ci) as

the minimum of survival time Ti and censoring time Ci. It is often useful to introduce an

indicator variable for censoring given by

δi =

{
1 if Ti ≤ Ci,

0 if Ti > Ci,

where it is implicitly assumed that censoring occurs at the end of the interval.

Under random censoring the probability of observing (ti, δi) is given by

P (ti, δi|xi, bi) = P (Ti = ti)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi ,

where xi = (x1,i, . . . ,xp,i)
T and xl,i = (xl,i1, . . . , xl,iti) (l = 1, . . . , p). It should be noted

that the probability is de�ned given the random e�ect bi, which is suppressed on the

right hand side of the equation. In the simple survival model without heterogeneity bi is

omitted and the probability is P (ti, δi|xi).
If one assumes that the the censoring contributions do not depend on the parameters

that determine the survival time (noninformative censoring in the sense of Kalb�eisch and

Prentice, 1980), one can separate the factor ci = P (Ci ≥ ti)
δiP (Ci = ti)

1−δi to obtain the

simpler form

P (ti, δi|xi, bi) = ciP (Ti = ti)
δiP (Ti > ti)

1−δi .

An important tool in discrete survival is that the probability and therefore the corre-

sponding likelihood can be rewritten by using sequences of binary data (see, e.g., Allison,

1982, Singer and Willett, 1993, and Jenkins, 1995, for excellent surveys on the deriva-

tion of this likelihood function). By de�ning for a non-censored observation (δi = 1)

the sequence (yi1, . . . , yiti) = (0, . . . , 0, 1) and for a censored (δi = 0) the sequence

(yi1, . . . , yiti) = (0, . . . , 0), the probability (omitting ci) can be written as

P (ti, δi|xi, bi) =

ti∏

s=1

λ(s|xi)yis(1− λ(s|xi))1−yis . (10)

After construction of an appropriate design matrix, the model can be �tted by using

software for binary response models (see, e.g., Fahrmeir and Tutz, 1994, and Tutz, 2012).

Alternative estimation procedures are needed for the frailty model. Then, the uncon-

ditional probability is given by

P (ti, δi|xi) =

∫
P (ti, δi|xi, bi)f(bi)dbi,

and, therefore, by

P (ti, δi|xi) =

∫
P (Ti = ti)

δiP (Ti > ti)
1−δif(bi)dbi,

10



one obtains

P (ti, δi|xi) =

∫ ti∏

s=1

λ(s|xi)yis(1− λ(s|xi))1−yisf(bi)dbi. (11)

This is the unconditional probability of a random e�ects model for structured binary data.

A practical way to estimate the Pareto hazard model with frailty is to carry out the

estimation at a grid of �xed values for the shape parameter ξ. Estimation can then be per-

formed using standard software that allows for user-de�ned link functions in generalized

linear mixed models, such as the R software package gamlss.mx (Stasinopoulos and Rigby,

2012). Inference regarding ξ can then be based on the pro�le log-likelihood lp(ξ) and its

asymptotic χ2-approximation (see, e.g., Koenker and Yoon, 2009). A (1 − α)-con�dence
interval for ξ is thus given by

I = {ξ|2(lp(ξ̂)− lp(ξ)) ≤ χ2
1,1−α},

where χ2
1,1−α is the (1− α)-quantile of the χ2-distribution with one degree of freedom.

4 Simulation Study

This section evaluates the importance of the response function F (·) used to parameterize

the discrete hazard rate by means of simulations. Throughout this section it is assumed

that the true response function is of the log-Burr form speci�ed in (6). The focus lies

mainly on the e�ects of misspecifying the functional form of the hazard and on evaluat-

ing the performance of the �exible Pareto hazard model in this context. In particular,

scenarios are studied where the true response function is heavily right-skewed (i.e., ξ

is substantially larger than one) and the estimated model employs a symmetric or left-

skewed response function, as is the case for the commonly used logit, probit, and cloglog

models. For comparison, results obtained from the correct model speci�cation and from

the �exible Pareto speci�cation with an unspeci�ed value of ξ are presented. Estimation

is performed using the R software package gamlss.mx (Stasinopoulos and Rigby, 2012).

4.1 The Data Generating Process

In setting up the DGP, the true hazard rates are calibrated to resemble those typically

observed in data on country-level trade. Empirical studies on the duration of country-level

trade have found that bilateral trade relationships are surprisingly short-lived. Typically,

the hazard that a trade relationship ceases is about 50% for the �rst year and steadily

declining thereafter (see, e.g., Besede² and Prusa, 2006a,b, Brenton et al., 2010, and

Hess and Persson, 2011). Using this as a benchmark, the DGPs are calibrated to generate

hazards with about half the sample exiting at t = 1, and that are decreasing with duration.
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For all simulations, the DGP considered employs individual Pareto hazard rates of the

form

λ(t|xit, bi) = 1− (1 + ξ exp{bi + γ0t + x1,iγ1 + x2,iγ2})−1/ξ .

As in the illustrative example of Section 2.2, the (time-invariant) variables x1,i and x2,i

are generated as independent random draws from a normal distribution with zero mean

and unit variance and a demeaned Gamma distribution with unit variance, respectively.

The baseline hazard is speci�ed as γ0t = − ln(t). All durations exceeding t = 12 periods

are arti�cially right-censored.

The simulation experiments are then organized in three di�erent sets. In the �rst

set, Simulation Experiment A, models without frailty are considered, i.e., bi = 0 for all

i. The remaining parameters are �xed at γ1 = γ2 = 1 and ξ = 5. In the second set,

Simulation Experiment B, models including frailty are considered, where the individual

e�ects bi are independent draws from a normal distribution with zero mean and standard

deviation σ = 0.5. The remaining parameters are �xed at γ1 = 1, γ2 = 0, and ξ = 5.

The purpose of these two experiments is twofold. One aim is to thoroughly analyze the

e�ects of a misspeci�ed response function in a setting where the true response function

is extremely right-skewed and thus rather di�erent from the left-skewed and symmetric

response functions of the commonly used cloglog, logit, and probit models. Another aim

is to investigate the performance of the Pareto hazard model, which employs a �exible

response function. The third set, Simulation Experiment C, has the same setup as Ex-

periment B, except that ξ is �xed at a value of one instead of �ve. The purpose of this

experiment is solely to analyze the inference regarding ξ in the presence of unobserved

heterogeneity.3 The value of ξ is �xed at one in this simulation experiment because it is

of particular relevance to analyze the Pareto model's capacity of discriminating between

the important logit and cloglog speci�cations.

4.2 Results

This section presents the results obtained from the three simulation experiments described

above. In Experiment A and B, �ve di�erent hazard models are used to analyze the

simulated data: Pareto models with ξ = 0 (cloglog), ξ = 1 (logit), and ξ = 5, a Pareto

model with an unspeci�ed value of ξ, and a probit model. In Experiment C, a Pareto

model with an unspeci�ed value of ξ is estimated. In all the models estimated, the

true set of explanatory variables is used. Speci�cally, in Simulation Experiment A, the

models estimated include the covariates x1,i and x2,i and no random intercepts, and in

3For the simple model without frailty, Hess (2009) has shown in an extensive simulation study that

the shape parameter ξ can be reliably estimated under a variety of circumstances covering variations in

sample size, the proportion of censored spells, and the types of explanatory variables included in the

model.
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Experiment B and C, the models estimated include the covariate x1,i as well as Gaussian

random intercepts. The baseline hazard is always modelled in a �exible way by means of

duration dummies for each discrete time interval t ∈ (1, . . . , 12).

Simulation Experiment A

The upper part of Table 2 shows the estimation results obtained from Simulation Exper-

iment A. The depicted results are the averages and standard deviations over 100 replica-

tions of the simulation exercise. The �rst three rows of Table 2 show the estimates of γ1

and γ2 obtained from the �ve di�erent hazard models. The estimates are standardized

using the conversion factors proposed by Amemiya (1981). The number of simulated

durations is 1000, resulting in an average number of binary observations of about 5400.

The results show that the covariate e�ects are rather accurately estimated when the haz-

ard model is correctly speci�ed, i.e., when the Pareto hazard model with ξ = 5 is used.

When the cloglog, logit, or probit model is used for estimation, the covariate e�ects are

substantially underestimated. When the logit or probit model is used, the standardized

coe�cients are around 10% to 20% smaller than their true value of one. When the cloglog

model is used, the standardized coe�cients are up to almost 40% smaller. The relative

e�ects of the two covariates are also biased when the response function is misspeci�ed,

and again, the relative bias is similar for the logit and probit models and approximately

twice as large for the cloglog model.4 When the �exible Pareto model with an unspeci�ed

value of ξ is used, the covariate e�ects are rather accurately estimated, and the mean

estimates di�er hardly from those obtained from the correct speci�cation. However, due

to the additional uncertainty introduced when ξ is left unspeci�ed, the estimates exhibit

slightly larger standard deviations.

Rows four to six of Table 2 contain the same information as the �rst three rows, but

this time the estimates are based on 5000 simulated durations, resulting in an average of

approximately 27000 binary observations. With such a large sample size, the covariate

e�ects are very precisely estimated when the true hazard model is used. In this case,

there is virtually no bias in the estimated coe�cients, and the corresponding standard

deviations are very small. When the hazard rate is misspeci�ed, however, the increase in

sample size does nothing to improve the bias in the estimated (relative) covariate e�ects.

Again, the results obtained from the �exible Pareto model are almost as accurate as their

counterparts obtained from the correct speci�cation.

4The result that a misspeci�cation of the response function in discrete-time hazard models causes

bias in the estimated relative covariate e�ects contradicts the results of Nicoletti and Rondinelli (2010).

These authors �nd that misspecifying the functional form of the hazard rate causes only a proportional

rescaling of the covariate coe�cients. However, Nicoletti and Rondinelli (2010) consider only the special

case of two normally distributed covariates, and their �ndings do not seem to extend to di�erent setups.
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Table 2: Comparing Covariate E�ects Across Model Speci�cations

Estimated models

n Cloglog Logit Pareto (ξ = 5) Pareto (ξ = ξ̂) Probit

Simulation Experiment A: models without frailty

γ̃1 0.772 (0.056) 0.870 (0.060) 1.010 (0.069) 1.021 (0.099) 0.896 (0.059)

1000 γ̃2 0.628 (0.062) 0.787 (0.066) 1.028 (0.085) 1.038 (0.097) 0.838 (0.068)

γ̃1/γ̃2 1.239 (0.131) 1.112 (0.102) 0.987 (0.090) 0.987 (0.093) 1.075 (0.096)
(≡ γ1/γ2)

γ̃1 0.761 (0.026) 0.861 (0.026) 1.000 (0.030) 0.998 (0.043) 0.887 (0.026)

5000 γ̃2 0.601 (0.029) 0.766 (0.031) 1.001 (0.040) 1.000 (0.044) 0.815 (0.031)

γ̃1/γ̃2 1.269 (0.070) 1.126 (0.053) 1.000 (0.044) 0.999 (0.046) 1.091 (0.050)
(≡ γ1/γ2)

Simulation Experiment B: models with frailty

γ1 0.507 (0.033) 0.618 (0.035) 1.031 (0.096) 1.082 (0.229) 0.349 (0.021)

1000
σ 0.078 (0.108) 0.055 (0.075) 0.526 (0.349) 0.590 (0.499) 0.056 (0.072)

HR (t = 1) 1.581 (0.052) 1.655 (0.057) 1.751 (0.121) 1.756 (0.151) 1.648 (0.066)

HR (t = 12) 1.642 (0.052) 1.803 (0.058) 2.352 (0.157) 2.380 (0.275) 2.067 (0.130)

γ1 0.498 (0.014) 0.611 (0.015) 0.994 (0.043) 1.051 (0.127) 0.342 (0.008)

5000
σ 0.025 (0.031) 0.015 (0.005) 0.442 (0.198) 0.553 (0.305) 0.016 (0.016)

HR (t = 1) 1.567 (0.020) 1.644 (0.023) 1.709 (0.046) 1.716 (0.050) 1.630 (0.023)

HR (t = 12) 1.628 (0.021) 1.792 (0.027) 2.321 (0.083) 2.374 (0.148) 2.042 (0.053)

Note: The results shown are mean values over 100 replications of the simulation experiments. Standard

deviations are given in parentheses. The values for γ̃1 and γ̃2 are standardized using the conversion

factors proposed by Amemiya (1981). The hazard ratios are calculated for an increase in x1 from zero to

one, keeping bi �xed at its expected value of zero.

Figure 2 provides an overview of the estimated hazard rates obtained from four of the

�ve di�erent models. The results obtained from the correct model speci�cation with ξ = 5

are omitted since the corresponding hazard estimates are virtually indistinguishable from

their counterparts obtained from the �exible Pareto speci�cation. The estimates are based

on 5000 simulated durations. For each of the 100 simulated data sets the true individual

hazards are grouped into percentiles, and the average values of the corresponding hazard

estimates obtained from the four models relative to the true hazards are calculated. These

average relative hazard estimates are then again averaged over the 100 replications of the

simulation experiment, and the results are plotted in Figure 2.

The �gure shows that the individual hazard rates are, on average, very accurately

14



0.0 0.2 0.4 0.6 0.8

1.
0

1.
5

2.
0

2.
5

True hazard

Pr
ed

ic
te

d 
re

la
tiv

e 
ha

za
rd

Pareto, ξ = 0  (Cloglog)

Pareto, ξ = 1  (Logit)

Pareto, ξ = ξ̂
Probit

Figure 2: A comparison of predicted hazards obtained from various link functions; aver-

age values over 100 replications of Simulation Experiment A; true model: Pareto (ξ = 5)

estimated at all percentiles when the response function is �exibly speci�ed, i.e., when the

Pareto hazard model with an unspeci�ed value of ξ is estimated. When the cloglog, logit,

or probit model is used for estimation, the average predicted hazards are substantially

overestimated at small and large percentiles, and underestimated at mid-sized percentiles.

The hazard estimates obtained from the logit and probit models are rather similar over

a wide range but di�er markedly at extremely low values of the true hazard. This is

not surprising, given the similarity of the logistic and the normal distribution, which are

both symmetric and exhibit substantial di�erences only in their tail behavior. The hazard

estimates obtained from the cloglog model exhibit a larger bias than the logit and probit

estimates. This is likely due to the fact that the cloglog model employs a left-skewed

response function, which di�ers even more from the extremely right-skewed true response

function than the symmetric logistic and normal response functions.

Simulation Experiment B

The lower part of Table 2 shows the estimation results obtained from Simulation Experi-

ment B. The depicted results are the averages and standard deviations over 100 replica-
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tions of the simulation exercise. As opposed to Simulation Experiment A, both the DGP

and the models estimated in Simulation Experiment B contain random intercepts. This

makes it rather di�cult to provide suitably standardized coe�cient estimates, since the

absolute values of these estimates depend not only on the response function chosen but

also on the (possibly incorrectly) estimated variance of the random e�ects. Thus, the

lower part of Table 2 shows estimated hazard ratios in addition to the estimated non-

standardized coe�cient estimates. The hazard ratios are calculated for an increase in x1

from zero to one, keeping bi �xed at its expected value of zero. The corresponding values

can then be used instead of standardized coe�cients to determine the estimated strength

of the covariate e�ect.

The estimated hazard ratios con�rm the �ndings of Simulation Experiment A that

covariate e�ects are underestimated when a cloglog, logit, or probit model is estimated

instead of the true Pareto hazard model with ξ = 5. Again, increasing the sample size from

1000 to 5000 renders the mean estimates largely una�ected and does not help improve

this bias. Moreover, the estimated hazard ratios reveal another interesting implication

of the choice of response function: the models di�er substantially with respect to the

imposed degree of proportionality, i.e., the (relative) di�erence in the hazard ratios at

t = 1 and t = 12 varies substantially between the models. When using the cloglog model,

the average hazard ratio increases only by about 4%, which is well in line with the notion

that the cloglog model is the grouped-duration analogue of Cox's proportional hazards

model. The Pareto model with ξ = 5 and the probit model, however, are decidedly non-

proportional, and the average hazard ratios increase by about 34% and 25%, respectively.

The logit model constitutes an intermediate case with an increase of about 9%. Thus, the

conventional wisdom regarding the similarity of probit and logit models does not extend

to the evaluation of proportionality in the discrete hazard.5 The results obtained from

the �exible Pareto model are again very similar to those obtained from the correct model

speci�cation. This suggests that the Pareto model produces reliable results even in the

presence of unobserved heterogeneity.

The estimated coe�cients shown in the lower part of Table 2 indicate that both γ1 and

σ are rather accurately estimated when the correct model or the �exible Pareto model

is used. However, the estimated values of σ reveal rather large standard deviations, in

particular when ξ is left unspeci�ed and the sample consists of only 1000 durations. When

the number of individual durations is increased to 5000, the estimates of σ become more

precise. Although the reported estimates of σ are not standardized, the results shown

suggest strongly that the variance of the random e�ects is incorrectly estimated when the

response function is misspeci�ed. All the estimates of σ are very close to zero when the

wrong hazard model is used.

5This has already been pointed out by Sueyoshi (1995).
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Simulation Experiment C

Figure 3 shows the average pro�le log-likelihood for ξ obtained from 100 replications of

Simulation Experiment C. The models estimated include Gaussian random intercepts,

and estimation is performed for �xed values of ξ at the regular grid 0, 0.1, . . . , 3.9. The

estimations are based on 5000 individual duration times.
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Figure 3: Pro�le log-likelihood at a grid of ξ-values; average values over 100 replications

of Simulation Experiment C; the true value of ξ is one; the maximum of the pro�le log-

likelihood is reached at ξ = 1; the dashed vertical lines indicate a simulated 90%-con�dence

interval; the dotted vertical lines indicate an asymptotic 90%-con�dence interval; the dif-

ference between the dotted horizontal lines equals χ2
1,0.9/2, where χ

2
1,0.9 is the 90%-quantile

of the χ2
1-distribution

The �gure shows that the average pro�le log-likelihood reaches its maximum at ξ = 1,

which equals the true value of the shape parameter. In 90 out of 100 cases, the maximum

of the pro�le log-likelihood was reached for ξ ∈ [0.7; 1.9]. This simulated 90%-con�dence

interval is depicted by the two dashed vertical lines. If one is willing to consider the

function in Figure 3 as a single, representative pro�le log-likelihood, an asymptotic 90%-

con�dence interval for ξ would be

I = {ξ|2(lp(ξ̂)− lp(ξ)) ≤ χ2
1,0.9},
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where χ2
1,0.9 is the 90%-quantile of the χ2-distribution with one degree of freedom. This

con�dence interval is depicted by the two dotted vertical lines. Reassuringly, both inter-

vals are very similar. It is noteworthy that the pro�le log-likelihood is rather asymmetric.

Consequently, the con�dence intervals are not symmetric around one, which is the esti-

mated (and the true) value of ξ. However, this is not surprising, given the fact that the

hazard speci�cation is closely related to the generalized Pareto distribution. This distri-

bution is frequently used in extreme value analysis, and in this context, it is well-known

that the pro�le log-likelihood for ξ is asymmetric in �nite samples (see, e.g., Coles, 2001).

The pro�le log-likelihood is rather steep for small values of ξ. This facilitates discrimi-

nation between the cloglog and the logit model, which are important special cases of the

Pareto hazard model. However, the pro�le log-likelihood becomes increasingly �at as ξ

increases, and if the true value of ξ is large, larger samples are needed to obtain precise

estimates of the shape parameter.

To summarize, the results of this simulation study con�rm that the choice of response

function in discrete-time duration models has an important e�ect on estimation results.

Speci�cally, a misspeci�ed response function causes four types of bias. First, the strength

of individual covariate e�ects, as measured by standardized coe�cients and hazard ratios,

is biased. Second, the relative e�ects of covariates, as measured by coe�cient ratios, is

biased. Third, the degree of proportionality, as measured by the change in hazard ratios

across duration time, is biased. Fourth and last, the predicted individual hazards are

biased. The simulation study also shows that the shape parameter in the Pareto hazard

model can be reliably estimated, even in the presence of unobserved heterogeneity, and

that the model produces accurate results.

5 Empirical Application

This section analyzes the performance of the Pareto hazard model in an empirical analysis

of US import durations. The empirical analysis serves also to investigate whether the

choice of response function in discrete-time duration models matters in practice.

5.1 Data and Model Speci�cation

The empirical application employs the same data on US imports as previously analyzed

by Besede² and Prusa (2006b) in their in�uential seminal study on the duration of trade,

and later re-examined by Hess and Persson (2012). The data record annual US imports

between 1972 and 1988 from virtually every trading partner in the world, and they also

include information on the value of imports, customs collected, and other relevant factors

that might a�ect the duration of trade. The traded products are classi�ed according to

the 7-digit Tari� Schedule of the United States (TSUSA), which amounts to a total of
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some 20 000 products. A trade relationship is then de�ned as a certain product being

imported from one speci�c exporter. A trade spell is de�ned as a period of time with

uninterrupted import of a given product from one speci�c country. These spells of trade

constitute the core units of analysis, and the spell duration is simply calculated as the

number of consecutive years with non-zero imports. The empirical models estimated in

this section employ the same set of explanatory variables as used in the original analy-

sis by Besede² and Prusa (2006b). Speci�cally, transportation costs, the exporters gross

domestic products (GDP), tari� rates, changes in the relative real exchange rate, coe�-

cients of variations of unit values, a multiple spell dummy, and dummies for agricultural

good, reference priced products, and homogeneous goods are used to explain the duration

of trade. A detailed description of these covariates is provided by Besede² and Prusa

(2006b).

5.2 Results

Eight di�erent hazard models were used to analyze the trade duration data: cloglog,

logit, probit, and Pareto models with and without Gaussian random intercepts. Table 3

shows that the results are qualitatively similar for the various estimation procedures.

None of the estimated coe�cients changes sign across model speci�cations. While higher

transportation costs increase the hazard that a trade relationship ceases, a higher GDP of

the trading partner, a higher industry level tari� rate, a real depreciation of the exporting

country's currency, and a larger coe�cient of variation of unit values decrease the hazard.

Higher order spells have an increased hazard and so do trade relationships involving

agricultural goods, reference priced products, and homogeneous goods.6

Table 3 also shows the estimated ξ-values obtained from the Pareto hazard models.

The estimated value of ξ is approximately 4.3 when unobserved heterogeneity is not

accounted for (Model 3). This model is estimated using a user-written Stata program

based on the maximum likelihood routine ml d1. When unobserved heterogeneity is

modelled through the inclusion of random intercepts (Model 7), the Pareto model is

estimated at a regular grid of �xed ξ-values (0, 0.1, . . . , 5.9) using the R software package

gamlss.mx (Stasinopoulos and Rigby, 2012). Figure 4 shows the resulting pro�le log-

likelihood, which reaches its maximum at ξ = 4.4. When comparing the maximized

log-likelihoods of the various models, which are given in the last row of Table 3, the

largest value is found for the Pareto model with frailty. It is noteworthy that the second

largest value is reached by the Pareto model without frailty, which outperforms even

the cloglog, logit, and probit models that include random e�ects. This suggests that

the Pareto model is best suited to analyze the data at hand. The question arising is

then whether the results obtained from the preferred Pareto model di�er in a notable

6See Besede² and Prusa (2006b) for a detailed discussion of these results.
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way from the results obtained from the conventional cloglog, logit, and probit models.

In what follows, this question will be investigated by comparing the various estimation

results based on several quantitative indicators. As in the simulation study presented

in Section 4, these quantitative indicators comprise the strength of covariate e�ects (as

measured by standardized coe�cients and hazard ratios), the relative e�ects of covariates,

the degree of proportionality in the covariate e�ects, and the estimated hazard rates.
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Figure 4: Pro�le log-likelihood at a grid of ξ-values

Despite the qualitative similarity of the estimated coe�cients shown in Table 3, the

estimates obtained from the di�erent model speci�cations exhibit substantial quantitative

di�erences. The �rst di�erence between the models pertains to the estimated strength of

covariate e�ects. To provide a �rst impression of the estimated covariate e�ects, Table 4

shows the coe�cient estimates from Table 3, standardized by the conversion factors pro-

posed by Amemiya (1981). Since the scale of the estimated coe�cients in frailty models

depends on both the response function and the variance of the random e�ects, which

makes an appropriate standardization of the coe�cients rather di�cult, the results in

Table 4 are based on the four models without frailty (Models 1�4 in Table 3). The results

indicate that the estimated covariate e�ects obtained from the preferred Pareto model
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with ξ ≈ 4.3 are, by and large, larger in absolute terms than their counterparts obtained

from the other three models. The estimates obtained from the probit model are always

smaller in absolute terms than their counterparts from the Pareto model, the estimates

obtained from the cloglog model are smaller for all covariates except `exchange rate', and

the estimates obtained from the logit model are smaller in all but two cases.

Table 4: Standardized Coe�cient Estimates

Cloglog (ξ = 0) Logit (ξ = 1) Pareto (ξ ≈ 4.3) Probit

Transportation costs 0.1482 0.1797 0.2297 0.1886

GDP −0.0412 −0.0425 −0.0424 −0.0402

Tari� rate −0.0395 −0.0413 −0.0434 −0.0409

Exchange rate −0.1936 −0.2041 −0.1894 −0.1528

Coe�cient of variation −0.1336 −0.1434 −0.1513 −0.1418

Multiple spell dummy 0.5690 0.6741 0.8723 0.7202

Agricultural goods 0.1816 0.2455 0.3241 0.2546

Reference priced products 0.3066 0.3502 0.4090 0.3545

Homogeneous goods 0.4809 0.5758 0.7060 0.5947

Note: All models are without frailty (Models 1�4 in Table 3). The coe�cient estimates are standardized

using the conversion factors proposed by Amemiya (1981).

The results in Table 4 suggest that the estimated average e�ects of explanatory vari-

ables are a�ected by the response function chosen to specify the discrete hazard. However,

when comparing discrete hazard models with di�erent response functions, it is generally

better to focus on relative covariate e�ects and hazard ratios rather than comparing the

estimates of the coe�cients even after an appropriate conversion. Table 5 therefore shows

the relative e�ect of the two arbitrarily chosen covariates `transportation costs' and `ex-

change rate', as well as the respective hazard ratios at the shortest and longest duration

observed. The results in Table 5 are based on the four frailty models (Models 5�8 in

Table 3). The hazard ratios are calculated for a unit increase in the respective covari-

ate, keeping all other covariates constant at their mean values and assuming that the

individual e�ect bi equals its expected value of zero.

For all the four models, the hazard ratio of a unit increase in transportation costs is

roughly equal at t = 1. At t = 16, however, the hazard ratio obtained from the Pareto

model is larger than the remaining hazard ratios. This suggests that the estimated average

e�ect of transportation costs is larger in the Pareto model than in the remaining three

models. When comparing the sizes of the hazard ratios at t = 16, the Pareto model

yields the largest value, followed by probit, logit, and cloglog. This is exactly in line

with the respective standardized coe�cients presented in Table 4. When comparing the
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hazard ratios of a unit increase in the exchange rate, the results are ambiguous. At

t = 1 the cloglog and logit speci�cations yield larger e�ects than the Pareto and probit

speci�cations, and vice versa at t = 16. However, since every trade relation lasts for at

least one year while only a few last for 16 years, the e�ects at t = 1 can be expected to

have a greater impact on the average e�ect. The cloglog and logit models would thus

yield larger average e�ects of changes in the exchange rate than the Pareto and probit

models. This is also in line with the results in Table 4.

Table 5: Comparing Covariate E�ects across Model Speci�cations

Cloglog Logit Pareto (ξ = 4.4) Probit

with frailty with frailty with frailty with frailty

γtransport/γexchange −0.772 −0.888 −1.224 −1.227

Hazard Ratio (transport) at t = 1 1.088 1.097 1.094 1.094

Hazard Ratio (transport) at t = 16 1.106 1.144 1.269 1.244

Hazard Ratio (exchange) at t = 1 0.895 0.897 0.923 0.926

Hazard Ratio (exchange) at t = 16 0.877 0.860 0.822 0.833

Note: The hazard ratios for a unit increase in the relative e�ects of transportation costs and exchange

rate di�erences are calculated for the shortest and longest duration observed. All other covariates are

kept constant at their mean values.

A second aspect associated with the hazard ratios presented in Table 5 is the degree

of proportionality imposed by the di�erent hazard models. With the cloglog model, the

hazard ratio for transportation costs increases by less than 2% from t = 1 to t = 16, and

the hazard ratio for exchange rate decreases by approximately 2%. In other words, the

grouped-duration analogue of the proportional Cox model exhibits almost proportional

interval hazards. The Pareto model, however, yields interval hazards that are markedly

less proportional. The changes in the hazard ratio are 16% and −9%, respectively. The

probit model exhibits changes in the hazard ratio that are very similar to those of the

Pareto model, and the logit model constitutes an intermediate case.

Lastly, Table 5 also shows the estimated relative e�ect of transportation costs and

exchange rate. Since the relative e�ects of covariates are scale-independent, they can be

compared directly across di�erent model speci�cations. The results in Table 5 show that

the four models analyzed here di�er substantially with respect to the estimated relative

covariate e�ects. The e�ect of transportation costs is about 22% larger than the e�ect

of exchange rate when the Pareto or the probit model is used for estimation, whereas

the logit and the cloglog speci�cation yield an e�ect that is 11% and, respectively, 23%

smaller.

The above results have shown that the choice of response function has important im-
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plications for the estimated covariate e�ects in discrete-time hazard models. Figure 5

shows that the choice of response function also a�ects the estimated hazard rates. The

�gure shows the predicted hazards obtained from the four models relative to the predicted

hazards obtained from the preferred Pareto model with ξ = 4.4. More precisely, the pre-

dicted hazards obtained from the Pareto model are grouped into percentiles, and for each

percentile the four average relative hazards are shown. As compared to the Pareto model,

which serves as the benchmark, the cloglog, logit, and probit models all yield larger pre-

dicted hazards at high percentiles, and smaller predicted hazards at mid-sized percentiles.

At low percentiles, the cloglog and logit models yield larger hazards, whereas the probit

model yields smaller hazards.
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Figure 5: A comparison of predicted hazards obtained from various link functions; aver-

age values per percentile; benchmark model: Pareto (ξ = 4.4); all the predictions account

for individual frailty

6 Conclusions

This paper introduces a new hazard rate model for discrete duration data. As is well

known, discrete-time duration models can be estimated using a conventional binary re-

sponse regression approach. As shown in this paper, however, the choice of link function
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used in the binary regression model is not innocuous in a duration context, and has im-

portant implications for the estimated covariate e�ects and the predicted hazards. The

model proposed in this paper therefore employs a �exible link function. Speci�cally, the

cumulative distribution function of the log-Burr distribution is proposed for parameteriz-

ing the discrete hazard. This distribution function contains a shape parameter, ξ, which

can be estimated along with the other coe�cients included in the regression model. For

ξ = 1 one obtains the logit link, and for ξ = 0 one obtains the cloglog link. Thus, the

hazard model proposed comprises the two models that are most widely used in discrete

survival modelling, the proportional odds model and the grouped proportional hazards

model. Moreover, it is shown that the class of discrete-time hazard models considered can

be linked to the asymptotic distribution of threshold excesses of an underlying continuous

duration variable. This provides new insights into the relation between continuous-time

duration processes and discrete-time hazard speci�cations. Since the asymptotic distri-

bution of threshold excesses is given by the generalized Pareto distribution, the hazard

model proposed here is referred to as the Pareto hazard model.

Using simulations, it is shown that the shape parameter in the Pareto hazard model

can be reliably estimated, even in the presence of unobserved heterogeneity, and that the

model produces accurate results. Moreover, it is shown that a misspeci�ed response func-

tion causes severe biases in the estimation results. Speci�cally, the strength of individual

covariate e�ects, the relative e�ects of covariates, the degree of proportionality, and the

predicted individual hazards are biased when using a misspeci�ed response function in

the hazard model. Employing a �exible response function may therefore help to avoid

severely biased estimation results. An empirical analysis of trade durations con�rms the

�nding that using a �exible response function in discrete-time duration models may be

very useful in practice. Speci�cally, when analyzing the same data on US import dura-

tions as previously used by Besede² and Prusa (2006b) in their in�uential seminal study

on the duration of trade, the Pareto model proves to outperform the conventional cloglog,

logit, and probit speci�cations in terms of model �t. Moreover, the shape parameter ξ

in the Pareto model is estimated to be signi�cantly larger than four in this empirical

application, and hence the corresponding results di�er strongly from their counterparts

obtained from the cloglog model with ξ = 0 and the logit model with ξ = 1. The results,

in particular the predicted hazards, di�er also from those obtained from the probit model,

which is not nested in the class of Pareto hazard models.
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