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Abstract—On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation
for magnetic field h = B~/B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams
of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency
branch of oscillations when β = 4πnT/B2  1 and β > 1, are studied. The study takes into account the highest dis-
persion correction determined by values of the plasma parameters and the angle  which plays a key role
in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidi-
mensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the
basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam
are studied by the numerical integration of equations with the use of specially developed methods. The results can
be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering
and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all
evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.
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1. INTRODUCTION. BASIC EQUATIONS
The objective of this work is to study the formation,

structure, stability, and dynamics of multidimensional
(two-dimensional (2D) and three-dimensional (3D))
soliton-like structures generated at a low-frequency
branch of oscillations in the ionospheric and magneto-
spheric plasma when β = 4πnT/B2  1 and β > 1. These
processes are described by the following equation
(Belashov, 2014):

(1)

which corresponds to the dispersion law in the limiting
case of long waves (Karpman, 1973):

(  =  and  =  are the
electronic and ionic plasma frequencies, respectively,

 is the Alfvén velocity, M is the ionic
mass, θ is the angle between the direction of wave vec-
tor and magnetic field В) and, depending on differen-
tial operator  describes waves propagating longitu-
dinally and transversely relative to the external mag-
netic field. The case in which the lower sign (Alfven
mode) is implemented in the dispersion relation was
studied in detail in (Belashov, 2015); here we are inter-
ested in the case with a “plus” sign, when operator 
has the form

(2)
and the equation (1) represents the generalized gener-
alized Kadomtsev–Petviashvili (KP) equation (Belas-
hov–Karpman (BK) equation (Karpman, 1991;
Belashov, 2005)), and in case when β = 4πnT/B2  1
at  =  (where  is an ion–cyclotron
frequency); |k|rD  1, describes the propagation of fast
magnetosonic (FMS) waves in a magnetized plasma at

  near the cone of angles relative to
the magnetic field В (which is assumed to be homoge-
neous)  (Belashov, 1994). In this
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case, function u has the meaning of a dimensionless
amplitude of magnetic field of the wave, 
while the coefficients of terms describing nonlinear,
dissipative, and dispersive effects are determined by
the plasma parameters and the angle 

Equations (1) and (2) can not be analytically inte-
grated. Therefore, in order to study the stability of
multidimensional solutions, we will use the approach
developed in (Belashov, 1991) and investigate the
Hamiltonian boundness for equations (1) and (2)
upon its deformations, which conserve the system
momentum, by solving the corresponding variational
problem. We will also carry out an asymptotic analysis
of multidimensional solutions in an analytical investi-
gation of this system. The equations were integrated
numerically with specially developed methods and
codes described in detail in (Belashov, 2005) in order
to study the evolution of 3D solutions, including the
propagation of a 3D beam of FMS waves in the mag-
netized plasma. These problems will be considered
below for the set of equations (1) and (2).

STABILITY AND ASYMPTOTICS 
OF 2D AND 3D SOLUTIONS

The problem of the stability of solitary wave solu-
tions for KP and BK models remains highly relevant
and is widely discussed in many literature sources
related to the soliton theory (for example, Belashov,
2005; Liu, 1997; Pava, 2009; Esfahani, 2011). As for
the BK dissipation-free equation, it has already been
solved analytically (Belashov, 1991); herein, in the
investigation of the stability of (1) and (2) solutions
with ν = 0, we will follow the method developed in the
above-mentioned paper in the context of the problem
under discussion. Let us make a transformation of
coordinates and rewrite equations (1) and (2) with ν = 0
in a Hamiltonian form:

(3)

where

(4)

  and  Stationary
solutions of equation (3) are obtained from the varia-

tional problem δ(H + Px) = 0 (  is a pro-

jection of system momentum on the x-axis,  has the
meaning of a Lagrange factor), illustrating the fact
that all finite solutions of equation (3) are stationary
points of Hamiltonian (4) under a fixed Px. In accor-
dance with Lyapunov’s theorem, the stationary points
of a dynamic system which realized the Hamiltonian
maximum or minimum are absolutely stable; if the
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extremum is local, then locally stable solutions are
possible. Unstable states correspond to the Hamilto-
nian monotonic dependence on its variables, i.e., the
case in which the stationary point is a saddle one.
Hence, it is necessary to prove the Hamiltonian
boundness (from below) at a fixed Px. Let us consider
scale transformations in a real vector space R (Belashov,
2014)  →  (where d is a
problem dimension, and ) that conserve the
momentum projection Px. Hamiltonian (as a function
of  parameters) will take the form

(5)

where  

 and  The necessary con-
ditions of extremum existence are defined by the fol-
lowing set of equations:   while suf-
ficient conditions for the Hamiltonian minimum are
provided by a set of inequalities

The joint solution of these equations and inequali-
ties yields the following results (Fig. 1). In the 3D case
(d = 3 in the equations), 3D solutions are absolutely
stable at  . For  the locally stable
solutions can be observed, when the condition

 is satisfied for the integral Hamilto-
nian coefficients (5). Hence, we easily proved the pos-
sible existence of absolutely and locally stable solu-
tions in the BK model and found the stability condi-
tions for the 3D soliton solutions. It should be noted
that the BK equation takes into account the dispersion
correction of the next order, in contrast to the usual
KP equation, and has stable 3D solutions, in contrast
to the KP model (Kuznetsov, 1986). The used
approach, when applied to the problem of FMS wave
beam propagation in the magnetized plasma (see the
following section), makes it possible to prove, for
instance, that a 3D beam propagating at an angle of θ to
the magnetic field is not focused; it becomes stationary
and stable in the cone of angles 
when the following condition is valid (Belashov, 2014):

As follows from the asymptotic analysis of possible solu-
tions of equations (1) and (2), the asymptotics of solu-
tions at  and  in terms of 
are defined as follows:

(а) when the velocity of wave propagation along the
x-axis is V > 0 and  and when V < 0, 
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(6)

(b) when V < 0, 

(7)

where  and Θ are arbitrary constants, 
and 

As follows from equations (6) and (7), equations (1)
and (2) with ν = 0, depending on the V and  signs,
can have soliton solutions  with both monot-
onous and oscillating asymptotics. It should also be
noted that the solutions at  and any  have
the form of  +  and con-
sequently also represent solitons with monotonous
asymptotics (Karpman, 1991).

NONLINEAR EFFECTS IN PROPAGATION 
OF FMS WAVES IN MAGNETIZED PLASMA

It should be recalled that FMS waves can propagate
in magnetized plasma at β = 4πnT/B2  1 in the fre-
quency region of  = , while in equa-
tions (1)–(5), from the physical point of view, func-
tion u is a dimensionless amplitude of magnetic field
of the wave:  The dispersion law at

 , and  will have the fol-
lowing form:

(8)

where  is a transversal (relative to the wave propaga-
tion direction) component of the wave vector,  is
x-component of ionic velocity, D is a dispersion
length, and θ is the angle between wave vector compo-
nent  and the external magnetic field B. It also
should be recalled that the term “low dispersion”
means that the primary nonlinear process is a three-
wave interaction of low-amplitude waves; the low non-
linearity condition is based on the small angle between
the interacting waves. At a relatively high ionic tempera-
ture,  the dispersion length in (8) is defined
by the following equation (Belashov, 1994):

(9)

where  is an ionic Larmor radius. Under
this process the plasma is quasineutral, because

 According to (9), the disper-
sion is positive (phase velocity grows with growth in |k|),
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except for angle regions near θ = 0 and θ = π/2. With
propagation that is almost transversal relative to the
magnetic field B, when  ≤  the disper-
sion is negative and is defined by effects related to the
finiteness  It is known that propagation of the low-
amplitude FMS wave with a narrow angle distribution
can be described by the KP equation ((1), (2) at

) (Manin, 1983). For such angles, when dis-
persion is positive for low |k| (at a relatively high ionic
temperature), the 3D FMS wave packet in the plasma
with  does not form stable stationary solu-

tions and spreads for the angles  <  or
collapses outside of this cone (Kuznetsov, 1986). (It
should be noted that a similar phenomenon is occa-
sionally termed as wave “self-compression” (Tsytovich,
1995)). The last case, when a relatively intensive FMS
wave beam is limited in the -direction, can be char-
acterized by the self-focusing phenomenon (Belashov,
2005). This problem was solved for the first time in
(Manin, 1983) via the averaging of initial equations and
subsequent numerical solution. Yet, the relation (9) will
be not valid for the angles  which are
characterized by intensive reconstruction of the oscil-
lation dispersion mechanism. At  the disper-
sion can be defined for any angle θ based from the
hydrodynamic equations, and the FMS wave structure
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Fig. 1. Changing of H(ζ, η) at d = 3 for different values of

integral coefficients along the lines of  at:
(1) a = 1.0, b = 1.0, c = 1.0, e = 0.025; (2) a = 1.0, b = 1.0,
c = 1.0, e = 0.017; (3) a = −0.5, b = 1.0, c = 0.5, e = 0.02;
(4) a = −0.5, b = 1.0, c = 0.5, e = −0.02; (5) a = 1.0, b = 1.0,
c = 0.5, e = −0.02.
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will depend in this case on sign of the dispersion coef-
ficient

which is defined by angle θ; in particular: the disper-
sion is negative for propagation that is almost transver-
sal if  ≤  and it is positive for all other
angles. The KP equation can also be used in this case;
and for a relatively intensive FMS wave beam, which is
limited in the -direction, we can expect self-focus-
ing of a beam propagating at such angles θ to the mag-
netic field, where the dispersion is positive (Zakharov,
2012).

In both cases,  and  it is neces-
sary to take into account the fact that  near the
cone of angles, where dispersion changes the sign. Obvi-
ously, this does not mean that the dispersion disappears
in this region. It just means that the description based on
the KP equation model in its standard form is not correct
in this case. Near the cone  ≤  where

 at  the results of (Manin, 1983)
should be clarified and even reconsidered. For exam-
ple, the relation (8) should be supplemented by a dis-
persion term of the next order, which will play a major
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role in this case (Belashov, 2005). An analogous situa-
tion is possible at  near the cone of angles

 In both cases, the dispersion

relation takes the form of  ×  +

 The dispersion correction of the
next order can be obtained by decomposition of the
full dispersion equation into the Taylor’s series by k
(Belashov, 2005). In the case of  which is
considered in detail below, we obtain

Hence, the dispersion character becomes much more
complicated and is now defined by correlation of signs of
coefficients  and  (Fig. 2). At  , we
observe negative dispersion (region B in Fig. 2), while the
dispersion is “mixed” at  (region A) and 
(region C) (the dispersion sign is different for low and
high k). In this case, low-amplitude FMS waves with a
narrow angle distribution will be described by the BK
equation [Karpman, 1991]; in the non-dissipative
case, it will have the form (Belashov, 2014)

(10)

where  In this case, a nonlinear term
, which is the result of sound velocity renormal-

ization, reflects a low probability of other nonlinear
processes caused by vector nonlinearity. In contrast to
the KP equations, the solutions of equation (10) are
characterized by a more complicated structure and
dynamics, which is related to the ratio of values and
signs of the dispersion coefficients  and  Hence, it
is found in the case of  in contrast to the case
of  (which was considered in Manin, 1983),
that the 3D beam of FMS waves, which propagates in
the plasma at angle θ to the external magnetic field, is
not self-focused and becomes stationary and stable in
the cone of angles  when the fol-
lowing conditions are satisfied:

or, in other words, when  in (10). This conclu-
sion is confirmed by our analytical (see the previous
section) and numerical (Karpman, 1991) results for
3D solitary wave structures propagating in low disper-
sive media, where the presence of the highest disper-
sion correction in BK (as opposed to KP) stops the
wave collapse at the initial stage of development of
self-focusing instability. This result is of key impor-
tance, because, prior to the works of (Karpman, 1991;
Belashov, 1991), neither analytical nor numerical
studies identified 3D stable wave structures such as 3D

m Mβ <

( )θ = 1 2arctan .M m

A xkω ≈ v 2 21 2 xk⊥⎡ +⎣ k
1 2 4

0 1 2( ) .x xс k k− ⎤−γ + γ ⎦

,m Mβ <

( ) ( )⎡ ⎤γ = − θ − θ + θ⎢ ⎥ω ⎣ ⎦

24
2 4 2

2 4 3 cot 4 cot 1 cot .
8

A
pi

c m
M

v

1γ 2γ 1 0,γ > 2 0γ <

1,2 0γ > 1,2 0γ <

( ) ( )3 5
1 2 2 ,x t x x x Ah h h h h h⊥∂ ∂ + α ∂ + γ ∂ + γ ∂ = − Δv

(3 2) sin .Aα = θv

xh hα ∂

1γ 2.γ
,m Mβ <

m Mβ >

( )θ < 1 2arctan M m

( ) ( ) −
⎡ ⎤− θ θ + θ >⎣ ⎦

2 12 4 2cot cot 1 cot 4 3,m
M

1,2 0γ >

Fig. 2. Dispersion behavior for FMS waves with respect to
the angle θ and ratio m/M.

0

0.1

0.2

0.3

10–3 10–2 10–1

m/M

cotθ

C

A

B



720

GEOMAGNETISM AND AERONOMY  Vol. 56  No. 6  2016

BELASHOV, BELASHOVA

solitons. It is the accounting for higher-order disper-
sion effects that made it possible to found 3D stable
soliton solutions in the BK equation model, in con-
trast to the results obtained for the standard KP equa-
tion model (Zakharov, 2012).

In order to study the dynamics of an FMS wave
beam characterized by a narrow angular distribution,
we solved the boundary problem (in contrast to (Karp-
man, 1991), in which the Cauchy problem was consid-
ered). We numerically integrated the corresponding
equation, because the exact analytical solutions of the
BK equation, even for the non-dissipative case, are
not currently known.

Let us consider the problem of modeling of the
FMS wave beam dynamics in the magnetized plasma.
It is assumed that there is a 3D FMS beam propagat-
ing in the plasma at angle θ to the external magnetic
field near the cone of angles 

Using the substitutions  
    and

 we obtain from (10)

(11)

where   Equation (11)
describes the FMS wave beam propagating along the
x-axis from the boundary x = 0. If it is assumed that

 +  and also  =  =

 then the boundary condition is
defined as the FMS wave beam localized in the (y,z)
plane and time-periodic axially symmetric beam of
FMS waves.

Equation (11) with boundary condition  was
integrated numerically. The series of performed
numerical experiments related to the modeling of
FMS beam propagation at its different intensities at
the boundary of x = 0,  and different angles θ (see
above the cases A, B, and C) made it possible to obtain
the following results. In region A (corresponding to

 ), as in (Belashov, 2005) and (Belashov,
2014), the spatial evolution of the FMS wave beam at
the initial stage at any  results in beam focusing,
which is related to the predominant role of nonlinear
processes in this time range. Meanwhile, as in the
usual KP equation, we observe (Fig. 3, curves 1 and 2)
beam compression in a transversal ρ-direction in the
course of its propagation along the x-axis, such that its
transversal characteristic size  ∼ 
decreases with simultaneous fast growth of the beam
intensity in its axis with an increment of ×

 (where  is a wave energy in
the volume unit), which is just slightly dependent on ε.
In this case, the characteristic dimensions of the
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beam, which represents a wave pulse, decrease, its
“wings” start lagging behind its central part, and self-
focusing instability develops (Fig. 3, curves 1 and 2;
Fig. 4). This evolution type is also characterized by an
increase in P and a decrease (at low ) in the
Hamiltonian H in the system due to a nonlinear term,
which grows at this evolution stage much faster than
dispersion terms.

Under further growth of t, due to a decrease in a
transverse size of wave pulse lρ (Fig. 3), the term,
which is proportional to the fifth derivative in the
equation (11), starts playing a predominant role (it is
well-seen in the analysis of variations in the integral

0ε >

Fig. 3. Changing of a cross-section of the wave beam under
its propagation in the x-direction: (1) λ = 1, ε = 1.34;
(2) λ = 1, ε = 2.24; (3) λ = −1, ε = 1.34; (4) λ = −1, ε =
−1.34; (5) λ = 0, ε = −1.34.
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terms making up the Hamiltonian H). As a result, the
“collapse” of the wave pulse wings behind its main
part does not lead to a rapid increase in the field inten-
sity and singularity formation in the major peak
region, which is typical for the standard KP equation
model with  (Belashov, 2005); as result, a ring
region of the elevated field concentration is formed
(Fig. 5). Further evolution of this structure will make
it possible to form additional peaks in the x-axis
behind the pulse (Fig. 5). In this case, the wave pulse
stops being compressed and starts defocusing (Fig. 3,
curves 1 and 2). This stage is completed by the forma-
tion of a stationary wave beam, i.e., by transition into

1 0γ κ >

the regime of  and 
which corresponds the results described in the second
section. The role of the term, which is proportional to
the fifth derivative in the equation (11), along with the
role described above, consists of the appearance of
small-scale oscillations forming a regular oscillatory
structure of the tail (Fig. 5).

In regions B and C (Fig. 2), which correspond to
λ = −1 and |ε| ≥ 0, a sonic wave scatters with propaga-
tion along the x-axis at any beam intensity h(0) at the
boundary (Fig. 3, curves 3 and 4), just as in the electro-
magnetic wave self-action process in the media, where
derivatives  and  have different signs
(for example, this phenomenon is characteristic for
ion–cyclotron waves, whistlers, etc.) (Litvak, 1983).

Figure 3 demonstrates that, at λ = 0, when (11)
transits into the KP equation with a negative disper-
sion, there are no solutions as a self-focusing beam of
FMS waves. Therefore, the self-focusing effect is not
observed in the considered model when λ = 0.
According to the test numerical experiments for the
model (11) with λ = 0, self-focusing is possible only at
ε < 0 (Fig. 3, curve 5), when the FMS wave beam
described by this model does not correspond to any
real situation (Belashov, 2005).

Hence, according to the study results based on the
BK equation model (11), the self-focusing phenome-
non of the FMS beam, which propagates in the plasma
at the angles to the magnetic field near the cone of

, cannot be observed, in contrast
to the standard KP equation model, even if the disper-
sion for low k is positive. In this case, however, together
with the beam scattering, we can observe nonlinear sta-
tionary propagation. It should also be noted that equa-
tions (10) and (11) at   should also
be supplemented with terms proportional to mixed
derivatives, because  in this case and the dis-
persion equation acquires terms proportional to

 where i, j = 1, 2, etc.
It should be noted in the conclusion that it is also

necessary under the ionospheric and magnetospheric
plasma conditions to take into account the effect of
stochastic f luctuations of the wave field h(t, x, r⊥) on
wave beam evolution, which should be taken into con-
sideration in basic equations. Hence, equation (11)
should be supplemented with a term such as η(t, x, ρ)
and rewritten as follows:

(12)

In (Belashov, 1995), equation (12) at λ = 0 for the
case of low-frequency fluctuations, when η = η(t),
was integrated analytically. The results can be easily
applied to (12) with η = η(t). The interpretation of
results obtained in (Belashov, 1995) in terms of this
problem is indicative of the fact that even low stochas-

max( ) consth x = ( ) const,l xρ =

2 2
xk∂ ω ∂ 2 2k⊥∂ ω ∂

( )θ = 1 2arctan M m

2π − θ ( )�
1 2m M

xk⊥ ≥k

,i j
xk ⊥k

( )3 56 ( , , ) .t x t t th h h h h t x h⊥∂ ∂ + ∂ − ε∂ − λ∂ + η ρ = Δ

Fig. 5. Solution in the (x, ρ) plane at λ = 1, ε = 0.89.
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tic f luctuations of the wave field will lead to the decay
of the wave pulse upon its propagation, accompanied
by the wave transformation into an oscillatory struc-
ture. Meanwhile, in the case of η = η(t, x, ρ), the ana-
lytical study of the corresponding process becomes
extremely complicated, and (Belashov 2014) carried
out numerical integration of equation (12) with a sto-
chastic term, which is a function of time and space
coordinates. Figure 6 demonstrates the results of
numerical modeling of the FMS wave beam evolution
in a medium with stochastic f luctuations of the wave
field in the form of Gaussian noise in the model (12)
with η = η(t, x, ρ). The obtained results are qualita-
tively similar to the case of η = η(t): a decrease in
amplitude of the FMS wave beam upon its propaga-
tion with the subsequent wave destruction (compari-
son with Fig. 3).

CONCLUSIONS
In the course of this investigation, we studied ana-

lytically and numerically the problem of the stability
and dynamics of 3D soliton-like structures, such as a
beam of FMS waves, which are formed in a low-fre-
quency branch of oscillations in plasma, for the cases
when  and β > 1. The study was
based on the model of the 3D BK-equation for the
magnetic field  upon the assumption of
homogeneity of the external magnetic field B, and
takes into account the highest dispersion correction
determined by the plasma parameters and the angle
θ = (B, k). According to the results, in contrast to the
KP equation model, when the FMS wave beam prop-
agates at the angles to the external magnetic fields near
the cone of , the self-focusing
phenomenon is not observed, even if dispersion for
low k is positive. It is proved that on a level with the
magnetic sound scattering the nonlinear stationary
beam propagation can be observed; the analytical and
numerical methods made it possible to prove the pos-
sibility of the formation of stable 3D solitary beams of
FMS waves in the course of evolution. It is demon-
strated that the presence of stochastic wave field f luc-
tuations in the medium reduces the FMS wave beam
amplitude upon propagation, followed by beam
destruction.

Our work did not explicitly take into account the
possible effects of the external magnetic field inhomo-
geneity that can take place in the Earth’s ionosphere
and magnetosphere. For instance, the field inhomo-
geneity can result in soliton acceleration (Popel et al.,
1995) and other phenomena related to the imbalance
between nonlinear and dispersive effects, for example,
in soliton deformations and destruction, as happens
during the propagation of nonlinear wave structures in
the variable dispersion media (see, for example,
(Belashov, 2005), (Belashova, 2006)). The latter can
be caused in plasma as heterogeneity of its composi-

β ≡ π �
24 1nT B

~ ,h B B=

( )θ = 1 2arctan M m

tion in space, which will lead to spatial dependence of
the values such as m/M, ni and, consequently,

 and also the field B heterogene-

ity, and then  In this case, the disper-
sion coefficients  in the BK equations will also
become functions of spatial coordinates. Hence, the
heterogeneity effect can be taken into account in our
model if we assume that  while  and 
are functions of r in equations (10), (11). However,
such generalization of the BK equation is beyond the
scope of the research presented in this paper.

It should be noted in conclusion that the results can
be directly applied to nonlinear wave dynamics in the
ionospheric and magnetospheric plasma, because, in
our opinion, they will contribute to a better under-
standing of the physics of nonlinear wave processes
and may be useful in the interpretation of the results of
laboratory and space experiments related to the exci-
tation, evolution, and interaction of FMS wave soli-
tons and of self-action effects, such as wave collapse
and wave beam self-focusing.
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