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This paper analyzes the impact of endogenous credit terms under capital market imperfections in a capac-
ity investment setting. We model a monopolist firm that decides on its technology choice (flexible versus

dedicated) and capacity level under demand uncertainty. Differing from the majority of the stochastic capacity
investment literature, we assume that the firm is budget constrained and can relax its budget constraint by
borrowing from a creditor. The creditor offers technology-specific loan contracts to the firm, after which the firm
makes its technology choice and subsequent decisions. Capital market imperfections impose financing frictions
on the firm. Our analysis contributes to the capacity investment literature by extending the theory of stochastic
capacity investment and flexible versus dedicated technology choice to understand the impact of capital market
imperfections, and by analyzing the impact of demand uncertainty (variability and correlation) on the oper-
ational decisions and the performance of the firm under different capital market conditions. We demonstrate
that the endogenous nature of credit terms in imperfect capital markets may modify or reverse conclusions
concerning capacity investment and technology choice obtained under the perfect market assumption and we
explain why. The theory developed in this paper suggests some rules of thumb for the strategic management
of the capacity and technology choice in imperfect capital markets.
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1. Introduction and Literature Review
Capacity investment is subject to internal or exter-
nal financing frictions, especially in capital-intensive
industries. If the internal capital of the firm is not suf-
ficient to finance the desired investment level, then
the firm may decide to raise external capital. Exter-
nal capital is more expensive because there exist cap-
ital market imperfections such as bankruptcy costs,
taxes, financial distress costs, or agency costs due
to asymmetric information, etc. (Froot et al. 1993)
that create frictions in the borrowing process of the
firm. However, as highlighted by Van Mieghem (2003,
p. 275) “stochastic capacity models assume (often
implicitly) [0 0 0] perfect capital markets, so that fric-
tionless borrowing is possible [0 0 0].” In imperfect cap-
ital markets, the investment decision and the cost of
external capital are interdependent. The objective of
this paper is to increase our understanding of how
capital market imperfections affect stochastic capacity
investment and technology choice. A key feature of
our paper is that we endogenize the cost of borrowing
in a creditor-firm equilibrium.

To this end, we model a firm who produces
and sells two products under demand uncertainty.
The firm chooses between flexible and dedicated
technologies that incur variable investment costs
and determines the capacity level and the produc-
tion quantities with the chosen technology. Differing
from the majority of the stochastic capacity invest-
ment literature, we assume that the firm is bud-
get constrained and can relax its budget constraint
by borrowing from a creditor. The creditor offers
technology-specific loan contracts to the firm, after
which the firm makes its technology choice and sub-
sequent decisions. We assume that the creditor incurs
a fixed deadweight cost of financing if the firm
defaults on the loan. In the basic model, we assume
that the credit market is perfectly competitive. At the
other end of the spectrum, we analyze a credit mar-
ket with a monopolist creditor. In summary, the fixed
bankruptcy cost and the monopolistic nature of the
credit market constitute the capital market imperfec-
tions considered in this paper.

We derive the technology choice and external bor-
rowing, capacity, and production level decisions of
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the firm and the creditor’s loan terms in equilibrium.
We investigate how the demand uncertainty affects
the capacity investment level and the performance of
the firm in equilibrium for a given technology. We
delineate the main drivers of the equilibrium tech-
nology choice and the impact of demand uncertainty
on this choice. Our analysis focuses on determining
the differences between perfect and imperfect capital
markets and understanding the impact of firm char-
acteristics and different capital market conditions. We
note that the objective of this paper is not to solve for
the optimal capital structure of the firm (equity ver-
sus debt financing with different contractual terms);
rather we focus on technology-specific loan contracts
characterized by their unit financing cost, and analyze
the creditor-firm strategic interaction in that setting.
Our results contribute to several streams of research,
as detailed below.

The stochastic capacity investment literature ana-
lyzes the capacity-pooling value of flexible technol-
ogy over dedicated technology and the impact of
demand uncertainty on this value in a variety of
models. We refer readers to Van Mieghem (2003) for
an excellent review. As highlighted in this review
paper, the operations management literature (often
implicitly) assumes that capital markets are perfect, in
which case operational and financial decisions decou-
ple (Modigliani and Miller 1958). In practice, capital
market imperfections exist (Harris and Raviv 1991)
and impose deadweight costs of external financing,
leading operational and financial decisions to interact
with each other. This is because these financing costs
are affected by the firm’s operational decisions and
are endogenously determined in equilibrium. There
is a growing body of work in operations and finance
that analyzes these interactions. Our paper’s overall
contribution to this literature is to extend the theory
of stochastic capacity investment and flexible versus
dedicated technology choice to understand the impact
of capital market imperfections. We focus on the
impact of demand uncertainty on the capacity invest-
ment decision and the performance of the firm. We
show that this impact takes different forms depend-
ing on the firm’s loan type in equilibrium (secured
with or without default possibility, unsecured) and
the capital market conditions (perfectly competitive
versus monopolistic credit market).

In the operations management literature, a recent
stream of papers (Lederer and Singhal 1988, Buzacott
and Zhang 2004, Xu and Birge 2004, Babich and Sobel
2004, Dada and Hu 2008, Caldentey and Haugh 2009,
Babich et al. 2011) analyze the joint financing and
operating decisions of the firm and demonstrate the
value of integrated decision making. All these papers
focus on a single-product setting where technology
choice is not relevant. An analytical characterization

of the two-product firm is entirely new to this litera-
ture. The only paper to focus on flexible technology
is Lederer and Singhal (1994), whose main focus is
to study the joint financing (optimal mix of debt and
equity) and capacity investment problem in a single-
product, multiperiod setting under the assumption of
a perfectly competitive credit market. In a numeri-
cal example, they analyze the capacity-pooling benefit
of flexible technology in a multiproduct firm. They
show that the value of flexible technology increases
with a lower demand variability and argue that this
is because the default risk of the firm decreases,
which allows the firm to secure a lower financing
cost in equilibrium. Our analysis demonstrates that
this result is only valid at high demand correlations.
At low demand correlations, the default risk of the
firm is not affected by the change in demand vari-
ability because the diversification benefit of operat-
ing in two markets (that we call “financial pooling”)
and the capacity-pooling benefit are sufficiently large.
It follows that at low demand correlations, the value
of flexible technology increases in demand variabil-
ity. This is because (i) the value of flexible technology
at a given financing cost increases in demand vari-
ability (due to capacity pooling), and (ii) the equilib-
rium level of financing cost is insensitive to changes
in demand variability (due to financial and capacity
pooling).

Several finance papers also investigate the inter-
action of financing and operational decisions. Dotan
and Ravid (1985) and Dammon and Senbet (1988)
are examples of early research that demonstrates the
effect of operational investments on the financing pol-
icy of the firm in a single-period setting. We refer
the reader to Childs et al. (2005) for a recent review
of papers in this stream. Among these, Mauer and
Triantis (1994), Mello et al. (1995), and Mello and
Parsons (2000) analyze the effect of various forms of
operational flexibility (e.g., shutting down the pro-
duction plant) on the joint operational and financing
decisions of a firm in the contingent claims frame-
work. The main focus of these papers is on financial
issues; therefore, they have strong modeling assump-
tions concerning the firm’s operations. We demon-
strate that new trade-offs arise and new insights
are obtained with a more detailed formalization of
the firm’s operations (the sequential nature of tech-
nology choice, capacity investment, and production
decisions) and the modeling of demand uncertainty.
For example, MacKay (2003) empirically documents
the negative correlation between production flexibil-
ity and the leverage of the firm. He attributes this
to a higher equilibrium financing cost with produc-
tion flexibility as the creditor believes that produc-
tion flexibility will increase the riskiness of the firm’s
cash flows. Our analysis demonstrates other facets of
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the interaction between production flexibility (flexi-
ble technology in our case) and the equilibrium credit
terms based on a stronger formalization of the firm’s
operations. We show that the equilibrium technology
choice is determined through the interplay among the
value of the limited liability option of the firm (only
with an unsecured loan) and the financial-pooling
benefit that exist with both technologies, and the
capacity-pooling benefit that only exists with the flex-
ible technology. Demand variability and correlation
play a key role in the equilibrium technology choice
through their impact on the relative effectiveness of
these drivers.

The remainder of this paper is organized as follows:
In §2, we describe the model and discuss the basis
for our assumptions. Sections 3, 4, and 5 focus on
the perfectly competitive credit market case to derive
the equilibrium strategy for a given technology, to
investigate the impact of the demand uncertainty on
the firm’s capacity investment decision and expected
equity value in equilibrium with each technology,
and to investigate the equilibrium technology choice.
In §6, we analyze the monopolistic credit market case
and contrast it to the perfectly competitive credit mar-
ket case. We conclude in §7 with a discussion of the
limitations of our analysis and future research includ-
ing potential avenues for empirical research.

2. Model Description and
Assumptions

We consider a creditor-firm interaction where borrow-
ing terms are determined before the firm makes any
decisions. The firm is a budget-constrained monop-
olist whose shareholders have limited liability. The
firm’s objective is to maximize the expected share-
holder wealth by maximizing the expected value of
equity. We model the firm’s decisions as a two-stage
stochastic recourse problem: The firm makes its tech-
nology choice (dedicated D versus flexible F ) and
capacity investment decision (potentially after bor-
rowing from the creditor) under demand uncertainty
and produces and sells two products after the resolu-
tion of this uncertainty. For consistency across scenar-
ios, we focus on a stylized firm that lives for a single
period and is liquidated at the end of the period. After
operating profits are realized, the firm pays back its
debt (if any), and default occurs if it is unable to do
so. The sequence of events is presented in Figure 1.

Turning now to the creditor, we assume that the
creditor offers a technology-specific unit financing
cost aT for T ∈ 8D1 F 9 to the firm. At the time of con-
tracting, the creditor has the same information as the
firm. In determining the financing cost, the creditor
takes into account not only the firm’s expected oper-
ating profits, but also the value P of any collateral-
ized physical assets (e.g., real estate). For generality
and tractability, we assume that the physical assets

Figure 1 Timeline of Events

Stage 1

Stage 2

• The creditor offers financing contract aT for technology T.
Stage 0

• The firm chooses technology T, external borrowing level eT,
and capacity level KT.

• Demand (�1, �2) is realized.
• The firm chooses production quantities for each product.

Termination
• If the firm defaults, the creditor incurs deadweight cost of S

and seizes the firm’s assets. The firm receives residual cash
(if any) after its assets are liquidated.

• If the firm does not default, it pays the face value of the loan
and liquidates physical assets.

are illiquid - they can only be liquidated with a lead
time. We assume P ≥ 0. In the P > 0 case, default can
occur because of the illiquidity of the physical assets
even if the loan is secured. For the P = 0 case, there is
no liquidity issue, and default occurs only because of
insolvency.

As discussed in Froot et al. (1993), there exist dead-
weight costs of external financing that give rise to
capital market imperfections. Paralleling this argu-
ment, we assume that the creditor incurs a fixed dead-
weight cost of financing S if the firm defaults on its
loan; this cost is incurred as an out-of-pocket fee. The
deadweight cost S may represent (i) the verification
costs incurred by the creditor to observe the operat-
ing profits when the firm defaults (see, for example,
Townsend 1979 and Froot et al. 1993); (ii) the oppor-
tunity cost of a foregone outside investment or the
penalty cost due to an unfulfilled payment by the
creditor to a third party; (iii) the transaction costs
incurred by the creditor in the liquidation of the phys-
ical assets in case of default (Tirole 2008, p. 143);
or (iv) the direct cost of bankruptcy to the creditor,1

which includes the administrative and legal fees of
the bankruptcy process (Altman 1980). Regardless of
the interpretation of S, the existence of deadweight
costs of financing introduces a capital market imper-
fection in our model.

In our basic model, the credit market is perfectly
competitive and the creditor makes zero expected

1 With the fixed bankruptcy cost interpretation of S, when the
bankruptcy is due to a liquidity issue (the firm can cover the face
value of the loan using P , but defaults because of the illiquidity of
the physical assets), our model implicitly assumes that the credi-
tor does not wait for the firm to liquidate its assets and incurs the
bankruptcy cost. We can prove that the resulting financing cost is
higher than that offered if the creditor planned to wait and did not
incur opportunity or penalty costs as a result. In other words, the
creditor penalizes the firm in the financing rate looking forward to
the possibility of bankruptcy due to a liquidity issue.
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return. This is the common assumption used in the
financial economics literature (e.g., Melnik and Plaut
1986). At the other end of the spectrum, we analyze
a monopolist creditor who maximizes his expected
return from lending and summarize our results in §6.
In summary, the fixed deadweight cost of financing
and the monopolistic nature of the credit market con-
stitute the capital market imperfections considered in
this paper.

Returning to the timeline, before the firm makes
any decisions, the creditor offers its borrowing terms
aT ≥ 0, T ∈ 8D1 F 9. The risk-free rate rf is normal-
ized to zero. In Stage 1, the firm determines its tech-
nology choice T ∈ 8D1 F 9, capacity investment level,
and borrowing level under the corresponding financ-
ing contract aT with respect to the internal budget
constraint B. The flexible technology (F ) has a sin-
gle resource that is capable of producing two prod-
ucts, and the dedicated technology (D) consists of
two resources that can each produce a single product.
Thus, the flexible technology has a capacity-pooling
benefit over the dedicated technology. Technology
T incurs unit capacity investment cost cT . Capacity
investment can be salvaged at a rate of 0 ≤ �T < 1.
Because flexible capacity is typically more marketable
than dedicated capacity, we assume �F ≥ �D.

In Stage 2, demand uncertainty is resolved. The
firm then chooses the production quantities (equiv-
alently, prices) to satisfy demand optimally. Price-
dependent demand for each product is represented
by the iso-elastic inverse-demand function pi4qi3�i5=

�iq
1/b
i for i = 112. Here, b ∈ 4−�1−15 is the constant

price elasticity of demand, and p and q denote price
and quantity, respectively. The parameter �i repre-
sents the idiosyncratic risk component. We make spe-
cific assumptions about the distribution of 4�11 �25
whenever necessary. In particular, we assume that
Î′ = 4�11 �25 has a symmetric bivariate normal distri-
bution (with �̄1 = �̄2 = �̄ and covariance matrix è,
where èii = �2 and èij = ��2 for i 6= j) because this
is the natural setting to study the impact of demand
correlation �. In this case, we use the convention that
the support of the marginal distribution of �i is char-
acterized by 6�l1 �u7, where �l = �̄−3� and �u = �̄+3�
as almost all of the probability mass is located in this
range. We assume that the marginal production costs
of each product are zero. This is an assumption that is
widely used in the literature for tractability (see Goyal
and Netessine 2007 and references therein).

After operating profits are realized, the firm sal-
vages its capacity investment. If the firm is able to
repay its debt from its final cash position (that con-
sists of operating revenues and the salvage value of
capacity), it does so and, because the firm lives for
a single period, terminates by liquidating its physical
assets. Otherwise, default occurs. The cash on hand

and the ownership of the collateralized physical assets
(if any) are transferred to the creditor. The creditor
may or may not be able to retrieve the face value of
the loan from the seized assets of the firm depending
on whether the firm is solvent or not when the mag-
nitude of P is taken into account. In the former case,
the firm collects the remaining cash.

We use the following mathematical representation
throughout the text: A realization of the random
variable � is denoted by �̃ and its expectation
is denoted by �̄; boldface letters represent vectors
of the required size; vectors are column vectors,
and ′ denotes the transpose operator; xa denotes the
componentwise exponent a of the vector x; xy denotes
the componentwise product of vectors x and y
with identical dimensions; Pr denotes probability;
Ɛ denotes the expectation operator; Ac denotes the
complement of set A; and 4x5+

0
= max4x105. Mono-

tonic relations (increasing, decreasing) are used in the
weak sense unless otherwise stated.

3. The Equilibrium Strategy
3.1. Dedicated Technology
In this section, we characterize the equilibrium deci-
sions of the firm and the creditor when the firm
uses the dedicated technology. All the proofs are
relegated to the online technical appendix (avail-
able at http://ink.library.smu.edu.sg/lkcsb_research/
3052). The supporting technical statements, denoted
by A.x, are also provided in the online technical
appendix. Because we assume a symmetric distri-
bution for Î, the firm optimally invests in identi-
cal capacity levels for both resources. Therefore, we
can use a single resource level KD to characterize the
firm’s optimal capacity investment portfolio.

3.1.1. Analysis of the Firm’s Problem for a Given
Financing Cost. In this section, we describe the
optimal solution for the firm’s capacity investment,
external borrowing, and production decisions using
backward induction starting from Stage 2.

Stage 2: Production Decision. In Stage 1, the firm
with budget B borrowed eD, invested in capacity
level KD for each resource and placed B + eD −

2cDKD into the cash account (at the risk-free rate). In
this stage, the firm observes the demand realizations
Î̃′ = 4�̃11 �̃25 and determines the production quantities
q′ = 4q11 q25 within the existing capacity limit KD for
each product to maximize the Stage 2 equity value
çD4q3KD1 eD1B1 Î̃5. To derive çD, note that two out-
comes are possible: If the firm’s final cash position
(consisting of Stage 2 operating profits, cash account
holdings, and the salvage value of capacity) is suf-
ficient to cover the face value of the loan, i.e., if
q′p4q3 Î̃5 + 4B + eD − 2cDKD5 + 2�DcDKD ≥ eD41 + aD5,
then the firm does not default. Otherwise, it defaults
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and its assets (including the ownership of physical
assets P ) are transferred to the creditor. The dead-
weight cost of financing S is borne by the creditor as
an out-of-pocket expenditure. The firm receives the
remaining cash (if any) after the face value of the loan
is deducted from its seized assets. With the limited
liability assumption, we can therefore write

çD4q3KD1eD1B1Î̃5 =
[

q′p4q3Î̃5+4B+eD−2cDKD5

+2�DcDKD−eD41+aD5
]+
0 (1)

Maximizing the Stage 2 equity value is equivalent to
maximizing the operating profit. We find q∗

1 = q∗
2 =KD,

in other words, the firm optimally utilizes all of
its available capacity for each product. Then the
optimal equity value is given by ç∗

D4KD1 eD1B1 Î̃5 =

64�̃1 + �̃25K
41+1/b5
D + 4B + eD − 2cDKD5 + 2�DcDKD + P −

eD41 + aD57
+.

Stage 1: Capacity Choice and External Financing.
In this stage, the firm has an internal budget B ≥ 0
and determines the optimal capacity investment level
K∗

D for each resource and the optimal external bor-
rowing level e∗

D so as to maximize its expected equity
value, �D4KD1 eD3B5= Ɛ6ç∗

D4KD1 eD1B1 Î̃57. It is easy to
show that at optimality, eD = 42cDKD − B5+ is satis-
fied, that is, the firm borrows exactly what it needs
to cover its capacity investment. Thus, the optimal
expected equity value of the firm, �∗

D4B5, can be found
as follows:

max
KD≥0

Ɛ
[

4�̃1 + �̃25K
41+1/b5
D + 4B− 2cDKD5

+
+ 2�DcDKD

+P − 42cDKD −B5+41 + aD5
]+
0 (2)

For a given capacity investment level KD, if the firm
has borrowed, it does not default when demand is
such that �̃1 + �̃2 ≥ dD4KD5

0
= 41 + aD − �D52cDK

−1/b
D −

B41 + aD5K
−41+1/b5
D , while it defaults, but is able to pay

back the loan after its collateralized assets are liqui-
dated when dD4KD5 > �̃1 + �̃2 ≥ lD4KD5

0
= dD4KD5− P ×

K
−41+1/b5
D . We call dD4KD5 and lD4KD5 the default thresh-

old and the limited liability threshold, respectively, for
investment level KD with the dedicated technology.
If the firm does not have any physical assets to collat-
eralize 4P = 05, then the default threshold equals the
limited liability threshold.

It is easy to establish that lD4KD5 is strictly increas-
ing in KD. We define K l

D as the (unique) solution to
lD4K

l
D5= 2�l, where �l is the lower bound on demand

for each product. For KD ≤ K l
D, the bracketed expres-

sion in (2) is nonnegative for any demand realiza-
tion Î̃, i.e., the loan is secured. For KD >K l

D, for some
Î̃, the bracketed expression is negative, i.e., the loan is
unsecured. The objective function in (2) is strictly con-
cave for KD ∈ 601K l

D7, but is not necessarily globally
concave in KD. Note that as the bracketed expression

in (2) becomes more negative, not being liable for neg-
ative cash flows becomes more valuable. In this case,
we say that the value of the limited liability option of
the firm increases.

Proposition 1. For the firm with an internal budget

B ≥ Bh
D

0
= 2cDK̂D

[

1 −
�l

�u41 + 1/b5

][

1 −
�D

1 + aD

]

−
P

1 + aD
1

where K̂D

0
=

(

�u41 + 1/b5
41 + aD −�D5cD

)−b

1

the unique K∗
D and the expected equity value �∗

D are
given by

K∗

D =















































K0
D

0
=

(

�̄41 + 1/b5
41 −�D5cD

)−b

if B ≥ 2cDK
0
D1

B

2cD
if 2cDK

1
D

≤ B < 2cDK0
D1

K1
D

0
=

(

�̄41 + 1/b5
41 + aD −�D5cD

)−b

if B < 2cDK
1
D3

�∗

D =



















































2cDK0
D41 −�D5

−4b+ 15
+B+ P if B ≥ 2cDK

0
D1

2�̄
B

2cD
+�DB+ P if 2cDK

1
D ≤ B < 2cDK

0
D1

2cDK1
D41 + aD −�D5

−4b+ 15
+B41 + aD5+ P

if B < 2cDK1
D0

The condition B ≥ Bh
D ensures that the objective

function is globally concave and the optimal invest-
ment level can be found in closed form.2 Here, K0

D

is the budget-unconstrained capacity level and K1
D is

the capacity investment level with borrowing if the
loan needed to make this investment is secured. If the
budget realization is high enough to cover the corre-
sponding cost 2cDK0

D, then K∗
D = K0

D with no borrow-
ing. For 2cDK1

D ≤ B < 2cDK0
D, the budget is insufficient

to cover 2cDK0
D, and the marginal revenue of capac-

ity is lower than its marginal cost with borrowing.
Therefore, the firm invests in the capacity level B/2cD
that fully utilizes its internal budget. For B < 2cDK1

D,
the firm borrows to invest in capacity. In this case,
because the internal budget level is sufficiently high
4B ≥ Bh

D5, the loan is secured.

2 For

P ≥ P̄D

0
= 2cb+1

D

(

�u

(

1 +
1
b

))−b(

1 −
�l

�u41 + 1/b5

)

41 −�D5
b+11

we have Bh
D < 0 for any aD ≥ 0. In other words, Proposition 1 char-

acterizes the optimal solution for any B ≥ 0 and aD ≥ 0 if P is large
enough.
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Proposition 2. For the firm with

B < Bl
D

0
= 2cDK

1
D

[

1−
�l

�̄41 + 1/b5

][

1−
�D

1 + aD

]

−
P

1 + aD
1

K∗
D ∈ 4K1

D1 K̂D5 is a solution to MPD4K
∗
D5= 0, where

MPD4KD5 =

∫∫

éD4Î3KD5

[(

1+
1
b

)

4�1 +�25K
41/b5
D

−241+aD−�D5cD

]

f 4�11�25d�1d�21

with éD4Î3 KD5
0
= 8Î2 �1 + �2 ≥ lD4KD59 and f 4�11 �25 is

the joint probability density function (pdf ) of Î. The opti-
mal expected equity value is given by

�∗

D =

∫∫

éD4Î3K
∗
D5

[

4�̃1 + �̃25K
∗

D
41+1/b5

− 2cDK
∗

D41 + aD −�D5

+B41 + aD5+ P
]

f 4�11 �25 d�1 d�20

Because the internal budget level is low 4B < Bl
D5,

the firm borrows and uses an unsecured loan. The
optimal solution is not necessarily unique, as neither
global concavity nor unimodality can be guaranteed.
It can be shown that in this budget range the firm
would use an unsecured loan to invest in K1

D. There-
fore, the firm optimally takes more investment risk
with borrowing, and increases K∗

D beyond K1
D.

For the firm with B ∈ 6Bl
D1B

h
D5, we cannot explicitly

characterize the optimal capacity investment level for
a general distribution of Î. However, we prove that if
b ≥ −2 and Î follows a bivariate normal distribution,
then �D is unimodal.

Proposition 3. If �D is unimodal in KD, then the
unique K∗

D is given by

K∗

D =



















































































K0
D if B≥2cDK0

D1

B

2cD
if 2cDK1

D ≤B<2cDK0
D1

K1
D if 2cDK1

D

[

1−
�l

�̄41+1/b5

][

1−
�D

1+aD

]

−
P

1+aD
≤B<2cDK

1
D1

K̄D if 0≤B<2cDK1
D

·

[

1−
�l

�̄41+1/b5

][

1−
�D

1+aD

]

−
P

1+aD
1

(3)

where K̄D ∈ 4K1
D1 K̂D5 is the unique solution to MPD4K̄D5

= 0. The optimal expected equity value �∗
D decreases in aD.

The intuition of the first two cases in (3) is similar
to Proposition 1. If the budget is large enough such
that the firm can invest in K1

D using a secured loan
(the third row), then the optimal capacity level with

borrowing is K1
D. If the budget is sufficiently low such

that the firm would use an unsecured loan to invest
in K1

D, then the firm optimally takes more investment
risk and the optimal capacity investment level with
borrowing is K̄D > K1

D. With the bivarite normal dis-
tribution assumption, MPD4KD5 is characterized by
[

1 −ê

(

lD4KD5− �̄

�̄

)][(

1 +
1
b

)

�̄K1/b
D

−241+aD−�D5cD

]

+

(

1+
1
b

)

�̄K1/b
D �

(

lD4KD5−�̄

�̄

)

1

where �̄= 2�̄, �̄ = �
√

241 +�5, and ê4 · 5 and �4 · 5 are
the cumulative distribution function (cdf) and pdf of
the standard normal random variable, respectively.

The optimal expected equity value of the firm, �∗
D,

is as given in Proposition 1 when the firm does not
borrow or it uses a secured loan. If the firm uses an
unsecured loan, the optimal expected equity value of
the firm (as adapted from Proposition 2 to the bivari-
ate normal distribution) can be written as

�̄K̄
41+1/b5
D �

(

lD4K̄D5− �̄

�̄

)

+

[

1 −ê

(

lD4K̄D5− �̄

�̄

)]

· 6�̄K
41+1/b5
D − 2cD41 + aD −�D5K̄D +B41 + aD5+ P70

Because �∗
D decreases in aD, the firm benefits from a

lower financing cost. Throughout the remaining ded-
icated technology analysis, we assume that �D is uni-
modal in KD and use the characterization given in
Proposition 3.

3.1.2. Characterization of the Creditor’s Expected
Return. Let åD4aD5 denote the creditor’s expected
return for a given unit financing cost aD with the ded-
icated technology. When the firm borrows for a given
aD ≥ 0, åD4aD5 is given by

åD4aD5 = 42cDK
∗

D4aD5−B5aD − S × FD4dD4K
∗

D4a555

−LD4K
∗

D4aD551 (4)

where K∗
D4aD5 denotes the optimal capacity level of

the firm for a given aD, FD4x5
0
= Pr4�1 + �2 ≤ x5 and

LD4K
∗
D4aD55 is given as

∫∫

é c
D4Î3K

∗
D4aD55

[

42cDK
∗

D4aD5−B541+aD5−4�̃1 + �̃25K
∗

D4aD5
41+1/b5

− 2�DcDK
∗

D4aD5− P
]

f 4�11 �25 d�1 d�20

In (4), the first term is the creditor’s net gain from
lending if the loan is secured by the collateralized
assets of the firm, the second term denotes the
expected deadweight cost of financing (payable when
the firm defaults), and the third term is the expected
loss due to the unsecured part of the loan.
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Proposition 4. If the firm’s problem is unimodal, then
the creditor’s expected return åD4aD5 is characterized by

4i5 = 42cDK
1
D −B5aD for 0 ≤ aD < amax

D

if 2cDK
0
D41 −�D5

�̄41 + 1/b5− �l

�̄41 + 1/b5
≤ B < 2cDK

0
D3

4ii5 =



















































42cDK1
D −B5aD − FD4dD4K

1
D55S for 0 ≤ aD < adD

42cDK
1
D−B5aD for adD ≤aD<amax

D

if 2cDK0
D41 −�D5

�̄41 + 1/b5− �l

�̄41 + 1/b5

− P ≤ B < 2cDK0
D41 −�D5

�̄41 + 1/b5− �l

�̄41 + 1/b5
3

4iii5 =































































42cDK̄D −B5aD − FD4dD4K̄D55S −LD4K̄D5

for 0 ≤ aD < alD

42cDK1
D −B5aD − FD4dD4K

1
D55S

for alD ≤ aD < adD

42cDK1
D −B5aD for adD ≤ aD < amax

D

if B < 2cDK0
D41 −�D5

�̄41 + 1/b5− �l

�̄41 + 1/b5
− P1

where

amax
D

0
=

[(

2cDK0
D

B

)−1/b

− 1
]

41 −�D51

alD, the unsecured loan threshold, is the unique solution to

B = 2cDK
0
D41 −�D5

−b �̄41 + 1/b5− �l

�̄41 + 1/b5

·
41 + alD −�D5

4b+15

1 + alD
−

P

1 + alD
1

and adD, the secured loan with default possibility threshold,
is the unique solution to

B = 2cDK
0
D41 −�D5

−b �̄41 + 1/b5− �l

�̄41 + 1/b5

41 + adD −�D5
b+1

1 + adD
0

If B ≥ 2cDK0
D, the firm does not borrow for any aD ≥ 0,

and the creditor does not have any returns (this is
omitted from the statement of the proposition). Oth-
erwise, the firm borrows if the financing cost is not
very high, i.e., for aD ∈ 601 amax

D 5.3 If the internal bud-
get level is sufficiently high (case (i)), the firm bor-
rows to invest in K1

D4aD5 but never defaults for any
aD ∈ 601 amax

D 5. This case can only occur if there is a

3 We note that aD < amax
D is equivalent to B < 2cDK1

D in Proposition 3.

positive lower bound on demand or a positive sal-
vage value of capacity. If the internal budget level is
moderate (case (ii)), for a small aD, the firm borrows
to invest in K1

D4aD5 and may default on the loan, but
the creditor can always retrieve the face value of the
loan through the collateralized assets. For large aD,
the firm borrows less to invest in K1

D4aD5 and does
not default. In summary, in case (ii), the firm may
default but the borrowing is always secured. If the
internal budget level is sufficiently low (case (iii)), the
firm uses an unsecured loan to invest in K̄D4aD5 for
small aD. For moderate aD, the firm borrows less to
invest in K1

D4aD5, and may default, but the loan is
secured. For large aD, the firm borrows even less and
does not default.

If b ≥ −2 and Î follows a bivarite normal distri-
bution, as discussed in §3.1.1, the firm’s problem is
unimodal and the characterization in Proposition 4
holds. In this case, we have FD4dD4K

∗
D4a555 =

ê44dD4K
∗
D4a55− �̄5/�̄5, where �̄ = 2�̄, �̄ = �

√

241 +�5,
and ê4 · 5 is cdf of the standard normal random vari-
able. The expected loss for a given K̄D, i.e., LD4K̄D5,
can also be characterized in closed form in a simi-
lar fashion as �∗

D4K̄D5. If P is sufficiently large, i.e.,
P ≥ P̄D, only cases (i) and (ii) of Proposition 4 are rele-
vant, and the bivariate normal distribution and b ≥ −2
assumptions are not required.

3.1.3. Equilibrium Characterization. We now
turn to the characterization of the equilibrium. We
use the ẋ notation to denote equilibrium quanti-
ties: ȧD is the equilibrium unit financing cost and
K̇D

0
= K∗

D4ȧD5, �̇D = �∗
D4ȧD5 are the equilibrium capac-

ity investment level and expected equity value of the
firm, respectively. When there are multiple aDs that
satisfy the objective of the creditor, we set ȧD to the
smallest such value. The equilibrium financing cost
ȧD is Pareto optimal for the firm because its optimal
expected equity value increases as aD decreases.

For the perfectly competitive credit market, we can
show that if the firm’s problem is unimodal, i.e., if
b ≥ −2 and Î follows a bivariate normal distribu-
tion or if P ≥ P̄D, ȧD = 0 for case (i) of Proposition 4
and ȧD ∈ 401 adD5 otherwise. In other words, if the firm
does not default for any feasible aD, then the credi-
tor’s expected return is always nonnegative. In this
case, åD4aD5= 0 is achieved at ȧD = 0. If the firm may
default for some aD, then ȧD < adD, i.e., the equilib-
rium financing cost is such that the firm has a posi-
tive default probability. In this case, either of the two
equilibria, 0 < ȧD < alD or alD ≤ ȧD < adD, may arise.

In summary, depending on the credit market, firm,
and product market characteristics, one of the follow-
ing three types of equilibria will be observed: an equi-
librium where the firm uses a secured loan without
default possibility, i.e., adD ≤ ȧD < amax

D ; an equilibrium
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where the firm uses a secured loan with default possi-
bility, i.e., alD ≤ ȧD < adD; and an equilibrium where the
firm uses an unsecured loan, i.e., ȧD < alD. When the
firm uses a secured loan, it invests in K1

D4ȧD5, whereas
when the firm uses an unsecured loan, it invests in
K̄D4ȧD5. For P ≥ P̄D, the firm always uses a secured
loan in equilibrium and only the first two equilibria
are observed.

3.2. Flexible Technology
The analysis is similar to the dedicated technology
analysis with minor modifications. For brevity, we
only provide a synopsis of the analysis. We first ana-
lyze the firm’s decision problem for a given financ-
ing cost aF . We can characterize a Bh

F such that for
B ≥ Bh

F , the optimal capacity investment level is given
by an analogue of Proposition 1 with two modifica-
tions: The optimal capacity investment level that uses
the internal budget is B/cF ; and in K0

F and K1
F , the

term �̄ is replaced by Ɛ64�−b
1 +�−b

2 5−1/b7. This new term
captures the capacity-pooling benefit of the flexible
technology. In this case, when the firm borrows, the
loan is secured and the firm invests in K1

F . We can
also characterize a Bl

F such that for B < Bl
F , the optimal

capacity investment level is given by an analogue of
Proposition 2: K̄F is a solution to MPF 4K̄F 5= 0, where

MPF 4KF 5 =

∫∫

éF 4Î3KF 5

[(

1 +
1
b

)

4�−b
1 + �−b

2 5−1/bK1/b
F

− 41 + aF −�F 5cF

]

f 4�11 �25 d�1 d�21

with éF 4Î3 KF 5
0
= 8Î2 4�−b

1 + �−b
2 5−1/b ≥ lF 4KF 59, and

lF 4KF 5
0
= K−1/b

F 41 + aF − �F 5cF − KF
−1−1/b6B41 + aF 5+ P7

is the limited liability threshold with the flexible
technology. In this case, because the firm uses an
unsecured loan, the firm optimally takes more invest-
ment risk with borrowing, and we have K̄F > K1

F .
For B ∈ 6Bl

F 1B
h
F 5, there is no analytical characterization

of K∗
F for a general Î distribution. Unlike the dedicated

technology analysis, the unimodality of the firm’s
expected equity value �F in KF cannot be proven with
the bivariate normal distribution of Î. Therefore, for
an arbitrary value of P , we cannot obtain an analogue
of Proposition 3 with the flexible technology, and we
resort to numerical experiments. In these experiments,
we observe that the firm’s equity value �F is uni-
modal in KF , and K̄F is uniquely characterized when
the firm uses an unsecured loan. For a sufficiently
large P , i.e.,

P ≥ P̄F

0
=2cb+1

F

[

�u

(

1+
1
b

)]−b[

1−
�l

�u41+1/b5

]

41−�F 5
b+11

we can show that the firm uses a secured loan with
borrowing, and the optimal capacity investment level
is as given in an analogue of Proposition 1.

For the creditor’s problem, if we assume a suffi-
ciently large P , i.e., P > P̄F , the creditor’s expected
return as a function of aF can be characterized in a
similar fashion to Proposition 4 where only cases (i)
and (ii) are relevant. For an arbitrary value of P , we
cannot guarantee the existence and uniqueness of the
aF thresholds alF and adF paralleling those in Proposi-
tion 4. Thus, the structure of the creditor’s expected
return given in case (iii) does not need to hold. In this
case, we resort to numerical experiments to character-
ize the creditor’s expected return. Because we observe
the unimodality of �F in our numerical experiments,
the characterization given in case (iii) continues to
hold numerically.

The characterization of the unique Pareto-optimal
equilibrium ȧF for flexible technology is similar to the
dedicated technology case. For P ≥ P̄F , there exists
two different equilibria: an equilibrium where the
firm uses a secured loan without default possibility
4ȧF = 05 and an equilibrium where the firm uses a
secured loan with default possibility 4ȧF ∈ 401 adF 55. For
an arbitrary value of P , we observe the three different
equilibria paralleling the dedicated technology case.

4. The Impact of Demand Uncertainty
The goal of this paper is to analyze the impact of
endogenous credit terms under capital market imper-
fections in a capacity investment setting. To this end,
we first identify the perfect capital market equilib-
rium with a given technology T ∈ 8D1 F 9.

If the capital markets are perfect, there is no dead-
weight cost of financing 4S = 05. In this case, the firm’s
capacity investment decision is independent of the
financing decision:

Remark 1. In the perfect capital market equilib-
rium, for any firm with B ≥ 0, we have K̇T =

K0
T = 6MT 41 + 1/b5/441 −�T 5cT 57

−b and the expected
equity value of the firm is given by �̇T = B +

P + �TK
0
T 41 −�T 5/4−4b+ 155, where MD = �̄, MF =

Ɛ64�−b
1 + �−b

2 5−1/b7, �D = 2cD, and �F = cF .

The equilibrium investment level with either
technology is the budget-unconstrained investment
level K0

T for the firm with any internal budget level
as in traditional stochastic capacity models: The firm
simply chooses the optimal investment level with-
out regard to the budget limit, and implements it
by borrowing if necessary. This replicates the well-
known result about the decoupling of operational and
financial decisions in perfect markets (Modigliani and
Miller 1958); but we do it to have the benchmark
specific to our model. We now show that the impact
of the demand variability and demand correlation in
perfect capital markets is modified once capital mar-
ket imperfections and endogenous credit terms are
taken into account, and we explain why.
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Table 1 Differences on the Impact of a (Local) Increase in Demand Variability � and Demand Correlation � Between Perfect and Imperfect Markets
with Bivariate Normal Demand Uncertainty for a Perfectly Competitive Credit Market

Perfect market Perfectly competitive credit market

Dedicated technology Flexible technology

Form of K̇T Effect Form of K̇T Effect Form of K̇T Effect

� K 0
D K̇D−, �̇D− K 1

D 4ȧD5 secured without
default possibility

K̇D−1 �̇D−1 ȧD− K 1
F 4ȧF 5 secured without
default possibility

K̇F ↓1 �̇F ↓1 ȧF −

K 0
F K̇F ↓, �̇F ↓ K 1

D 4ȧD5 secured with
default possibility

K̇D ↓1 �̇D ↓1 ȧD ↑ K 1
F 4ȧF 5 secured with
default possibility

K̇F ↑↓1 �̇F ↑↓1 ȧF ↑

K̄D4ȧD5 unsecured K̇D ↑↓1 �̇D ↓1 ȧD ↑ K̄F 4ȧF 5 unsecured K̇F ↑↓1 �̇F ↑↓1 ȧF ↑

� K 0
D K̇D−, �̇D− K 1

D 4ȧD5 secured without
default possibility

K̇D−1 �̇D−1 ȧD− K 1
F 4ȧF 5 secured without
default possibility

K̇F ↓1 �̇F ↓1 ȧF −

K 0
F K̇F ↑, �̇F ↑ K 1

D 4ȧD5 secured with
default possibility

K̇D ↓1 �̇D ↓1 ȧD ↑ K 1
F 4ȧF 5 secured with
default possibility

K̇F ↓1 �̇F ↓1 ȧF ↑

K̄D4ȧD5 unsecured K̇D ↑↓1 �̇D ↓1 ȧD ↑ K̄F 4ȧF 5 unsecured K̇F ↓1 �̇F ↓1 ȧF ↑

Note. The boxed results are proven analytically; − denotes no change, ↑ denotes an increase, and ↓ denotes a decrease.

The numerical experiments used in this section
use the following data set: b = −2; cT ∈ 83130251
30513075149; �̄ ∈ 81011205115117051209; P ∈ 8011251
2509; S ∈ 85125150175115012009; and B ∈ 800512051
517051109. For brevity, we also normalize the salvage
rate with each technology 4�T 5 to zero. We assume
that Î follows a bivariate normal distribution. To
analyze the impact of demand variability, we use
the mean-preserving spread of the normal distri-
bution. For a given mean �̄, a higher � leads to a
higher demand variability. We use � ∈ 614%130%7
of �̄ with 2%-unit increments.4 To analyze the
impact of demand correlation, we focus on � ∈

8−0099951−00751−0051−0025101002510051007510099959.
In summary, we investigate 2,250 numerical instances
at each of the 81 4�1�5 combinations for both of
the technologies. For convenience, we summarize
the results of this section in Table 1, where the
boxed comparative statics results are proven analyt-
ically and the rest are existence results observed in
numerical experiments.

4.1. Dedicated Technology
In perfect capital markets, as follows from Remark 1,
the firm’s equilibrium capacity level for each resource
and the expected equity value with the dedicated
technology do not depend on the demand variabil-
ity � or the demand correlation �. In imperfect cap-
ital markets, this result continues to hold at equi-
libria where the firm uses a secured loan without
default possibility (rows 1 and 4 of the “dedicated
technology” column of Table 1). In the other two
cases, K̇D and �̇D depend on � and �.

4 This set of � values implies that the coefficient of variation is
not large, hence the nonnegativity of Î embodied in our normality
assumption is unproblematic.

Proposition 5 (Rows 2 and 5 of Table 1). At equi-
libria where the firm uses a secured loan with default pos-
sibility, ȧD increases whereas �̇D and K̇D decrease in � or
� (locally).

From the firm’s perspective, for an arbitrary aD, the
demand variability or the demand correlation does
not alter the optimal capacity investment level or the
equity value (because the firm uses a secured loan).
Therefore, the impact of � or � is only determined by
its effect on ȧD. For a bivariate normal Î, the aggre-
gate demand �1 + �2 has a normal distribution with
mean �̄= 2�̄ and standard deviation �̄ = �

√

241 +�5.
Therefore, an increase in � or � increases the aggre-
gate demand variability �̄ , thus, increases the down-
side risk, and in turn, the default risk of the firm.
This increases the expected deadweight cost of financ-
ing and decreases the expected return of the creditor
for an arbitrary aD. Therefore, the rate ȧD increases.
Because ȧD increases, K̇D and �̇D decrease.

At equilibria where the firm uses an unsecured loan
(rows 3 and 6 of Table 1), the impact of demand
variability and demand correlation are determined
through the interplay between two effects: (i) the value
of the limited liability option of the firm, and (ii) the
equilibrium financing cost. For a given aD, an increase
in � or � increases the aggregate demand variability �̄ ,
and in turn, K∗

D4a5= K̄D4aD5 and �∗
D4aD5 (Lemma A.3 of

the online technical appendix). This is because as the
likelihood of low demand states increases, the value
of the limited liability option of the firm increases.
For a given �̄ , a lower unit financing cost increases
K̄D4aD5 (Lemma A.3 of the online technical appendix)
and �∗

D4aD5 (as follows from Proposition 3). Therefore,
if an increase in � or � decreases ȧD, then we conclude
that K̇D and �̇D increase because both effects work in
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the same direction; otherwise, the result depends on
which effect dominates. We now analyze the impact of
� and � on ȧD.

In a perfectly competitive credit market, from the
creditor’s perspective, increasing � or �, thus increas-
ing aggregate demand variability �̄ , has three dis-
tinct effects corresponding to the three components of
åD4aD5. As we show in Lemma A.4 of the online tech-
nical appendix, the default risk5 and the expected loss
due to the unsecured part of the loan increase (as for
a fixed K̄D, the downside risk of the firm’s operat-
ing cash flows increases, and the firm borrows more
as K̄D increases) and the creditor’s net gain increases
(the firm borrows more as K̄D decreases). The first two
effects work to increase ȧD, whereas the third effect
works to decrease it. In all of our numerical experi-
ments, we observe that the first two effects dominate
and ȧD increases with an increase in � or �. To deter-
mine whether the increase in ȧD or the increase in
the value of limited liability option of the firm domi-
nates, we resort to numerical experiments. For �̇D, we
observe that the former dominates and �̇D decreases
with an increase in � or �. For K̇D, we observe that the
former effect dominates in the majority of the numeri-
cal instances and K̇D decreases with an increase in � or
�. For some instances, which correspond to moderate
aggregate demand variability �̄ levels, the latter effect
dominates and K̇D increases.

The above discussion applies for local sensitivity
analysis. With a sufficiently large increase in � or �,
the unique equilibrium may switch from a secured
loan without default possibility to a secured loan
with default possibility and then to an unsecured loan
(if any). In the first transition, ȧD becomes strictly pos-
itive, thus K̇D and �̇D decrease with an increase in
� or �. In the second transition, we observe in our
numerical experiments that K̇D and �̇D decrease.

In summary, the impact of �̄ is determined through
the interplay between the value of the limited lia-
bility option of the firm (only with an unsecured
loan) and the equilibrium financing cost. We find the
following:

(1) The value of the limited liability option of the
firm increases with an increase in �̄ .

(2) The impact of �̄ on ȧD is through its impact
on the default risk with a secured loan. This impact
is multidimensional with an unsecured loan, as the
capacity investment level is affected by the aggregate
demand variability because of limited liability.

(3) An increase in �̄ increases ȧD. Therefore, the
impact of an increase in �̄ is determined by the trade-
off between increasing ȧD and increasing the value of
the limited liability option (if any):

5 LemmaA.4of theonline technicalappendixproves thiswithanaddi-
tional condition which is satisfied in our numerical experiments.

(a) For �̇D, the equilibrium financing cost is the
main determinant, and an increase in �̄ decreases �̇D.

(b) For K̇D, the equilibrium financing cost is
the main determinant with a secured loan or with
an unsecured loan when �̄ is sufficiently high: an
increase in �̄ decreases K̇D. The value of the limited
liability option of the firm is the main determinant
when �̄ is moderate: an increase in �̄ increases K̇D.
This is because ȧD is not very sensitive to changes in �̄
in this range. At lower �̄ values, there is no default
possibility and K̇D does not change in �̄ .

In turn, the aggregate demand variability �̄
depends directly on � and �. A higher demand vari-
ability � increases the aggregate demand variability.
The impact of demand correlation � follows from a
financial-pooling argument: Operating in two markets
creates a diversification benefit for the firm, i.e., the
variability of aggregate demand, �̄2, is lower than the
sum of the variability of the individual demands, 2�2.
As � increases, the financial-pooling benefit decreases
as the firm generates similar revenues from both
markets.

We conclude this section by discussing an inter-
esting interaction between the demand correlation
and the demand variability that we observe in our
numerical experiments: At low � levels, the firm uses
a secured loan without default possibility and the
impact of � or � on K̇D and �̇D is zero; and this is
observed at all � levels. The interaction between �
and � is more subtle at higher � levels. For a given �,
there exists a threshold value of � , �̃D4�5, below which
ȧD ≈ 0 and is insensitive to � and � . Consequently, the
insensitivity of K̇D or �̇D to � , which is observed at
secured loan equilibria without default possibility, is
now observed at secured loan equilibria with default
possibility and even unsecured loan equilibria. This is
due to the financial-pooling phenomenon that makes
�̄ small relative to � for sufficiently low values of �
such that the default probability becomes negligible.
As � increases, the financial-pooling benefit decreases
and �̃D4�5 decreases.

4.2. Flexible Technology
In perfect capital markets, as follows from Remark 1,
the firm’s equilibrium capacity level and the expected
equity value with the flexible technology depend on
the demand variability 4�5 and the demand correla-
tion 4�5 through the term MF = E64�−b

1 +�−b
2 5−1/b7. This

term captures the capacity-pooling feature of flexible
technology. Unfortunately, it is not possible to derive
analytically the effect of � and � on MF for bivariate
normal Î. To derive the analytical results for flexible
technology in Table 1, we assume that MF is decreas-
ing in � and increasing in � . This assumption is in line
with the traditional argument on flexible technology
investment: Its value increases in demand variability
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and decreases in demand correlation. In our numeri-
cal experiments, consistent with this assumption, we
observe that MF increases with a higher � or a lower
�. Therefore, K̇F and �̇F increase in perfect capital
markets as MF increases.

In imperfect capital markets, the impact of the
demand variability 4�5 and the demand correlation
4�5 with the flexible technology is determined through
the interplay among the value of capacity pooling,
the value of the limited liability option of the firm
(only with an unsecured loan) and the equilibrium
financing cost. An increase in � or a decrease in �
decreases the value of capacity pooling for a given aF .
An increase in � or � increases the value of the lim-
ited liability option of the firm for a given aF as the
likelihood of low demand states increases.

For the impact of � and � on ȧF , � and � directly
affect the default risk and the expected loss due to
the unsecured part of the loan, and indirectly affect
the net gain from secured lending, the default risk
and the expected loss due to the unsecured part of
the loan by changing the capacity investment level. In
our numerical experiments, we observe that the net
effect is such that ȧF increases with an increase in �
or �. This is illustrated in panel (a) of Figure 2 for the
secured loan case.

For the impact of � on K̇F and �̇F , the value of
capacity pooling is the main determinant (both with
a secured and an unsecured loan): an increase in �

Figure 2 Effect of Demand Variability � and Demand Correlation � on Flexible Technology with S = 25, B = 5, cF = 3, �̄= 20, and P = 250

0.14 0.18 0.22 0.26 0.30
0

0.005
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0.015

Demand variability �

(a) Equilibrium financing cost

0.14 0.18 0.22 0.26 0.30
21.5

22.0

22.5

23.0

23.5

24.0

24.5

Demand variability �

(b) Equilibrium capacity level
in imperfect capital markets

0.14 0.18 0.22 0.26 0.30
320

321

322

323

324

325

326

327

328

Demand variability �

(c) Equilibrium equity value
in imperfect capital markets

�

� �

Notes. In a perfectly competitive credit market, a higher � or a higher � increases ȧF (panel (a)). With an increase in �, K̇F (panel (b)) and �̇F (panel (c))
decrease. A higher � increases (decreases) K̇F (panel (b)) and �̇F (panel (c)) at low (high) � levels.

decreases K̇F and �̇F . This can be observed from pan-
els (b) and (c) of Figure 2, respectively.

For the impact of � on the same, we observe that
for a given �, there exists a threshold value of � ,
�̃F 4�5, below which ȧF ≈ 0 and is insensitive to � .
This is due to the financial-pooling and the capacity-
pooling benefits that make the default probability
negligible. As � increases, these benefits decrease and
�̃F 4�5 decreases. This can be observed from panel (a)
of Figure 2. When 4�1�5 are such that � ≤ �̃F 4�5, the
sole determinant is capacity pooling such that K̇F and
�̇F increase with an increase in � . When � > �̃F 4�5,
we have ȧF > 0, and the impact of � on K̇F and �̇F is
more subtle and depends on �. If � is not high, the
value of capacity pooling and the value of the limited
liability option (only with an unsecured loan) are the
main determinants such that K̇F and �̇F increase in � .
This is because ȧF is not sensitive to � because of the
financial- and the capacity-pooling benefits. At high
� levels, the equilibrium financing cost starts dom-
inating such that K̇F and �̇F decrease in � . This is
because ȧF is very sensitive to � as the financial- and
capacity-pooling benefits are low, and the increase in
ȧF outweighs the increase in the already low values of
capacity pooling and the value of the limited liability
option of the firm. These effects are depicted in pan-
els (b) and (c) of Figure 2 for the secured loan case.

In summary, the differences between the flexible
and the dedicated technologies in Table 1 are due to
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the capacity-pooling feature of the flexible technol-
ogy. Besides its value for a given financing cost aF ,
which is similar to the perfect capital market bench-
mark case, capacity pooling has a strategic value in
imperfect capital markets as it is one of the main
determinants of ȧF . This strategic value has interesting
implications for the equilibrium technology choice in
imperfect capital markets as we illustrate in the next
section.

5. Technology Choice
In §4, we investigated the impact of demand uncer-
tainty (� and �) for a given technology. In this section,
we investigate the equilibrium technology choice in
imperfect markets and how this choice is affected by
� or � compared to the technology choice in perfect
capital markets. Because the firm always invests in a
positive level of capacity with each technology, invest-
ing in either technology dominates not making any
technology investment. We first characterize the equi-
librium technology choice in perfect capital markets.

Remark 2. If the capital markets are perfect, there
exists a unique variable cost threshold c̄PD4cF 5 such that
when cD ≤ c̄PD4cF 5, it is optimal to invest in dedicated
technology. This threshold is given by

c̄PD4cF 5
0
= cF

1 −�F

1 −�D

[

2−1/b�̄

Ɛ64�−b
1 + �−b

2 5−1/b7

]b/4b+15

≤ cF 1

where the last inequality holds at equality only if
the salvage values are symmetric 4�F = �D5 and the
demands are deterministic 4� = 05 or perfectly posi-
tively correlated 4�= 15.

The threshold c̄PD4cF 5 is a variant of the flexibil-
ity premium of Chod et al. (2009). Because flexi-
ble capacity has a higher salvage value and has a
capacity-pooling benefit, we have c̄PD4cF 5 ≤ cF . As we
discussed in §4, the term E64�−b

1 + �−b
2 5−1/b7 captures

the capacity-pooling benefit of the flexible technology.
This threshold decreases with an increase in demand
variability 4�5 and a decrease in demand correla-
tion 4�5 due to the increasing capacity-pooling benefit.

We now investigate the equilibrium technology
choice in imperfect capital markets. For the numeri-
cal experiments in this section, we use the same data
set as in §4. At each of the 81 4�1�5 combinations
that we consider, we calculate an imperfect capital
market cost threshold c̄ID4cF 5 that makes the firm indif-
ferent between the dedicated and the flexible tech-
nologies for each of the 2,250 numerical instances.6

We also numerically calculate the perfect market cost

6 We cannot prove the uniqueness of c̄ID4cF 5 because ȧD is not mono-
tone in cD , and a higher capacity investment cost cD may result in a
lower financing cost ȧD . In that case, the impact of an increase in cD
on �̇D is ambiguous. However, in all of our numerical experiments,
we observe a unique c̄ID4cF 5.

threshold c̄PD4cF 5 at these instances and analyze the
difference between c̄ID4cF 5 and c̄PD4cF 5. At any numer-
ical instance with a given cF , if c̄ID4cF 5 < 4>5c̄PD4cF 5,
then flexible (dedicated) technology is chosen for a
larger (smaller) set of cD levels in the imperfect cap-
ital market compared to the perfect market case. In
that case, we say that flexible (dedicated) technology
is “favored” in imperfect capital markets. If c̄ID4cF 5 =

c̄PD4cF 5, we say neither technology is favored.
Our main results are summarized in Table 2. At a

given 4�1�5 combination, if we do not observe any
numerical instance with a nonzero difference between
the two cost thresholds, we use “N.” Otherwise we
report two numbers: The first one is the percent-
age of numerical instances (out of the 2,250), where
we observe a nonzero difference between c̄ID4cF 5 and
c̄PD4cF 5. The second one is the percentage of numer-
ical instances out of the nonzero observations in
which flexible technology is favored. For example, at
� = 30% and � = 0075, in 99.78% of the numerical
instances, we observe a nonzero difference between
the two cost thresholds, and in 83.47% of these
nonzero instances, flexible technology is favored (and
in the remaining 16.53% of instances, dedicated tech-
nology is favored).

In Table 2, we observe three “bands,” one where
neither technology is favored, one where flexible tech-
nology is always favored, and one where either tech-
nology may be favored.7 To delineate the intuition
behind this observation, we will focus on a technol-
ogy cost pair that is insightful to discuss, 4c̄PD4cF 51 cF 5,
where the firm is indifferent between the two tech-
nologies in perfect capital markets. The equilibrium
technology choice in imperfect capital markets at this
technology cost pair tells us which technology is
favored in imperfect capital markets. We next ana-
lyze the equilibrium technology choice at this cost
pair, and the impact of the demand variability and
the demand correlation on this choice.

At low demand correlation levels or moderate demand
correlation levels accompanied with sufficiently low
demand variability levels, neither technology is favored. As
discussed in §4, for a given �, there exists a thresh-
old with each technology, �̃T 4�5, below which ȧT ≈ 0.
This is due to the financial-pooling benefit, i.e., the
aggregate demand variability �̄ is small relative to �
for sufficiently low values of �, and the default proba-
bility becomes negligible. When the financial-pooling
benefit is high enough to avoid default with both
technologies, neither technology is favored. This is
observed at low � levels 4−0099951−00755, and mod-
erate � levels accompanied with sufficiently low �

7 Our numerical data set assumes �F = �D = 0. With �F > �D , we
continue to observe three bands with the same properties as those
depicted in Table 2.
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Table 2 Summary of the Difference Between c̄ID4cF 5 and c̄PD 4cF 5 with Respect to Demand Variability 4� 5 and Demand Correlation 4�5 in a
Perfectly Competitive Credit Market

�

� (%) −0.9995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.9995

14 N N N N N N �1�87�100� �12�4�100� �28�100�

16 N N N N N �6�53�100� �26�4�100� �46�67�100� �62�53�100�

18 N N N N �7�2�100� �32�93�100� �56�93�100� �73�47�100� �84�100�

20 N N N �2�67�100� �31�2�100� �60�53�100� �78�98�100� �88�31�100� �94�27�100�
22 N N N �18�4�100� �56�67�100� �79�6�100� �89�87�100� �96�27�100� �98�13�100�

24 N N �0�67�100� �40�13�100� �76�04�100� �89�73�100� �96�53�100� �98�67�100� �99�47�100�
26 N N �10�93�100� �62�8�100� �86�67�100� �96�4�100� �99�07�100� �99�6�100� �100�100�

28 N N �28�4�100� �78�18�100� �93�96�92�05� �98�53�91�88� �99�51�92�85� �99�91�93�24� �99�82�92�97�
30 N N �48�4�100� �86�8�100� �97�24�88�44� �99�16�83�91� �99�78�83�34� �99�78�83�47� �99�69�79�98�

Notes. At each 4� 1 �5 combination, the first entry denotes the percentage of numerical instances in which this difference is nonzero; i.e., one of the
technologies is favored in imperfect capital markets compared to the perfect market benchmark. The second entry denotes the percentage of the
numerical instances out of the nonzero instances in which the difference is negative; i.e., flexible technology is favored. When the difference is zero
for all of the numerical instances, we write “N”. For each of the 4� 1 �5 combinations, we calculate c̄ID4cF 5 and c̄PD 4cF 5 for 2,250 numerical instances
with b = −2; cD ∈ 8313025130513075149; �̄ ∈ 81011205115117051209; P ∈ 80112512509; S ∈ 85125150175115012009; B ∈ 800512051517051109; and
�F = �D = 0.

levels (� ≤ 0022�̄ at � = −005, � ≤ 0018�̄ at � = −0025,
� ≤ 0016�̄ at � = 0, and � = 0014�̄, � = 0025, which
are all equivalent to �̄ ≤ 0016�̄). As demand variabil-
ity increases, the financial-pooling benefit decreases,
and the equilibrium technology choice can be differ-
ent from the perfect capital market benchmark case.
This difference depends on the demand correlation
and the type of loan the firm uses as we discuss next.

At moderate 4�1�5 combinations, if a technology is
favored, it is the flexible technology. At sufficiently high
4�1�5 combinations, dedicated technology may be favored.
In our numerical experiments, we observe that �̃F 4�5 >
�̃D4�5, i.e., the default probability remains negligi-
ble, and ȧT ≈ 0, for larger � values for a given �
with the flexible technology. This is because the flex-
ible technology enjoys both financial- and capacity-
pooling benefits, whereas the dedicated technology
only enjoys the former. At 4�1�5 combinations such
that �̃D4�5 < � ≤ �̃F 4�5, we have ȧD > ȧF = 0. There-
fore, the flexible technology is strictly preferred with
the technology cost pair 4c̄PD4cF 51 cF 5, i.e., the flexible
technology is favored in imperfect capital markets.
At 4�1�5 combinations such that � > �̃F 4�5, ȧF , and ȧD
are both positive. In this case, the equilibrium technol-
ogy choice depends on the type of loan the firm uses.

When the firm uses a secured loan, we can show
that at the technology cost pair 4c̄PD4cF 51 cF 5, flexible
(dedicated) technology is chosen if and only if ȧF < ȧD
4ȧF > ȧD5. We can also show that the ordering of ȧD
and ȧF is determined by the ordering of the default
risk with identical financing costs, which in turn is
determined by the trade-off between the capacity-
pooling benefit of the flexible technology and the
higher total capacity investment made under the ded-
icated technology. In our numerical experiments, we
observe that the former effect dominates and the flex-

ible technology is favored. We note here that ȧF ≤ ȧD
is observed in all of our numerical experiments. This
implies that with a secured loan, the (weak) domi-
nance of flexible technology in imperfect capital mar-
kets holds at all 4�1�5 combinations.

When the firm uses an unsecured loan in equi-
librium, the value of the limited liability option of
the firm with each technology matters. In this case,
the technology choice at the technology cost pair
4c̄PD4cF 51 cF 5 is not given by the ordering of ȧF and ȧD,
but is determined by the relative magnitudes of ȧF
and ȧD, the value of limited liability option of the
firm with each technology, and the capacity-pooling
benefit of the flexible technology. In our numerical
experiments, at high 4�1�5 combinations, we observe
numerical instances in which dedicated technology is
favored in imperfect capital markets. This is because
at these 4�1�5 levels, the value of the limited lia-
bility option of the firm is very high (as discussed
in §4), and this is more beneficial for the dedicated
technology (as the total capacity investment cost is
higher with the dedicated technology). The higher
value of the limited liability option may outweigh
the lower equilibrium financing cost and the capacity-
pooling benefit of the flexible technology. Indeed,
instances where the dedicated technology dominates
are observed at � ≥ 0028�̄ with �≥ 0.

In summary, the equilibrium technology choice in
imperfect capital markets, and the impact of demand
variability and demand correlation on this choice
are determined through the interplay among the
value of the limited liability option of the firm
(only with an unsecured loan), the financial-pooling
benefit that exists with both technologies, and the
capacity-pooling benefit, that only exists with flexible
technology.
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(1) At low demand correlation levels or mod-
erate demand correlation levels accompanied with
sufficiently low demand variability levels, the
financial-pooling benefit is significantly high with
both technologies and the default probability is negli-
gible in equilibrium. Therefore, the equilibrium tech-
nology choice is identical to the perfect market
benchmark case.

(2) For higher � and � levels, the equilibrium
technology choice deviates from the perfect market
benchmark:

(a) With a secured loan, this deviation is due to
the impact of capacity pooling on the equilibrium
financing cost. The capacity-pooling feature of the
flexible technology induces the firm to secure a lower
financing cost in equilibrium and flexible technology
is favored.

(b) With an unsecured loan, this deviation is
determined by the interplay between the capacity-
pooling feature of the flexible technology and the
value of the limited liability option of the firm with
both technologies. At high demand variability levels
accompanied with moderate-to-high demand corre-
lation levels, dedicated technology may be favored
because of the dominance of the limited liability
option of the firm at these levels. Otherwise, flexible
technology is favored because of its capacity-pooling
benefit.

6. Extension: Monopolistic
Credit Market

In this section, we analyze our problem in a monop-
olistic credit market, and discuss our results by mak-
ing a comparison with the perfectly competitive credit
market case. Because the firm’s problem with a given
financing cost and the characterization of the credi-
tor’s problem is not affected, we start with the equi-
librium characterization for each technology.

In the monopolistic credit market, the unit financ-
ing cost is chosen so as to maximize the expected
profit of the creditor, thus the equilibrium financing
cost is larger than the one in the perfectly competitive
credit market. This cost is characterized by equaling
the marginal expected profit ¡/¡aTå4aT 5, and not the
expected profit å4aT 5, to zero.8 Therefore, the equi-
librium financing cost is determined by the interplay
among the marginal net gain from secured lending,
the marginal default risk, and the marginal expected
loss due to the unsecured part of the loan. Similar to
the perfectly competitive credit market case, one of
the three types of equilibria is observed: an equilib-
rium where the firm uses (i) a secured loan without

8 If there are multiple global maximizers of the creditor’s problem,
then the lowest of these is chosen as the unique Pareto-optimal
equilibrium. However, we never encounter such a case in our
numerical instances.

default possibility, (ii) a secured loan with default pos-
sibility, or (iii) an unsecured loan.

With the dedicated technology, a local increase in
�̄ has the same impact on K̇D and �̇D with the per-
fectly competitive credit market case as summarized
in Table 1. However, the intuition behind these results
is different as the equilibrium financing cost is deter-
mined by the marginal expected profit of the cred-
itor. For example, at equilibria where the firm uses
a secured loan with default probability, the increase
in ȧD is due to a decrease in the marginal default risk
(and not due to an increase in the default risk). Simi-
lar to the perfectly competitive credit market case, we
observe in our numerical experiments that with a suf-
ficiently large increase in �̄ , the unique equilibrium
may switch from a secured loan without default pos-
sibility to a secured loan with default possibility, and
then to an unsecured loan (if any). Unlike the perfectly
competitive credit market case, in the second transi-
tion, ȧD may decrease and K̇D and �̇D may increase.
This happens when the creditor’s expected return is
bimodal: The increase in �̄ may induce the creditor to
switch from one local maximizer (in the secured lend-
ing region) to the other local maximizer (in the unse-
cured lending region). This leads to a discontinuous
decrease in ȧD such that K̇D and �̇D increase.

With the flexible technology, we continue to observe
ȧF increasing in � or � in the majority of our numer-
ical experiments, in which case, all the comparative
static results of Table 1 continue to hold. In some
numerical instances, however, ȧF decreases with an
increase in � or �. In this case, there is an interesting
modification to the results of Table 1: With an increase
in �, when ȧF decreases, the lowering of the financ-
ing cost may outweigh the lowering of the capacity-
pooling benefit and �̇F may increase. This is observed
at equilibria where the firm uses an unsecured loan
or a secured loan with default possibility.

For the equilibrium technology choice in a monop-
olistic credit market, Table 3, which is an analogue of
Table 2, summarizes our results.

The band of 4�1�5 levels in Table 3 where neither
technology is favored is identical to the perfectly com-
petitive credit market case. In contrast, the band of
4�1�5 levels in Table 3 where dedicated technology
may be favored is much larger than Table 2. This is
because, unlike the perfectly competitive credit mar-
ket case, the equilibrium financing cost may be lower
with the dedicated technology. We now explain the
intuition behind this result, once again focusing on
the technology cost pair 4c̄PD4cF 51 cF 5.

When the firm uses a secured loan with both tech-
nologies, as discussed in §5, at the technology cost
pair 4c̄PD4cF 51 cF 5, flexible (dedicated) technology is cho-
sen if and only if ȧF < ȧD 4ȧF > ȧD5. In a monopolis-
tic credit market, the ordering of ȧF and ȧD is deter-
mined by the ordering of the marginal default risk
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Table 3 Summary of the Difference Between c̄ID4cF 5 and c̄PD 4cF 5 with Respect to Demand Variability 4� 5 and Demand Correlation 4�5 in a
Monopolistic Credit Market

�

� (%) −0.9995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.9995

14 N N N N N N �4�13�100� �13�6�100� �24�13�100�

16 N N N N N �8�67�100� �22�27�100� �37�07�100� �50�53�100�

18 N N N N �9�56�100� �27�07�100� �44�58�100� �61�51�99�42� �73�69�90�53�

20 N N N �4�8�100� �25�69�100� �47�56�100� �66�76�96�67� �79�2�88�10� �86�76�79�76�

22 N N N �17�87�100� �43�91�100� �67�47�93�61� �81�29�85�40� �89�33�79�60� �94�09�67�50�

24 N N �3�02�100� �32�67�100� �63�07�97�82� �80�58�86�98� �89�6�79�51� �94�09�79�22� �95�56�50�51�

26 N N �11�91�100� �49�2�99�91� �76�36�90�40� �88�71�82�01� �94�18�71�35� �95�56�71�26� �95�91�42�96�
28 N N �24�04�100� �65�47�96�40� �85�64�88�22� �93�38�83�20� �94�93�77�06� �96�49�64�90� �96�31�37�01�

30 N N �37�11�99�52� �76�93�94�17� �91�11�87�32� �96�18�77�96� �96�67�68�83� �97�73�62�35� �96�04�25�50�

Note. For each of the 4� 1 �5 combinations, we calculate c̄ID4cF 5 and c̄PD 4cF 5 for the same 2,250 numerical instances that we use in Table 2 (b = −2;
cD ∈ 8313025130513075149; �̄ ∈ 81011205115117051209; P ∈ 80112512509; S ∈ 85125150175115012009; B ∈ 800512051517051109; and �F = �D = 0).

with each technology, i.e., the rate of reduction in
the default probability with an increase in aT . The
impact of the capacity-pooling benefit of the flexible
technology on the marginal default risk is indeter-
minate. In particular, the marginal default risk may
be lower, and in turn, the equilibrium financing cost
may be higher with the flexible technology. There-
fore, dedicated technology may be favored in equi-
librium. In a perfectly competitive credit market, the
impact of the capacity-pooling benefit of the flex-
ible technology on the default risk is determinate:
The default risk is lower, and in turn, the equilib-
rium financing cost is lower with the flexible technol-
ogy. Therefore, dedicated technology is never favored
with a secured loan in a perfectly competitive credit
market.

When the firm uses an unsecured loan, the value
of the limited liability option of the firm with each
technology matters for a given financing cost and also
impacts the equilibrium financing cost. In our numer-
ical experiments, we continue to observe ȧD < ȧF in
several instances. The lowering of the equilibrium
financing cost with the dedicated technology adds
to the higher value of the limited liability option of
the firm with the dedicated technology, and the dedi-
cated technology is favored at a larger set of numeri-
cal instances as compared to the perfectly competitive
credit market case.

In summary, in a monopolistic credit market, the
drivers of the equilibrium technology choice and
the impact of demand uncertainty are identical to
the perfectly competitive credit market case. For a
given financing cost, these drivers work in the same
direction, however, their impacts on the equilibrium
financing cost may be different. The most significant
consequence of this difference is that the dedicated
technology is more prevalent in the monopolistic
credit market equilibrium.

7. Conclusion
This paper contributes to the stochastic capacity
investment literature by relaxing the (often implicit)
perfect capital market assumption and analyzing the
impact of endogenous credit terms under capital mar-
ket imperfections. A joint operational and financial
perspective is adopted to develop theory and insights
into capacity management and technology choice in
imperfect capital markets. In a two-product setting,
we analyze the impact of the demand uncertainty
(variability and correlation) on the capacity invest-
ment decision and the expected equity value of the
firm in equilibrium with dedicated and flexible tech-
nology investments as well as the choice between flex-
ible and dedicated technology in equilibrium. Except
for a numerical analysis in Lederer and Singhal (1994),
there is no formal treatment of the two-product firm
in the literature, therefore, the two-product analysis is
a distinct contribution of our research.

In a perfect capital market, the dedicated tech-
nology investment level is not affected by demand
uncertainty, whereas flexible technology is affected
because of its capacity-pooling feature. In an imper-
fect capital market, we show that demand uncertainty
matters with the dedicated technology. In particu-
lar, the impact of the demand variability and cor-
relation in equilibrium is determined through the
interplay between the value of the limited liability
option of the firm (only with an unsecured loan)
and the equilibrium financing cost. With the flexi-
ble technology, there is a third facet in this interplay,
the capacity-pooling benefit. Our results are summa-
rized in Table 1 and in §6, and demonstrate that
the impact of demand uncertainty in imperfect cap-
ital markets can be different from the perfect capital
market benchmark, and that these comparative statics
results depend on the firm’s loan type in equilibrium

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

16
1.

57
.1

78
] 

on
 2

9 
Fe

br
ua

ry
 2

01
6,

 a
t 0

1:
06

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Boyabatlı and Toktay: Stochastic Capacity Investment and Flexible vs. Dedicated Technology Choice
2178 Management Science 57(12), pp. 2163–2179, © 2011 INFORMS

(unsecured versus secured, with or without default
possibility) and the different capital market conditions
studied.

In a perfect capital market, the equilibrium tech-
nology choice, as well as the impact of demand
variability and demand correlation on this choice,
are determined by the capacity-pooling feature of the
flexible technology. In imperfect capital markets, what
matters is the interplay among the value of the limited
liability option of the firm (with an unsecured loan)
and the financial-pooling benefit (the diversification
benefit from operating in two markets) that exist
with both technologies, and the capacity-pooling ben-
efit that only exists with the flexible technology. We
show that introducing capital market imperfections
(weakly) favors one of the technologies with respect
to the perfect capital market benchmark, and this
preference depends on the demand variability and
demand correlation. Our results are summarized in
Tables 2 and 3 and demonstrate that at high demand
variability and correlation levels dedicated technol-
ogy may be favored, otherwise flexible technology
is weakly favored. Although the general pattern of
the equilibrium technology choice is the same for the
capital market conditions studied, the strength of the
preference depends on these conditions.

This paper brings constructs and assumptions
motivated by the finance literature into a classical
operations management problem and develops new
insights. In turn, using a stronger formalization of
operational decisions than in the finance literature
(the sequential nature of technology choice, capacity
investment, and production decisions) and the model-
ing of demand uncertainty, we provide novel insights
on issues discussed in this literature. For exam-
ple, Melnik and Plaut (1986) derive several relations
among the parameters of loan contracts based on the
assumption that the borrowing level is independent
of the unit financing cost and that the default proba-
bility increases in the unit financing cost. Our analy-
sis demonstrates that these assumptions may not be
valid with a more formal representation of opera-
tional decisions: The firm optimally adjusts its capac-
ity investment level; thus, the borrowing level may
decrease and the default probability may increase in
the unit financing cost. As argued in MacKay (2003),
firms with higher operational flexibility are assumed
to have a lower default risk because of the option
value of operational flexibility. Our analysis shows
that this argument acquires new dimensions with a
stronger formalization of the firm’s operations: Antic-
ipating the option value of operational flexibility (the
capacity-pooling benefit of the flexible technology),
the firm optimally adjusts the other operational deci-
sions (capacity investment level), and the default risk
in equilibrium changes.

Our summaries at the end of each section suggest
some rules of thumb for the strategic management
of the capacity investment portfolio and technology
choice and provide the basis for potential empirical
research in this domain. Although a formal devel-
opment of empirical hypotheses is beyond the scope
of this paper, the following predictions of our model
would be interesting to explore empirically:

1. The higher the demand variability or demand
correlation, the lower the performance will be of firms
using dedicated technology when the credit market is
highly competitive.

2. The higher the demand variability, the lower
(higher) the capacity investment and performance
of firms using flexible technology will be when the
demand correlation is high (low) when the credit mar-
ket is highly competitive.

3. The higher the demand correlation, the lower the
capacity investment and performance of firms using
flexible technology will be when the credit market is
highly competitive.

4. The prevalence of flexible technology choice is
higher for firms using a secured loan than for firms
using an unsecured loan regardless of the competi-
tiveness of the credit market.

5. The higher the demand variability, the higher
the prevalence of firms using dedicated technol-
ogy regardless of the competitiveness of the credit
market.

There are a number of limitations to the present
study that lead to open research questions. First, we
focus on a particular type of financing contract and
two types of capital market imperfections. The firm
can also issue equity or raise external capital by other
forms of loan contracts, or may be exposed to other
capital market imperfections such as taxes, agency
costs, etc. As the different capital market imperfec-
tions examined here show, the operational implica-
tions are expected to be model specific.

Among these other market imperfections, agency
costs arising from asymmetric information between
the creditor and the firm are worth discussing. In our
model, we assume that the creditor has perfect infor-
mation about the firm. In reality, the creditor may
not have perfect information about the risk profile
of the operational investments, nor be able to mon-
itor the firm after the loan is taken, nor have the
same valuation of the collateralized assets as the firm.
Each of these would create agency costs and impose
additional financing frictions. Our analysis provides
partial answers for this case. For example, if there
is asymmetric information, and if there is no sig-
nalling by the firm or screening by the creditor, the
creditor would offer identical financing costs for each
technology with a secured loan. In this case, as we
discussed in §5, the technology choice in imperfect
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capital markets is identical to the technology choice
in perfect capital markets. With a proper modeling
of the interaction between the creditor and the firm
under asymmetric information, new trade-offs and
new implications will arise as discussed in, for exam-
ple, Brunet and Babich (2009).

Relaxing the assumptions we made on the produc-
tion environment gives rise to a number of interesting
possibilities, both in the theory of capacity manage-
ment and integrated risk management. For example,
we assume that second-stage production is costless.
With a positive production cost, the optimal produc-
tion decision is limited by the cash availability of the
firm (financial capacity constraint) in addition to the
physical capacity constraint. This brings an additional
facet to the problem that hampers tractability: the
allocation of the financial capacity between the two
stages, and between the products in the second stage
in a two-product setting. We also assume that the
internal budget of the firm is deterministic. This bud-
get may depend on some economic factors and can be
random. Moreover, if the internal budget depends on
a tradable asset, then the firm can engage in financial
risk management to engineer the budget as discussed
in Froot et al. (1993). The optimal technology choice
(flexible versus dedicated) together with the decision
of engaging in financial risk management form the
optimal integrated risk management portfolio of the
firm. Boyabatlı et al. (2011) analyze the effect of bud-
get variability and financial risk management on the
stochastic capacity investment problem with a more
detailed model of the firm’s production environment
(that includes positive production cost and engag-
ing in financial risk management) with hard financial
constraints (no borrowing). It would be interesting to
analyze the impact of endogenous credit terms on the
integrated risk management portfolio of the firm (that
consists of financial risk management and flexible ver-
sus dedicated technology choice).
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