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A Multiechelon Inventory Problem with
Secondary Market Sales

Alexandar Angelus
Singapore Management University, Singapore 178899, Singapore, angelus@smu.edu.sg

We consider a finite-horizon, multiechelon inventory system in which the surplus of stock can be sold (i.e.,
disposed) in the secondary markets at each stage in the system. What are called nested echelon order-up-to

policies are shown to be optimal for jointly managing inventory replenishments and secondary market sales.
Under a general restriction on model parameters, we establish that it is optimal not to both sell off excess stock
and replenish inventory. Secondary market sales complicate the structure of the system, so that the classical
Clark and Scarf echelon reformulation no longer allows for the decomposition of the objective function under
the optimal policy. We introduce a novel class of policies, referred to as the disposal saturation policies, and show
that there exists a disposal saturation policy, determined recursively by a single base-stock level at each echelon,
that achieves the decomposition of this problem. The resulting optimal replenishment policy is shown to be the
echelon base-stock policy. We demonstrate the heuristic performance of this disposal saturation policy through
a series of numerical studies: except at extreme ranges of model parameters, the policy provides a very good
approximation to the optimal policy while avoiding the curse of dimensionality. We also conduct numerical
studies to determine the value of the secondary markets for multistage supply chains and assess its sensitivity
to model parameters. The results provide potentially useful insights for companies seeking to enter or develop
secondary markets for supply chains.

Key words : inventory theory; multiechelon; stock disposals; secondary markets; dynamic programming;
optimal policy; heuristics; echelon base-stock policy

History : Received July 9, 2009; accepted May 30, 2011, by Martin Lariviere, operations management. Published
online in Articles in Advance October 14, 2011.

1. Introduction
One of the recent developments of significance for
supply chain management has been the emergence of
secondary markets. Secondary markets have not only
become available to supply chains in various indus-
tries (Petruzzi and Monahan 2003), but they have also
been growing rapidly in size. The secondary markets
for electronics components, for example, were esti-
mated at $15 B in 2008 (Judge 2009), whereas those for
pharmaceutical supply chains were worth about $20 B
in 2007, or 6% of the total market for pharmaceuticals
products that year (Leininger 2007). In some indus-
tries there exist online exchanges to facilitate sec-
ondary market transactions (e.g., Converge.com and
Virtual Chip Exchange for electronics components),
whereas in others specialized firms act as interme-
diaries for companies to dispose of excess inven-
tory in the supply chain (e.g., QK Healthcare for
pharmaceuticals).

Secondary markets have increasingly come to rep-
resent the means of dealing with the surplus of stock,
which can accumulate in the supply chain for a vari-
ety of reasons, including volatility and random shifts
in demand, the bullwhip effect, and inadequate infor-
mation and forecasting systems. An option to dispose

of excess inventory in the supply chain by selling it
in the secondary market can increase a company’s
profits, reduce its financial risks, and improve the
mismatch between supply and demand. As Lee and
Whang (2001, p. 12) point out, “0 0 0 secondary markets
can thus benefit, in most cases, every member of the
supply chain.”

At the same time, “ 0 0 0 there are no real guidelines
for the disposal of excess inventory” (Rosenfield 1989,
p. 404), so inventory managers at companies have
no conceptual models to guide their thinking when
it comes to dealing with excess inventory. Further,
although secondary markets have been growing in
size, little is known about what exactly has driven
that growth or what market conditions contribute to
the value of those markets.

In this paper, we address secondary markets for
supply chains by considering a centralized, finite-
horizon, multiechelon system in which excess inven-
tory can be sold off at each stage in the system. Our
contribution is to (i) formulate a multiechelon inven-
tory model with secondary market sales, (ii) establish
the structure of the optimal policy, (iii) introduce a
class of disposal policies that significantly simplifies
the problem while retaining the features of inventory
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disposals observed in practice, (iv) numerically eval-
uate the performance of those policies, and (vi) assess
the value of secondary markets and the factors that
drive it.

The study of multiechelon inventory systems under
stochastic demand, launched by the landmark Clark
and Scarf (1960) paper, has focused, almost without
exception, on settings where companies do not volun-
tarily remove stock from the supply chain. Although
those models allow for the replenishment of stock at
each stage, the only option they traditionally provide
for dealing with excess inventory is to hold it in the
supply chain (despite potentially significant physical
and financial holding costs). Consequently, secondary
markets in general have remained largely unexplored
in the multiechelon literature.

To the best of our knowledge, the only paper in
the supply chain management literature to address
the impact of the secondary market is Lee and
Whang (2002), which considers a two-period, two-
stage model. First, multiple retailers are supplied by
a single manufacturer; then, they trade inventories
among themselves. Lee and Whang derive the opti-
mal decisions for the retailers and the equilibrium
market price for this endogenous secondary market.
In their model, the presence of the secondary market
may or may not raise the value of the supply chain.
In our paper, on the other hand, the supply chain
is always better off with secondary markets, and we
allow for a secondary market at each stage in the sup-
ply chain (rather than just at the retailer). Our sec-
ondary markets are exogenous, and each stage in the
supply chain is a price taker (in its own secondary
market). Instead of focusing on the equilibrium price
and order quantities in a decentralized two-period,
two-stage supply chain, we seek to determine the
joint replenishment and disposal policy for a central-
ized, multiperiod, multistage system.

2. Other Related Literature
Along with Lee and Whang (2002), this work is
related to two streams of research literature. The first
of those deals with serial multiechelon inventory sys-
tems, and its origin is in the classical Clark and Scarf
(1960) paper. Clark and Scarf introduced the notion of
echelon inventory and showed how a multistage inven-
tory model can be reformulated in terms of echelon
inventories to allow additive separation—a decomposi-
tion of the multidimensional problem into a nested
sequence of single-dimensional problems. Federgruen
and Zipkin (1984) extend the Clark and Scarf (1960)
results to the stationary, infinite horizon case. Feder-
gruen (1993) provides an excellent review of multi-
echelon inventory research.

There is also a number of more recent papers in this
area. Chen and Song (2001), for example, allow the

demand to be modulated by an exogenous Markov
chain and prove the optimality of the echelon base-
stock policies with state-dependent order-up-to levels.
Gallego and Özer (2003) establish the Clark–Scarf
decomposition for a multiechelon inventory system
under advanced demand information. For sufficiently
short information horizons, the optimal policy is the
echelon base-stock policy in each period; for longer
information horizons, the base-stock levels become
state dependent. Muharremoglu and Tsitsiklis (2008)
replicate the Clark and Scarf (1960) result using an
innovative customer-unit decomposition approach.
Janakiraman and Muckstadt (2009) employ the same
approach to show that when the lead time at the
upstream echelon for a capacitated two-stage system
is two periods, the optimal decision at the down-
stream stage is determined by one base-stock level
when that level is below the inventory in transit and
by another base-stock level otherwise; the optimal
decision at the upstream stage has a similar two-
tiered structure. DeCroix et al. (2005) introduce the
idea of negative demand, representing returns from
customers. They establish the optimality of the ech-
elon base-stock policy when returns from customers
occur at any, or several stages, in the system or when
those returns require a recovery lead time (the latter
requires that demands and returns be independent).
Van Houtum et al. (2007) assume that the replenish-
ment interval at each stage is an integer multiple of
the replenishment interval of the next downstream
stage and show the optimality of echelon base-stock
policies. Chao and Zhou (2009) generalize this model
to allow for batch ordering as well as fixed replenish-
ment intervals.

The second stream of literature relevant to this
work deals explicitly with excess inventory. In
the single-stage inventory research, Simpson (1978)
assumes that items can be stored, disposed of, or
remanufactured; once recovered, those items rejoin
the items used to satisfy demand. With no lead times,
Simpson shows the structure of the optimal policy,
with three critical numbers corresponding to the three
decisions. Inderfurth (1997) extends those results to
positive, identical lead times. Among the papers
on single-stage systems with disposals, only Morton
(1978) and Rosenfield (1989, 1992) allow stochastic
demand. The former develops a sequence of upper
and lower cost and policy bounds for the infinite
horizon non-stationary problem, whereas the latter
assumes stationary demand, finds the optimal num-
ber of units to keep in stock, and proves the invari-
ance of that critical number relative to future disposal
options.

Regarding research on stock disposals in multieche-
lon systems, Fukuda (1961) considers a setting where
each stage in the system is allowed to return stock to



Angelus: A Multiechelon Inventory Problem with Secondary Market Sales
Management Science 57(12), pp. 2145–2162, © 2011 INFORMS 2147

the next stage upstream. The only way to get stock
out of the system in his model is “ 0 0 0 to move it step
by step up the echelons until it reaches the highest
echelon and gets out of it” (p. 222). Actual disposal
of stock only happens at the last echelon. Return-
ing stock upstream leaves echelon inventory at all
upstream stages unchanged, so the additive separa-
tion of the objective function and the optimality of
echelon base-stock policies carry over from Clark and
Scarf (1960) in a straightforward manner. By contrast,
we allow inventory to “get out of the system” directly
at each stage. Thus, a secondary market sale in our
paper results in immediate echelon inventory reduc-
tion at all the upstream echelons, which has important
implications for the structure of the problem.

To the best of our knowledge, the only other paper
to consider stock disposals in a multiechelon setting
is DeCroix (2006), which assumes a recovery facility
that receives a stochastic amount of used products
where they can be stored, disposed of, or reman-
ufactured. The recovered units can rejoin the flow
of material. When this reentry happens at the most
upstream stage, the Clark–Scarf decomposition con-
tinues to hold. Otherwise, the additive separation of
the objective function can only be achieved when the
disposal option is eliminated (and echelon quantities
redefined to include the inventory at the recovery
facility). Thus, although DeCroix (2006) makes an
important contribution to the theory of remanufactur-
ing in a multiechelon setting, to achieve the Clark–
Scarf decomposition, he restricts the disposal of stock
to the very last echelon. In our model, we do not con-
sider remanufacturing; instead, our interest is in sup-
ply chains where stock disposals are allowed at each
stage.

3. Model Description
3.1. Flow of Product in the System
We identify stages (also echelons) for the minimum
number of periods that a unit is away from reach-
ing the most downstream stage. When a unit is first
ordered, it is in stage L (external supplier). At the
beginning of the next period, this unit is in stage L−1,
the most upstream stage in the system considered.
The unit can be moved down one stage each period,
until it reaches stage 0 where it will face customer
demand. (The case of multiple periods between stages
is addressed explicitly in §7.) The progress of a unit
can be delayed by keeping the unit at the same stage
until the next period. We allow (excess) inventory to
be sold (i.e., disposed) in the secondary market at any
stage in the supply chain, including the most down-
stream stage. The secondary market demand is plen-
tiful, and a disposal results in the immediate removal
of the sold stock from the supply chain. Buying from

the secondary markets is not an option. The follow-
ing parameters describe our system. (A glossary of
notation can be found in §8.)

xjt = the number of units in stage j at the begin-
ning of period t, prior to making any decisions,
referred to as the on-hand inventory for j > 0 and
the net inventory for j = 0;

X̂jt = the decision variable, referred to as the disposal
decision, representing the amount disposed from
stage j by the beginning of period t + 1;

Xjt = the decision variable, referred to as the order
decision, representing the amount in stage j + 1
passed downstream to stage j by the start of
period t + 1.

By the beginning of period t + 1, stage j will have
received Xjt , sold X̂jt in the secondary market, and
sent Xj−11 t downstream (all of which are decisions
made in period t). Let Dt represent the stochastic
demand in period t. The state transition equations are

xj1 t+1 =







x0t − X̂0t +X0t −Dt if j = 0,

xjt − X̂jt +Xjt −Xj−11 t if j = 1121 0 0 0 1L− 1.
(1)

Figure 1 shows the movement of the product in
the system. Let xt 2= 4x0t1x1t1 0 0 0 1 xL−11 t5 be referred
to as the on-hand inventory state; vectors X̂t 2=
4X̂0t1 X̂1t1 0 0 0 1 X̂L−11 t5 and Xt 2= 4X0t1X1t1 0 0 0 1XL−11 t5
are the decision variables of the model.

To assess the impact of “demand shocks” on
secondary market sales, we allow demands to be
modulated by an exogenous Markov chain. Markov
modulation has recently been used, for example, in
Song and Zipkin (1992, 1996), Chen and Song (2001),
and Angelus and Porteus (2008). There exists a count-
able Markov chain {�t} such that an exogenous state
�t , determined independently of any decisions, can
impact the demand distribution in each period.

Let X4xt5 be the feasible set given xt . The sequence
of events is as follows: (1) states xt and �t are
observed; (2) the decisions 4X̂t1Xt5 are selected from
X4xt5; (3) ordered amounts are received, and the
disposed units are removed from the supply chain;
(4) customer demand is observed and satisfied to
the extent possible; and (5) costs and revenues are
incurred. Thus,

X4xt5 =
{

X̂jt1Xjt ≥ 0 � X̂jt ≤ xjt3 Xjt ≤ xj+11 t − X̂j+11 t3

0 ≤ j ≤ L− 1
}

1 (2)

so that, at each stage, the sum of the units disposed of
and those passed downstream cannot exceed the on-
hand inventory at that stage. The external supplier is
assumed to have ample stock and is disallowed stock
disposals, so that xL1 t 2= � and X̂L1 t 2= 0.
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Figure 1 States, Decisions, and Product Flow in the System

. . .. . . DtxL – 1, t

XL – 2, t
xjt x1t x0t

Xj – 1, t X1t X0tXjtXL – 1, t

Stage L – 1 Stage j Stage 1 Stage 0

XL – 1, t Xjt X1t X0t

3.2. Costs and Revenues
We assume full backlogging of unsatisfied demand
with a unit backlogging cost bt and inventory car-
ryover at each stage with a unit on-hand inventory
holding cost hjt at stage j in period t. Each unit
ordered into stage j in period t costs �jt , and each unit
sold in the secondary market at stage j in period t
generates revenue rjt . We focus on the case when a
sale in the secondary markets generates revenue. At
times, disposing of inventory can incur costs rather
than revenues. All of the results in this paper apply
when rjt at one or more stages is negative.

Let the states xt and �t and decisions X̂t and
Xt in period t be given. The one-period expected
costs (minus revenues) at the most downstream stage
(j = 0) become

btEDt ��t
64Dt − 4x0t − X̂0t +X0t55

+7

+h0tEDt ��t
64x0t − X̂0t +X0t −Dt5

+7+�0tX0t − r0tX̂0t1

and the one-period costs at all the upstream stages
are

L−1
∑

j=1

6�jtXjt +hjt4xjt − X̂jt −Xj−11 t +Xjt5− rjtX̂jt71

where, as usual, 6x7+ 2= max4x105, and EDt ��t
6 7 repre-

sents the expectation over Dt , given �t in period t.
The total expected one-period cost becomes

�t4�t1x0t−X̂0t+X0t5

+

L−1
∑

j=0

64�jt+hjt−hj+11t5Xjt−rjtX̂jt+hjt4xjt−X̂jt571 (3)

where �t4�1x5 2= 4bt+h0t5EDt ��
64Dt −x5+7−h0tEDt ��

6Dt7
and hL1 t 2= 0.

We make the following assumption about the cost
and revenue parameters in our model.

Assumption 1. For each j in each period t, �jt ≥

rjt − rj+11 t .

Assumption 1 acts to prevent “speculative order-
ing,” the sole purpose of which is to receive revenue
from selling the product in the secondary market

rather than satisfying the primary demand at the
most downstream stage. Because rjt −�jt ≤ rj+11 t , then
ordering a unit into stage j , while simultaneously
disposing of another unit through a secondary mar-
ket sale, generates less revenue than selling a unit at
stage j + 1 directly. Thus, even though selling a unit
in the secondary market generates revenue, the total
profit on that particular unit is always negative. Con-
sequently, under Assumption 1, a supply chain does
not serve its secondary markets directly but rather
makes use of them for disposing of excess stock.

Assumption 1 may not always hold: If the sec-
ondary market at stage j + 1 is not well developed,
a stock disposal may incur costs rather than accrue
revenues (rj+11 t < 0). In that case, even for larger val-
ues of unit order costs at stage j , the required condi-
tion may not be met when the secondary market at
stage j can generate revenue for the supply chain (and
rjt > 0). Although such settings tend to be uncom-
mon in practice, they may exist, for example, in the
chemical industry, where a particular work-in-process
chemical can be both unstable and environmentally
toxic, so that disposing of it would incur a significant
cost. Once that chemical is compounded downstream
with other chemicals, it can become a stable prod-
uct of value and generate revenue in the secondary
market.

3.3. Optimality Equations
Let T be the time horizon for the problem. Let
Ft4�1xt � X̂t1Xt5 denote the minimum expected net
present value of the costs (less returns) over periods t
through T , as of the beginning of period t, as a func-
tion of the on-hand inventory state xt and exogenous
state �, given decisions X̂t and Xt . Let Ft4�1xt5 denote
the best of these:

Ft4�1xt5= min
X̂t1Xt∈X4xt 5

Ft4�1xt � X̂t1Xt50 (4)

Let � be the single-period discount rate. Then, by (3),

Ft4�1xt � X̂t1Xt5

=

L−1
∑

j=0

84�jt +hjt −hj+11 t5Xjt − 4rjt +hjt5X̂jt +hjtxjt9

+�t4�1x0t −X̂0t +X0t5+�EDt1�t+1 ��t
6Ft+14�t+11xt+1571 (5)
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where EDt1�t+1 ��t
6 7 represents the expectation over

both Dt and �t+1, given �t in period t. We will refer
to (4) and (5) as the stage formulation of the model.

3.4. Echelon Formulation
Following the Clark and Scarf (1960) approach, we
introduce the following echelon variables:

yjt 2= x0t + x1t + · · · + xjt referred to as the initial
(echelon) inventory3

Ŷjt 2= yjt −
j
∑

i=0

X̂it referred to as the postdisposal

echelon level3

Yjt 2= Ŷjt +Xjt referred to as the replenishment
(echelon) level0

Given that we allow backlogging at the most down-
stream stage, yjt represents the echelon net inventory
at the beginning of the period t; Ŷjt stands for the ech-
elon net inventory after disposals at stages 0 through j
have taken place; and Yjt is the echelon net inventory
after disposal and ordering because it also includes
those units currently in stage j + 1 that are ordered
into stage j in period t. Going forward, we will, for
convenience, continue to treat those variables as being
net of the backlogged demand without explicitly stat-
ing so.

At the beginning of period t+ 1, the updated eche-
lon quantities are yj1 t+1 = Yjt −Dt0

In the stage formulation of the model, the order of
decisions X̂jt and Xjt at any stage j is inconsequential.
Once echelon variables are introduced into the model,
this is no longer the case; the manner in which ech-
elon variables are defined necessarily implies a cor-
responding sequence of decisions. Thus, we assume
that the disposal decisions at all stages are made (and
executed) first, followed by all the order decisions.

Let yt 2= 4y0t1y1t1 0 0 0 1 yL−11 t5 be referred as the ech-
elon state of the system. Vectors Ŷt 2= 4Ŷ0t1 0 0 0 1 ŶL−11 t5
and Yt 2= 4Y0t1 0 0 0 1YL−11 t5 are the new decision vari-
ables of the model.

Lemma 1. Let Y4yt5 denote the set of feasible decision
schedules for state yt in period t:

Y4yt5 =
{

Ŷt1Yt ≥ 0Ŷ0t ≤ y0t3 Ŷjt ≤ Yjt ≤ Ŷj+11 t

≤ Ŷjt + yj+11 t − yjt3 0 ≤ j ≤ L− 1
}

1

where, for convenience, ŶLt = yLt 2= � for each t.

The stock available for disposal at stage j is yjt −

yj−11 t ; once disposals have taken place at echelons
11 0 0 0 1 j , the postdisposal level Ŷj+11 t is bounded from
below by Ŷjt , the postdisposal level at echelon j ,
and from above by the sum of Ŷjt and the on-hand
inventory at stage j . The replenishment level Yjt is
bounded from below by Ŷjt , and from above by Ŷj+11 t .

Let ft4�1yt � Ŷt1Yt5 denote the expected net present
value of the costs (less revenues) over periods t
through T , as of the beginning of period t, as a func-
tion of yt and �, given that decisions Ŷt and Yt are
made. Let ft4�1yt5 denote the best of these. Then,

ft4�1yt5= min
Ŷt1Yt∈Y4yt 5

ft4�1yt � Ŷt1Yt51 (6)

and

ft4�1yt � Ŷt1Yt5

=

L−1
∑

j=0

rjt4yj−11 t − yjt5+�t4�1Y0t5

+

L−1
∑

j=0

4bjtYjt + cjtŶjt5+�E6ft+14�t+11Yt −Dt571

where bjt 2= �jt + hjt − hj+11 t , cjt 2= rjt − rj+11 t − �jt , and
rLt 2= 0. By Yt −Dt we mean the vector of Yjt −Dt for
each j in period t, and, for notational convenience, E6 7
is used to represent EDt1�t+1 ��t

6 7.

Assumption 2. The terminal value function fT+14�1 ·5
is convex for each �.

We will refer to the above dynamic program
as the echelon formulation of the model. Note that
one obvious terminal value function (other than
zero) is fT+14�1yT+15=

∑L−1
j=0 8�j1 T+16yj1 T+17

− − 4rj1 T+1 −

rj+11T+156yj1 T+17
+9, which, by Assumption 1, is convex.

In general, the Clark–Scarf decomposition cannot
be expected to work for ft4�1yt5. The upper boundary
of the feasible set Y4yt5 for each echelon j depends
on two echelon inventories, yj+11 t and yjt , rather than
just one as is common in Clark–Scarf type mod-
els. Thus, each postdisposal level will depend, in
general, on those two echelon variables as well as
the postdisposal level at the downstream stage. This
dependence on multiple echelon inventories cascades
from the upper stages downward and renders the
objective function dependent on the entire echelon
state yt instead of just a single echelon inventory.
Alternatively, because each stock disposal impacts the
feasible region for all upstream decisions, each post-
disposal level depends on all downstream states and
decisions. Therefore, without special policy restric-
tions, the system cannot be expected to achieve the
Clark–Scarf decomposition.

4. Optimal Policy
4.1. Nested Echelon Order-up-to Policies
In describing the optimal policy, it is convenient
to imagine an organization with two departments
charged with implementing the optimal policy:
“the stock disposal” department and “the inventory
replenishment” department, each with a manager at
every echelon.
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A policy is a nested echelon order-up-to policy if
it specifies order-up-to levels 4Ŝjt1 Sjt5 for j = 01 0 0 0 1
L− 1 in each period t as functions of yt and �, such
that 4Ŷjt1Yjt5 are the closest feasible decisions to their
respective order-up-to levels, subject to the following:
in considering a disposal decision, downstream dis-
posal decisions are held fixed while all other decisions
are ignored; in considering a replenishment decision,
adjacent disposal decisions are held fixed, and all oth-
ers are ignored. A disposal manager at echelon j only
recognizes the constraint Ŷj−11 t ≤ Ŷjt ≤ yjt − yj−11 t +

Ŷj−11 t and selects the point within that interval closest
to Ŝjt : Ŷjt = Ŷj−11 t ∨ 6Ŝjt ∧ 4yjt − yj−11 t + Ŷj−11 t57, where
a∨ b 2= max4a1 b5, and a∧ b 2= min4a1 b5. The amount
thus disposed is yjt − yj−11 t + Ŷj−11 t − Ŷjt . A replenish-
ment manager ignores all (other) inventory decisions
and only recognizes the (hard) constraint Ŷjt ≤ Yjt ≤

Ŷj+11 t . He selects a point in that interval closest to Sjt :
Yjt = Ŷjt ∨ 6Sjt ∧ Ŷj+11 t7. We formalize this below.

Definition 1. Let m be an integer. A policy is a
nested echelon order-up-to policy if there exist order-up-
to levels 4Ŝjt1 Sjt5 such that the actual decisions are
given recursively as follows:

Ŷjt = Ŷj−11 t ∨ 6Ŝjt ∧ 4yjt − yj−11 t + Ŷj−11 t571 (7)

Yjt = Ŷjt ∨ 6Sjt ∧ Ŷj+11 t71 (8)

for j = 011121 0 0 0 1m, where Ŷ−11 t = y−11 t 2= 0 and
Ŷm+11 t 2= �.

Implicit in Definition 1 is the assumption, already
stated, that at each stage the disposal decision is made
before the order decision, so that the postdisposal
level at each echelon is known before the replen-
ishment level is assessed. A reverse order of deci-
sions would necessitate a corresponding change in the
above definition, but the fundamental results about
the structure of the optimal policy (and the heuristic
proposed later in the paper) would remain unaltered.

Because Ŝjt and Sjt are, in general, functions of yt
and �, then so are Ŷjt and Yjt . Once the managers
have determined their respective order-up-to levels
for a given yt and �, the optimal decisions are found
directly using the computation given in Definition 1.

Table 1 illustrates this computation of optimal
decisions, for a given set of order-up-to levels, for
two consecutive periods in a four-echelon system.
Columns (1)–(3), which are the given inputs, repre-
sent the period, echelon, and initial echelon inventory
for some given Markov states. Columns (4) and (7)
show the order-up-to levels, also referred to as the
postdisposal and replenishment targets, for each of
the eight managers (four stock disposal managers and
four inventory managers). Columns (6) and (9) show
actual decisions made.

Table 1 Illustration of a Nested Echelon Order-up-to Policy

(1) (2) (3) (4) (5) (6) (7) (8) (9)

6Ŷj−11 t 1 yjt−

t j yjt Ŝjt yj−11 t + Ŷj−11 t 7 Ŷjt Sjt 6Ŷjt 1 Ŷj+11 t 7 Yjt

1 3 120 100 67011107 100 150 61001�7 150
1 2 80 80 6401707 70 110 67011007 100
1 1 50 40 6251457 40 60 6451707 60
1 0 30 25 601307 25 50 6251457 45

2 3 115 100 66511157 100 135 61151�7 135
2 2 65 80 6251657 65 90 66511157 90
2 1 25 40 6101257 25 70 6251657 65
2 0 10 20 601107 10 50 6101257 25

The postdisposal target for echelon 0 in period 1,
Ŝ01, is seen to be 25. Because the feasible interval
(column (5)) is 601y017 = 601307, this target is achiev-
able. Once achieved, it becomes the lower end of
the feasible region for the postdisposal level at ech-
elon 1. The postdisposal target for echelon 1 in
period 1 is Ŝ11 = 40. The echelon 1 postdisposal level
in period 1, Ŷ11, must lie within the interval 6Ŷ011y11 −

y01 + Ŷ017 = 6251457. Thus, the echelon 1 postdis-
posal target is achievable. Once realized, the eche-
lon 1 postdisposal level becomes the lower limit of
the feasible interval for the replenishment level at
the same echelon and the upper limit for the replen-
ishment level at the downstream echelon. The feasi-
ble region for echelon 0 replenishment level becomes
6Ŷ011 Ŷ117 = 6251457. The echelon 0 replenishment tar-
get, S01, shown to be 50, is thus not achievable, and the
echelon 0 inventory manager chooses the point in the
feasible interval closest to his target. Thus, Y01 = 45.
The rest of period 1 decisions are made similarly.

The demand in period 1 is for 35 units, so the ini-
tial echelon states in period 2 are 35 units less than
the replenishment levels decided on in period 1. The
optimal decisions in period 2 are then determined in
the same nested, bottom-up way. The implementation
of the optimal policy proceeds in this manner until
the end of the time horizon.

Theorem 1. For every state � and period t, the objec-
tive value function defined in (6) is convex, and a nested
echelon order-up-to policy is optimal.

All proofs are in the appendix. The proof of Theo-
rem 1 makes use of an induction within an induction,
so that for any set of postdisposal echelon levels, the
result can be shown to hold for any set of replen-
ishment levels. This nested structure of the proof is
necessitated by the nested nature of the decisions in
the problem and their interaction on the boundary of
the feasible space. The order-up-to levels of the opti-
mal policy, being functions of both the Markov state
and the echelon (inventory) state, are determined by
finding the minimum, in each period, for each state �
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and for each point yt in the L-dimensional state space,
of a convex function of 2L state variables (yt and Yt).
Such a calculation runs very quickly into the curse
of dimensionality, rendering the numerical solution of
the problem practically impossible.

4.2. Parsimonious Policies
To reduce (though not eliminate) the curse of dimen-
sionality in the state-dependent multiechelon control
policy of Theorem 1, we identify special features of
the optimal policy.

In the stage formulation of the model, a policy
4X̂t1Xt5 is said to be parsimonious if either X̂jt = 0 or
Xjt = 0 (or both) for every j in period t. Under a parsi-
monious policy, each stage either receives additional
stock or disposes of excess inventory, but not both.

Definition 2. Let 4X̂t1Xt5 ∈ X4xt5 be optimal deci-
sions in period t given xt . A decision set 4X̂

j
t 1X

j
t 5 is

the jth parsimonious reduction of 4X̂t1Xt5 if its decisions
are recursively given by

X
j
it 2=























6X0t − X̂0t7
+ if i = 01

6Xit − X̂it − 4Xi−11 t −X
j
i−11 t57

+ if 0 < i ≤ j1

Xit if j < i ≤ L− 13

X̂
j
it 2=



































6X̂0t −X0t7
+ if i = 01

6X̂it −Xit + 4Xi−11 t −X
j
i−11 t57

+ if 0 < i ≤ j1

X̂j+11 t +Xjt −X
j
jt if i = j + 11

X̂it if j+1<i≤L−10

Lemma 2. Let xt+1 and x j

t+1 denote on-hand states in
period t + 1, obtained by starting with xt in period t and
applying policies 4X̂t1Xt5 and 4X̂

j
t 1X

j
t 5, respectively. For

each j ≤ L− 1,
(a) X

j
it ≥ 01 X̂ j

it ≥ 0, for all i;
(b) X

j
it = 0 or X̂

j
it = 0 (or both) for all i ≤ j ;

(c) X
j
it ≤Xit for all i ≤ j ;

(d) 4X̂
j
t 1X

j
t 5 ∈X4xt5;

(e) xt+1 = x
j
t+1.

The jth parsimonious reduction is parsimonious
through echelon j (part (b)), it reduces the order deci-
sion (part (c)), it is feasible (part (d)), and it results in
the same on-hand inventory state next period as the
original policy (part (e)).

Lemma 3. (a) Ft4�1xt �X̂0
t 1X

0
t 5≤ Ft4�1xt �X̂t1Xt5;

(b) Ft4�1xt � X̂
j
t 1X

j
t 5≤ Ft4�1xt � X̂

j−1
t 1X

j−1
t 5 for all j <

L− 1;
(c) Ft4�1xt � X̂

L−1
t 1XL−1

t 5≤ Ft4�1xt � X̂
L−2
t 1XL−2

t 5.

The 4L − 15th parsimonious reduction of 4X̂t1Xt5,
denoted by 4X̂∗

t 1X
∗
t 5, will be referred to as the parsi-

monious reduction of 4X̂t1Xt5.

Corollary 1. Ft4�1xt � X̂∗
t 1X

∗
t 5 ≤ Ft4�1xt � X̂t1Xt5

for each �.

Theorem 2. There exists a parsimonious optimal policy
for each state � in each period t.

Therefore, under Assumption 1, it is optimal at each
stage to either order more stock or dispose of excess
inventory, but not both in the same period. (In the
absence of Assumption 1, the theorem may not hold
because speculative ordering to get extra sales in sec-
ondary markets may call for both ordering of more
stock and disposing of it at the same time at the same
stage.)

Under a parsimonious policy, the size of the opti-
mization space is significantly reduced. The orig-
inal optimal policy lies within X4xt5, which is a
2L-dimensional subset of �+2L. By contrast, the opti-
mal solution under a parsimonious policy is found
in a subset of X4xt5 obtained by setting zero to one
of each pair of optimization variables at each stage.
Thus, the feasible set under a parsimonious restric-
tion consists of 2L L-dimensional subsets of X4xt5. This
renders the search for the optimal solution (consider-
ably) less onerous.

5. Disposal Saturation Policies
The curse of dimensionality renders this problem very
difficult to solve. The optimality of parsimonious poli-
cies helps, but not as much as the Clark–Scarf decom-
position in the traditional multiechelon models (i.e.,
without secondary market sales). To address this, we
now identify special means of achieving that decom-
position. Fukuda (1961) and DeCroix (2006) accom-
plish this by constraining stock disposals to only the
most upstream stage. Although there are several prac-
tical examples where secondary markets can occur at
only the last stage, in this paper we are interested in
those supply chains for which secondary market sales
can occur throughout the supply chain. Therefore, to
provide a framework faithful to such supply chains
in industry and render the model tractable, we look
for a class of policies for which (i) stock disposals are
allowed at each stage, (ii) echelon targets are inde-
pendent of the (echelon) inventory state, and (iii) the
resulting objective function is additively separable.

Definition 3. A disposal vector X̂t in period t rep-
resents a disposal saturation policy if there exists a
stage kt such that X̂jt = 0 for all j < kt , if kt > 0, and
X̂jt = xjt for all j > kt , if kt < L − 1. We will refer to
such kt as the threshold stage in period t.
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Under a disposal saturation (DS) policy, the firm
sells off all stock upstream of some stage kt ; there
are no disposals downstream of kt . Thus, a DS pol-
icy allows disposals at each stage, and if any stock is
disposed at stage kt , then all available stock upstream
of that stage is also sold off. This policy starts at
the top stage and “saturates” disposals at each stage
before initiating disposals at the next stage down-
stream. Finding the DS policy reduces to finding the
threshold stage kt (for each xt) and the disposal deci-
sion X̂kt 4xt 51 t

(or, equivalently, Ŷkt 4yt 51 t
). Once kt4yt5 and

Ŷkt 4yt 51 t
have been determined, the remaining post-

disposal levels become Ŷjt4yt5 = yjt for j < kt4yt5, and
Ŷjt4yt5 = Ŷkt 4yt 51 t

4yt5 for j > kt . Given yt and a DS pol-
icy, the replenishment levels for j = kt4yt5 + 11 0 0 0 1
L− 2, are given simply by Yjt4yt5= Ŷkt 4yt 51 t

.

5.1. Decomposition Results
We now show there exists a disposal saturation pol-
icy, determined by a set of ordered base-stock levels,
that achieves the Clark–Scarf decomposition for the
dynamic program in (6). In the process, we make use
of two auxilliary results. The first one is adapted from
Karush (1959).

Lemma 4. If f is an arbitrary smooth convex function
on �, then, given x ≤ y, minx≤�≤y f 4�5 can be expressed
as g4x5+h4y5, where g is smooth, convex increasing, and
h is smooth, convex decreasing. In particular, if f has a
finite unconstrained minimizer S, then

g4x5 2=







f 4S5 if x ≤ S1

f 4x5 otherwise;

h4y5 2=







f 4y5− f 4S5 if y ≤ S1

0 otherwise.

If f is increasing, h4y5 = 0, and g4x5 = f 4x5; if f is
decreasing, g4x5= 0, and h4y5= f 4y5.

Lemma 5. Let n be an integer. Let 8sj9 and 8yj9 be two
sequences of real numbers such that s0 ≥ s1 ≥ · · · ≥ sn and
y0 ≤ y1 ≤ · · · ≤ yn, respectively. Exactly one of the follow-
ing holds:

(i) s0 <y0;
(ii) sn ≥ yn;
(iii) there exists a unique j , j ∈ 811 0 0 0 1n9 such that yj >

sj ≥ yj−1;
(iv) there exists a unique k, k ∈ 801 0 0 0 1n−19 such that

sk ≥ yk > sk+1.

Lemma 6. Let ft+14�1 ·5 be smooth and additively con-
vex for each �. For each �, there exists in period t a vector
of base-stock levels Ŝ∗

t 4�5 2= 8Ŝ∗
0t4�51 0 0 0 1 Ŝ

∗
L−11 t4�59 such

that
(a) Ŝ∗

0t4�5≥ Ŝ∗
1t4�5≥ · · · ≥ Ŝ∗

L−11 t4�5 for each �;

(b) given yt , �, and Ŝ∗
t 4�5, the vector Ŷ ∗

t 4�1yt5 2=
8Ŷ ∗

0t4�1yt51 0 0 0 1 Ŷ
∗
L−11 t4�1yt59, where

Ŷ ∗

jt4�1yt5

2=



















































Ŷ ∗
j−11 t4�1yt5+ yjt − yj−11 t1

if Ŷ ∗
j−11 t4�1yt55+ yjt − yj−11 t < Ŝ∗

jt4�51

Ŝ∗
jt4�5 if Ŷ ∗

j−11 t4�1yt5 < Ŝ∗
jt4�5≤ Ŷ ∗

j−11 t4�1yt551

+ yjt − yj−11 t ,

Ŷ ∗
j−11 t4�1yt5

if Ŝ∗
jt4�5≤ Ŷ ∗

j−11 t4�1yt5,

(9)

is a disposal saturation policy in period t;
(c) given yt , �, and Ŷ ∗

t 4�1yt5 in period t, the result-
ing optimal replenishment policy Y ∗

t 4�1yt5 is given by the
echelon base-stock policy;

(d) given yt , �, and Ŷ ∗
t 4�1yt5 in period t, the expected

cost function, ft4�1yt � Ŷ ∗
t 5, given by

ft4�1yt � Ŷ
∗

t 5= min
Yt∈Y4yt � Ŷ

∗
t 5
ft4�1yt � Ŷ

∗

t 1Yt51 (10)

is smooth and additively convex for each � and each yt in
period t.

Thus, given additive convexity of the objective
function in period t+1, there exists a disposal satura-
tion policy, completely specified by a single base-stock
level at each echelon, that achieves the Clark–Scarf
decomposition of the objective function in period t.

Let Ŷ ∗
t 4�1yt5 be the disposal saturation policy

described in Lemma 6, given � and yt in period t. Let
f ∗
t 4�1yt5 denote the minimum expected net present

value of the costs (less revenues) over periods t
through T , as of the beginning of period t, as a func-
tion of yt and �, given the disposal saturation policy
Ŷ ∗
t 4�1yt5 in each period t. Then,

f ∗

t 4�1yt5= min
Yt∈Y4yt � Ŷ

∗
t 5
f ∗

t 4�1yt � Ŷ
∗

t 1Yt51 and

f ∗
t 4�1yt � Ŷ

∗
t 4yt51Yt5

=

L−1
∑

j=0

rjt4yj−11 t − yjt5+�t4�1Y0t5

+
∑L−1

j=0 4bjtYjt + cjtŶ
∗
jt5+�E6f ∗

t+14�t+11Yt −Dt570

(11)

Assumption 3. The terminal function fT+14�1 ·5 is
smooth and additively convex for each �.

Theorem 3. For every state � and period t, there exists
a disposal saturation policy specified by a set of ordered
base-stock levels, such that the objective value function in
(11) is additively convex and the resulting optimal replen-
ishment policy follows an echelon base-stock policy.
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The disposal saturation policy Ŷ ∗
t meets the

required criteria: disposals allowed at each stage,
state-independence, and the additive convexity of the
objective function. This policy also calculates very
fast, being determined by single base-stock level for
each exogenous state.

5.2. Heuristic Performance
Although the disposal saturation policy defined in
Lemma 6 achieves the Clark–Scarf decomposition and
has the features we desire, it is not clear how closely it
approximates the optimal policy. For that purpose, we
evaluate its heuristic performance through a series of
numerical studies. We start with a set of basic model
parameters and vary different pairs of those parame-
ters at a time. The results are presented in the tables
below (Tables 3–8) as the percentage by which the
total expected cost generated by the DS policy exceeds
the total expected cost under the optimal policy. This
percentage difference is referred to as the heuristic per-
formance error.

Our basic model has two echelons, 20 periods,
and three Markov states that correspond to the
low-, normal-, and high-demand scenarios and that
impact the demand distributions through the multi-
plier of the mean demand. Given a Markov state �t ,
the demand in period t has the distribution of
�4�t5Dt , where Dt is Poisson distributed with mean
of 4410035t−1 for the first 12 periods and �120097t−12 for
the last 8 periods. (Period 12 is the peak demand period;
the shape of the demand curve is not found to impact
our numerical results in any significant way.) Transi-
tion probabilities and multipliers for the basic model
are shown in Table 2. Calculating the expected cost
for the basic model with the optimal policy took four
hours on a 3 GHz CPU, whereas the same calculation
with the DS policy took only 10 seconds.

Unit costs and revenues for the basic model are
stationary and as follows: 4�01�15 = 48165, 4h01h15 =

42115, bt = 10, and 4r01 r15 = 410145. The one-period
discount factor is 0095.

We evaluate the expected discounted value of costs
(minus revenues from the secondary market sales)
over the time horizon, compute the weighted average
based on the steady-state probabilities for each of the
three Markov states, and compare this value to the

Table 2 Markov States, Transition Probabilities, and Demand
Multipliers

Transition probabilities
State Markov multipliers
�t 1 2 3 �4�t 5

1 0070 0020 0010 00333
2 0025 0050 0025 100
3 0010 0020 0070 300

Table 3 Heuristic Performance Error—Study 1

Unit disposal revenues 4r01 r15 (%)
Backlog.
cost b 44115 46125 48135 410145 412155 414165

8 0000 0000 0003 0012 0026 0043
10 0000 0001 0003 0014 0035 0054
12 0000 0001 0003 0015 0041 0065
14 0000 0001 0003 0016 0043 0075
16 0000 0001 0003 0017 0047 0085
18 0000 0001 0003 0018 0048 0096

corresponding one without secondary market sales.
We assume initial on-hand inventory 4x011x115= 44145
and zero salvage value function, both with and with-
out secondary market sales.

We first explore the effect of secondary market (i.e.,
disposal) revenues, which we vary from the largest
values allowed by Assumption 1, 4r01 r15 = 414165,
downward, in steps of two at the downstream stage
and steps of one at the upstream stage, until the lat-
ter is brought down to one. We thus cover a large
range of unit disposal revenues, while abiding by
Assumption 1.

In Study 1 (Table 3), we vary the disposal revenues
against the backlogging cost. The proposed DS poli-
cies approximate the optimal very well (within 1%)
throughout the shown range of model parameters.
The heuristic performance declines when both the
backlogging cost and the disposal revenues are high.
In that case, although stock disposals are occurring
under the optimal policy, they are mostly confined
to the downstream stage. With the high backlogging
cost, more stock is held at the downstream stage.
When the Markov demand shifts to a lower regime,
the downstream stage ends up holding, and there-
fore selling, most of the excess inventory. The per-
formance of the DS policy, under which disposals
first deplete the upstream inventory, thus declines.
In addition, the disposal revenue differential between
the two stages makes secondary market sales at the
downstream stage increasingly attractive.

In Study 2 (Table 4), we vary the disposal rev-
enues against the holding costs. As holding costs
are increased in Table 4, the performance of the DS

Table 4 Heuristic Performance Error—Study 2

Unit disposal revenues 4r01 r15 (%)
Hold. costs
4h01 h15 44115 46125 48135 410145 412155 414165

4005100255 0.00 0000 0000 0001 0006 0064
4100100505 0.00 0000 0000 0002 0018 0061
4105100755 0.00 0000 0001 0008 0031 0056
4200110005 0.00 0001 0003 0014 0035 0054
4205110255 0.00 0002 0008 0024 0032 0053
4300110505 0.00 0004 0014 0025 0030 0049
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Table 5 Heuristic Performance Error—Study 3

Unit backlogging cost b (%)
Order costs
4�01 �15 8 10 12 14 16 18

44125 0084 1001 1020 1039 1057 1072
46145 0059 0072 0083 0097 1011 1024
48165 0043 0054 0065 0075 0085 0096
410185 0033 0044 0052 0060 0069 0077
4121105 0027 0036 0043 0050 0057 0065
4141125 0021 0029 0037 0043 0048 0056

heuristic declines: As the difference in the holding
costs between the stages grows, it becomes increas-
ingly valuable (for the optimal policy) to sell off
excess units at the downstream stage rather than first
disposing of those upstream. Thus, at lower disposal
revenues, the optimal policy starts to diverge from
the heuristic one. On the other hand, when both the
unit holding costs and disposal revenues are high, a
unit of inventory has a higher chance of being con-
sidered in excess as soon as it arrives into the system,
so the heuristic performance of the DS policy starts to
improve.

In the next four studies, we explore the impact of
the unit backlogging cost while assuming the largest
unit disposal revenues allowed by Assumption 1. As
the heuristic performance is observed to decline in the
unit disposal revenues, the numbers displayed below
tend to represent the worst case scenario for the per-
formance of the DS policy across all unit disposal
revenues. In Study 3 (Table 5), for each set of order
costs 4�01�15, we assume the maximum allowed unit
revenues of 4r01 r15 = 4�0 + �11�15. Table 5 shows that
the DS policy does very well for high order costs and
low backlogging costs. The (already) observed dete-
rioration of the performance of the DS heuristic with
increasing backlogging costs is (somewhat) offset by
higher unit order costs, for which the total amount
of inventory held in the system is lower; in particu-
lar, the potential excess inventory at the downstream
stage declines relative to the upstream stage.

In Study 4 (Table 6), we vary the backlogging cost
against the time horizon for the problem. In this
study, to minimize the impact of the nonstationary

Table 6 Heuristic Performance Error—Study 4

Unit backlogging cost b (%)
Time
horizon 8 10 12 14 16 18

15 0036 0049 0057 0065 0077 0085
20 0039 0053 0061 0070 0084 0093
25 0040 0055 0063 0073 0088 0097
30 0041 0056 0065 0075 0090 1000
35 0042 0057 0066 0077 0092 1002
40 0042 0058 0067 0077 0093 1003

Table 7 Heuristic Performance Error—Study 5

Unit backlogging cost b (%)
Markov
multiplier 8 10 12 14 16 18

1.5 0003 0004 0005 0005 0005 0006
2.0 0017 0021 0025 0028 0031 0034
2.5 0031 0039 0046 0053 0060 0067
3.0 0043 0054 0065 0075 0085 0096
3.5 0054 0067 0079 0092 1007 1020
4.0 0061 0078 0092 1010 1030 1048

demand on the results, we hold the mean demand
throughout the time horizon equal to 5.7, the mean at
the peak demand period for the basic model. Table 6
displays the findings and shows how the performance
of the DS policy is relatively stable across the time
horizon for every backlogging cost considered.

In Studies 5 and 6 (Tables 7 and 8, respectively),
we explore the impact of the demand characteristics.
First, in Study 5, we vary the backlogging cost against
the Markov demand multiplier. The Markov multi-
plier for the high-demand state ranges from 1.5 to 4
(and the corresponding low-demand Markov multi-
plier from 0.667 to 0.25). Because the high unit back-
logging cost and high Markov multiplier have the
identical effect of creating excess inventory at the
downstream stage, the performance of the DS heuris-
tic thus declines toward the bottom-right corner.

In Study 6, we vary the Markov chain probability
of remaining in the extreme-demand state (i.e., the
low-demand or the high-demand state). We fix tran-
sition probabilities for the normal-demand state and
vary this in-state probability from 0.1 to 0.85 in incre-
ments of 0.15. We keep the transtion probability from
an extreme-demand to the normal-demand state as
twice that of switching to the other extreme state.
With the increasing probability of changing demand
regimes, an increasing amount of inventory is held
at the downstream stage. Thus, this is where most of
the excess inventory is then located when the demand
does switch to the lower regime and the heuristic per-
formance of the DS policy starts to decline.

Table 8 Heuristic Performance Error—Study 6

Unit backlogging cost b (%)
In-state
prob. 8 10 12 14 16 18

0.10 0083 1004 1018 1029 1038 1047
0.25 0084 1007 1021 1031 1039 1048
0.40 0083 1007 1024 1034 1040 1048
0.55 0066 0087 1006 1021 1031 1041
0.70 0043 0054 0065 0075 0085 0096
0.85 0021 0024 0027 0030 0033 0036
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6. Secondary Markets
Secondary markets create value by providing an
option for supply chains to sell off excess stock rather
than keep it in the system and incur holding costs.
We now explore exactly how much value is created
by the secondary markets and what factors influence
that value. Those questions are worth answering for
(i) firms looking to participate as intermediaries in the
secondary markets (e.g., Best Buy’s decision in 2009
to enter the electronics secondary market); (ii) sup-
ply chains considering setting up secondary markets
themselves; and (iii) all secondary market transac-
tions, where information about what drives the value
of the option to sell off excess inventory can help with
making better pricing and other decisions.

We shed light on those questions with a series
of numerical studies. The results are reported in
the tables below as (percentage) differences in the
expected costs (over the time horizon) between the
system with secondary market sales and the one with-
out. We refer to this difference as the value of the sec-
ondary markets and explore its sensitivity to various
system parameters.

6.1. Two-Echelon Systems
We first analyze the same two-echelon systems used
in the six studies from the previous section on the
heuristic performance. We continue to assume zero
salvage value at the end of the time horizon.

In Study 1 (Table 9), the value of secondary markets
increases with disposal revenues. The largest disposal
revenue of 4r01 r15 = 414165 yields the range of sec-
ondary market values from 3078% to 4038%, depend-
ing on the backlogging cost. The value of secondary
markets is not always monotonic in the backlogging
cost; instead, at large unit disposal revenues, it is first
increasing, then decreasing. As the backlogging cost
increases, both the optimal order and disposal quan-
tities seem to increase. Then, as the backlogging cost
continues to increase, disposal of excess inventory
becomes less attractive because of the high opportu-
nity cost of running out of stock, and the value of
the option to sell off excess stock starts to drop. This
dynamic is less pronounced at lower disposal rev-
enues, for which the disposed amounts are smaller.

Table 9 Value of Secondary Markets—Study 1

Unit disposal revenues 4r01 r15 (%)
Backlog.
cost b 44115 46125 48135 410145 412155 414165

8 0044 0065 0091 1035 2019 3087
10 0050 0076 1007 1054 2035 3098
12 0053 0081 1014 1062 2039 3089
14 0054 0083 1017 1063 2040 3081
16 0056 0084 1019 1065 2041 3076
18 0058 0085 1023 1069 2045 3074

Table 10 Value of Secondary Markets—Study 2

Unit disposal revenues 4r01 r15 (%)
Hold. costs
4h01 h15 44115 46125 48135 410145 412155 414165

4005100255 0.40 0075 1013 1058 2016 3052
4100100505 0.44 0075 1009 1050 2013 3050
4105100755 0.47 0075 1007 1049 2021 3066
4200110005 0.50 0076 1007 1054 2035 3098
4205110255 0.52 0077 1010 1063 2058 4026
4300110505 0.54 0078 1015 1075 2082 4045

In Study 2 (Table 10), at low disposal revenues, the
value of the secondary markets is increasing in the
holding costs: because excess stock can be either held
or sold off, as those costs increase, the latter becomes
more attractive relative to the former. As disposal rev-
enues grow, increasing the holding costs has a dimin-
ishing impact on the optimal policy and a growing
impact on the cost function—the costs increases while
the secondary sales revenue does not. The value of
the option to dispose starts to drop. Eventually, the
holding costs become high enough that the optimal
policy does change and the value of the secondary
markets goes up.

In Study 3 (Table 11) we vary the unit backlogging
cost against the unit order costs in the system, assum-
ing the maximum allowed unit revenues of (r0, r1) =
(�0 +�11�1). Table 11 shows that the value of the sec-
ondary markets decreases with the unit order costs.
This decline is more pronounced for lower values of
the backlogging cost, where a small change in order
costs can represent a large change in the amount of
the product ordered (and held) in the system and con-
sequently in the quantity of excess inventory sold off.

Study 4 (Table 12), shows how the value of sec-
ondary markets is declining with the length of the
time horizon across all the backlogging costs ana-
lyzed; the supply chains with shorter time horizons
thus tend to benefit more from secondary markets.
The value of the secondary markets seems to be
convex in the time horizon, and the decreasing dif-
ferences point to a noninsignificant asymptotic limit
(2–2.5%) of the option value as the time horizon
increases.

Table 11 Value of Secondary Markets—Study 3

Unit backlogging cost b (%)
Order costs
4�01 �15 8 10 12 14 16 18

44125 4077 4038 4015 4014 4017 4020
46145 4038 4018 3092 3091 3094 3098
48165 3087 3098 3089 3081 3076 3074
410185 3050 3065 3072 3069 3068 3067
4121105 3012 3043 3049 3054 3057 3063
4141125 2080 3015 3036 3037 3042 3051
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Table 12 Value of Secondary Markets—Study 4

Unit backlogging cost b (%)
Time
horizon 8 10 12 14 16 18

15 4044 4074 4068 4053 4056 4064
20 3071 3083 3068 3051 3053 3059
25 3029 3031 3010 2092 2093 2098
30 3004 2098 2074 2054 2056 2059
35 2086 2077 2050 2029 2030 2033
40 2075 2061 2033 2012 2012 2015

Table 13 Value of Secondary Markets—Study 5

Unit backlogging cost b (%)
Markov
multiplier 8 10 12 14 16 18

1.5 0043 0058 0066 0068 0070 0071
2.0 1036 1055 1065 1067 1069 1073
2.5 2062 2078 2079 2082 2077 2076
3.0 3087 3098 3089 3081 3076 3074
3.5 4095 5003 4083 4066 4062 4059
4.0 5075 5078 5052 5042 5034 5031

In Study 5 (Table 13), the secondary markets are
(considerably) more valuable for larger Markov multi-
pliers. The greater the demand shocks, the more likely
the supply chain is to accumulate excess inventory
and thus the more valuable the option to sell it off.
Thus, although at the demand multiplier of 1.5 sec-
ondary markets matter little to the total costs, at the
demand multiplier of 4 they can represent a signifi-
cant source of cost savings for the supply chain.

In Study 6 (Table 14), the in-state probability
impacts positively the value of secondary markets.
A higher in-state probability results in bigger inven-
tory levels because the expected mean demand (at
the high-demand state) is higher and the chance of
switching to the low-demand state is lower. When the
system does switch to the low-demand state, there is
an excess inventory to be sold off and the option to
do so becomes more valuable.

6.2. Higher-Echelon Systems
An important research question concerns the value
of secondary markets for higher-echelon systems.

Table 14 Value of Secondary Markets—Study 6

Unit backlogging cost b (%)
In-state
prob. 8 10 12 14 16 18

0.10 1059 2010 2049 2072 2087 3000
0.25 1077 2030 2075 3001 3016 3029
0.40 2023 2073 3012 3034 3047 3055
0.55 2092 3016 3045 3059 3067 3074
0.70 3087 3098 3089 3081 3076 3074
0.85 4008 4031 4031 4023 4013 4003

Table 15 Unit Costs and Revenues for Higher-Echelon Systems
Studied

Supply chain Unit order Unit holding Unit disposal
length costs costs revenues

3 echelons (5, 5, 4) (1.2, 1, 0.8) (14, 9, 4)
4 echelons (4, 4, 3, 3) (1.0, 0.8, 0.7, 0.5) (14, 10, 6, 3)
5 echelons (4, 3, 3, 2, 2) (1.0, 0.7, 0.6, 0.4, 3) (14, 10, 7, 4, 2)

Finding the optimal policy for such systems runs
quickly into the curse of dimensionality: even for a
three-echelon system, finding the total cost under the
optimal (parsimonious) policy is estimated to take
about five months, rendering any such calculation
completely impractical, if not impossible. Therefore,
instead of the optimal policy, we make use of the dis-
posal saturation heuristic to calculate the value of sec-
ondary markets for higher-echelon supply chains.

Next, we numerically analyze a series of three-,
four-, and five-echelon systems. We evaluate the com-
binations of model parameters from Studies 5 and 6
in the previous section. The demand characteristics
remain unchanged from those studies. To provide a
meaningful comparison across systems with a differ-
ent number of stages, we take the sum of the unit
order costs and the sum of the unit holding costs
across all the stages in the system to be the same
as those used in the original studies 5 and 6 above.
We again assume the largest unit disposal revenues
allowed by Assumption 1. The relevant model param-
eters are presented in Table 15, from left to right, from
the most downstream stage to the most upstream
stage.

For the 20-period time horizon with three Markov
states, finding the total expected cost with the dis-
posal saturation policy took 17 seconds for a three-
echelon system, 30 seconds for a four-echelon system,
and 45 seconds for a five-echelon system. Results are
in the Tables 16–21.

In Tables 16–21, the value of the secondary mar-
kets is increasing uniformly in the number of stages
in the supply chain. The first differences of this value
are decreasing in the number of stages, so most of
the value of the secondary markets for supply chains
may be captured with moderate-length supply chains.

Table 16 Value of Secondary Markets—Study 5 (Three Echelons)

Unit backlogging cost b (%)
Markov
multiplier 8 10 12 14 16 18

1.5 0063 0083 0094 0098 1004 1010
2.0 1056 1078 1093 2001 2007 2014
2.5 2053 2070 2085 2091 2095 2097
3.0 3032 3046 3056 3060 3059 3059
3.5 3094 4004 4011 4011 4008 4004
4.0 4042 4049 4053 4051 4044 4038
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Table 17 Value of Secondary Markets—Study 6 (Three Echelons)

Unit backlogging cost b (%)
In-state
prob. 8 10 12 14 16 18

0.10 0073 0099 1025 1041 1052 1061
0.25 0091 1019 1049 1067 1081 1091
0.40 1029 1065 1096 2019 2035 2047
0.55 2020 2052 2079 2095 3007 3013
0.70 3032 3046 3056 3060 3059 3059
0.85 4056 4042 4019 3097 3087 3080

Table 18 Value of Secondary Markets—Study 5 (Four Echelons)

Unit backlogging cost b (%)
Markov
multiplier 8 10 12 14 16 18

1.5 0091 1013 1030 1036 1045 1054
2.0 1097 2024 2044 2055 2065 2072
2.5 2099 3022 3041 3050 3057 3061
3.0 3078 3096 4013 4018 4022 4022
3.5 4038 4052 4066 4067 4068 4066
4.0 4084 4095 5006 5005 5003 4098

Table 19 Value of Secondary Markets—Study 6 (Four Echelons)

Unit backlogging cost b (%)
In-state
prob. 8 10 12 14 16 18

0.10 0090 1016 1043 1059 1069 1078
0.25 1015 1045 1076 1094 2007 2016
0.40 1057 1094 2026 2048 2063 2074
0.55 2045 2083 3016 3035 3048 3056
0.70 3078 3097 4013 4018 4022 4022
0.85 4070 4066 4065 4056 4050 4042

Table 20 Value of Secondary Markets—Study 5 (Five Echelons)

Unit backlogging cost b (%)
Markov
multiplier 8 10 12 14 16 18

1.5 1017 1043 1061 1068 1078 1088
2.0 2032 2061 2082 2093 3003 3010
2.5 3032 3056 3077 3085 3092 3094
3.0 4007 4029 4044 4048 4051 4050
3.5 4062 4080 4092 4093 4093 4089
4.0 5003 5019 5027 5026 5024 5017

Table 21 Value of Secondary Markets—Study 6 (Five Echelons)

Unit backlogging cost b (%)
In-state
prob. 8 10 12 14 16 18

0.10 1011 1042 1070 1084 1092 1098
0.25 1039 1074 2003 2019 2030 2038
0.40 1088 2023 2057 2075 2087 2096
0.55 2073 3014 3042 3059 3071 3078
0.70 4007 4029 4044 4049 4051 4050
0.85 4096 4097 4095 4086 4079 4070

Further, the Markov multiplier of demand and the
in-state probability remain important drivers of this
value for higher-echelon systems.

7. Discussion
7.1. Lead-Time Considerations
In our model we assume a single-period lead time
between successive stages in the system. Although
this assumption covers a number of settings encoun-
tered in practice, there also exist supply chains in
which it may not apply. Therefore, we now show how
this restriction can be relaxed without affecting the
structure of our results.

Assuming a multiperiod lead time, say �, between
some two adjacent stages, say j and j + 1, is equiva-
lent to adding stages j+11 j+21 0 0 0 1 j+�−1, at which
inventory can be neither deferred nor physically dis-
posed of (the original stage j + 1 is now relabeled as
j +�). The key to handling such stages is to make use
of a forward sale into the closest available secondary
market (looking downstream). Forward sales are gen-
erally common in secondary markets and are there-
fore readily available to inventory managers in most
supply chains.

Suppose, for example, that a product is transported
on a ship from Asia to the United States, that the
trip takes six weeks, and that the lead time between
stages is one week. If, after two weeks in transit, (a
portion of the) inventory on that ship is no longer
needed, it can be sold (four weeks) forward into the
secondary market at the port of entry. The analysis
of this system then proceeds exactly as if those units
were physically removed from the ship, even though
the physical removal happens only four weeks later.
In other words, the inventory sold forward in a sec-
ondary market is simply taken out of the record of
stock on the ship. Thus, a forward sale allows us to
treat stages physically constrained to hold inventory
in the same manner as those that are not. The limita-
tion that stages j + 11 j + 21 0 0 0 1 j + � − 1 also do not
allow inventory to be held at those locations is han-
dled directly through constraints in the feasible set. In
particular, if inventory cannot be deferred at stage j ,
it suffices to include a constraint Yjt = Ŷj+11 t , referred
to as a no-deferral constraint, in the definition of the
feasible region.

It is straightforward to verify that with forward
sales and no-deferral constraints, having multiperiod
lead times between stages does not impact the form of
the optimal policy. Further, although the definition of
the parsimonious policy has to be adjusted somewhat
(so that the decisions under the parsimonious pol-
icy for stages j + 11 0 0 0 1 j + �− 1 are exactly the same
as those for the original optimal policy), its struc-
ture remains the same: at each stage there is still only
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one decision to make instead of two. The structure of
the disposal saturation policies, and the Clark–Scarf
decomposition they achieve, goes through unaltered
with forward sales agreements and no-deferral con-
straints. Thus, with those two modifications to the
problem formulation, our results continue to hold
when multiple periods are allowed between stages.

7.2. Secondary Markets
We have shown that there exists a number of rea-
sonable situations where secondary markets provide
significant value to the supply chain. This finding is
supported by observations from industry, cited in the
introduction, where secondary markets can represent
multi-billion dollar industries. At the same time, we
saw that there also exist settings in which secondary
markets provide little value, such as those when unit
disposal revenues are small or when there is little
volatility in demand. Aside from the unit disposal
revenues, the two factors with the biggest impact on
the value of secondary markets are the intensity of
the Markov multiplier and the in-state probability. We
can, therefore, expect that supply chains with most
to gain from secondary markets are those that exhibit
demand shocks—shifts from normal demand levels to
other, very different demand regimes or other forms
of demand volatility. Our numerical studies also show
that secondary markets tend to be especially valuable
to supply chains for products such as those in the
high-tech industry, where due to “ 0 0 0very short prod-
uct life cycles, excess inventory of components and
parts could result in huge obsolescence costs” (Lee
and Whang 2001, p. 13). Even for long-life cycle prod-
ucts, the secondary markets were found to generate
2%–3% cost savings across the supply chain. Under
those circumstances, secondary markets can provide
considerable help with the mismatch between supply
and demand.

Interestingly, certain cost parameters seem to have
a very complex impact on secondary markets.
Although the unit order costs affect this value directly
in a negative way, increasing the unit holding or
backlogging costs can result in a very interdependent
behavior, so the resulting change in the value of sec-
ondary markets also depends on the level of other
model parameters, such as the unit disposal revenues.
When assessing the sensitivity of secondary markets,
a comprehensive view of all the cost and revenues
parameters is required.

Although disposal saturation policies generate a
relatively significant value of the secondary markets
for systems with more than two stages, it is presently
not known how close those policies come to the
optimal ones for such higher-order systems. Fur-
ther research on developing effective heuristics (and
related bounds) for larger scale systems with sec-
ondary market sales would be worthwhile, in the

spirit of Gallego and Özer (2003), for example, who
show that myopic policies are optimal for stationary
multiechelon inventory problems for both finite and
infinite horizon problems (without secondary market
sales).

We have assumed zero salvage value throughout
the paper. In practice, secondary markets can also be
used to sell excess inventory at the end of the time
horizon, so the values assessed for those markets in
this paper tend to underestimate their actual value.
For higher-echelon systems, we have used the DS pol-
icy rather than the exact optimal policy to assess the
value of secondary markets. Such an approximate cal-
culation arguably represents the actual value of sec-
ondary markets, given that, in practice, the optimal
policy would not be possible to determine and the
best a firm could do is to make use of the disposal
saturation policy. Our research thus paves the way
for companies to make use of the type of results pre-
sented in this paper to (1) simultaneously manage
their inventory replenishments and secondary market
sales, (2) estimate the value of existing or potential
secondary markets for their own supply chains, and
(3) identify drivers of secondary market value and
manage those for greater profit.

8. Glossary of Notation
Model Parameters

bt : unit backlogging cost in period t;
�jt : unit order cost at stage j in period t;
hjt : unit holding cost at stage j in period t;
rjt : unit disposal revenue at stage j in period t;
�: one-period discount factor;
L: number of stages in the supply chain;
T : number of periods in the time horizon.

State Variables

xjt : on-hand inventory at stage j at the beginning of
period t;

yjt : echelon inventory at stage j at the beginning of
period t;

�t : Markov chain exogenous state in period t.

Decision Variables

Xjt : order decision at stage j at the beginning of
period t;

X̂jt : disposal decision at stage j at the beginning of
period t;

Yjt : replenishment echelon level at stage j in
period t;

Ŷjt : postdisposal echelon level at stage j in period t.
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Appendix

Proof of Theorem 1. We prove the convexity result of
the theorem by induction. By Asssumption 2, fT+14�1 ·5 is
convex for each �. Assume inductively that ft+14�1 ·5 is con-
vex for each �. The optimality equations given in (6) can be
rewritten as follows:

ft4�1yt5 =

L−1
∑

j=0

rjt4yj−11 t − yjt5

+ min
Ŷjt≤Ŷj+11 t≤yj+11 t−yjt+Ŷjt

j=010001L−1

{L−1
∑

j=0

cjtŶjt +Gt+14�1 Ŷt5

}

1 (12)

where

Gt+14�1 Ŷt5 2= min
Ŷjt≤Yjt≤Ŷj+11 t
j=010001L−1

{

�t4�1Y0t5+
L−1
∑

j=0

bjtYjt

+�E6ft+14�t+11Yt −Dt57

}

0 (13)

By assumption, the right-hand side (RHS) of (13) is convex
in Yt . Furthermore, the RHS is being minimized over a con-
vex set �Ŷ 2= 6Ŷ0t1 Ŷ1t7 × 6Ŷ1t1 Ŷ2t7 × · · · × 6ŶL−11 t1�5. Then,
by convexity preservation under minimization (CPUM),
Gt+14�1 ·5 is convex (see for example, Heyman and Sobel
1984, p. 525). Let Ŷ k

t 2= 8Ŷ0t1 Ŷ1t1 0 0 0 1 Ŷkt9, where Ŷ L−1
t = Ŷt

and Ŷ 0
t = Ŷ0t . For each � and yt , define Hk

t+14�1yt1 Ŷ
k
jt5, for

k = 0111 0 0 0 1L− 2, recursively as

H k
t+14�1yt1Ŷ

k
t 5

2= min
Ŷkt≤Ŷk+11t≤yk+11t−ykt+Ŷkt

{

ck+11tŶk+11t +H k+1
t+1 4�1yt1Ŷ

k+1
t 5

}

1 (14)

where HL−1
t+1 4�1yt1 Ŷ

L−1
t 5 2=Gt+14�1 Ŷt5. Because Gt+14�1 ·5 is

convex, then HL−1
t+1 4�1 ·5 is jointly convex. Assume induc-

tively that Hk+1
t+1 4�1yt1 Ŷ

k+1
t 5 is jointly convex. (Note that

we are conducting a proof by induction within another
proof by induction, which is permissible because we are
relying only on the convexity of Gt+14�1 ·5.) Then, the
RHS of (14) is jointly convex. Further, the RHS is min-
imized over the convex set �k

Ŷ
2= 6Ŷkt1yk+11 t − ykt + Ŷkt7.

We again apply convexity preservation under minimiza-
tion to get that H k

t+14�1yt1 Ŷ
k
t 5 is jointly convex. Therefore,

H 0
t+14�1yt1 Ŷ

0
t 5 is convex, because Ŷ 0

t = Ŷ0t . We can now
rewrite (12) as

ft4�1yt5=

L−1
∑

j=0

rjt4yj−11 t − yjt5+ min
Ŷ0t≤y0t

8c0tŶ0t +H 0
t+14�1yt1 Ŷ

0
t 590

(15)
The RHS of (15) is convex. By CPUM, ft4�1yt5 is convex
in yt , which completes the proof.

Next, let Ŝ0t4�1yt5 be the unconstrained minimizer of
the RHS of (15). Then, Ŷ0t4�1yt5 = Ŝ0t4�1yt5 ∧ y0t . Assume
inductively that Ŷ0t4�1yt51 0 0 0 1 Ŷjt4�1yt5 are given by (7).
Then,

H
j
t+14�1yt1 Ŷ

j
t 5

= min
Ŷjt 4�1yt 5≤Ŷj+11t≤yj+11t−yjt+Ŷjt 4�1yt 5

8cj+11tŶj+11t +H
j+1
t+1 4�1yt1Ŷ

j+1
t 591

(16)

where decisions labeled with 4�1yt5 have already been
determined. As already established above, the RHS of (16)
is convex. Let Ŝj+11 t4�1 1yt5 be its unconstrained minimizer.
Then, Ŷj+11 t4�1yt5= Ŷjt4�1yt5∨ 6Ŝj+11 t4�1yt5∧ 4yj+11 t − yjt +

Ŷjt4�1yt557. Finally, because the RHS of (13) is convex
in Yt , let Sjt4�1yt5 be its unconstrained minimizer. The
optimal postdisposal level becomes Yjt4�1yt5 = Ŷjt4�1yt5 ∨

6Sjt4�1yt5∧ Ŷj+11 t4�1yt57.

Proof of Lemma 2. Part (c) is true for X0t . Assume
X

j
i−11 t ≤ Xi−11 t for some i − 1 ≤ j . Then, X

j
it = 6Xit − X̂it −

4Xi−11 t − X
j
i−11 t57

+ ≤ 6Xit − X̂it7
+. Because X̂it ≥ 0, X

j
it ≤ Xit

(for all i ≤ j).
To prove (d), first consider i ≤ j . Because X̂t1Xt ∈ X4x∗

t 5,
then X̂

j
0t = 4X̂0t −X0t5

+ ≤ X̂0t ≤ x0t . Also, Xi−11 t ≤ xit − X̂it , for
i ≥ 1. Because X̂

j
it = 6X̂it − Xit + 4Xi−11 t − X

j
i−11 t57

+ for i ≥ 1,
then X̂

j
it ≤ 4xit −Xit −X

j
i−11 t5

+ ≤ xit for all i ≤ j . Next, if X̂j
it =

0, then, by part (b) and the feasibility of 4X̂t1Xt5, X
j
i−11 t ≤

Xi−11 t ≤ xit − X̂it ≤ xit . If X̂
j
it > 0, then X̂

j
it + X

j
i−11 t = X̂it +

Xi−11 t −Xit . By the feasibility of X̂t and Xt , X̂
j
it +X

j
i−11 t ≤ xit

− Xit ≤ xit . If i = j , then by Definition 2, X̂
j
j+11 t + X

j
jt =

X̂j+11 t +Xjt ≤ xj+11 t . For i > j , the feasibility of 4X̂
j
t 1X

j
t 5 car-

ries over directly from the feasibility of 4X̂t1Xt5.
To prove (e), first consider 0 < i ≤ j . Use (1) to get xji1 t+1 =

xit + X
j
it − X̂

j
it − X

j
i−11 t . Assume X

j
it = 0. By Definition 2,

x
j
i1 t+1 = xit − X̂it +Xit −Xi−11 t = xi1 t+1. If X̂j

it = 0, then by def-
inition of Xj

it , we get the same. If i = 0, then either Xj
0t = 0 or

X̂
j
0t = 0 leads directly to x

j
01 t+1 = x01t+1. Next, if i = j + 1, then

x
j
j+11 t+1

= xj+11 t +X
j
j+11 t − X̂

j
j+11 t −X

j
jt [by (1)]

= xj+11 t +X
j
j+11 t − 4X̂j+11 t +Xjt −X

j
jt5−X

j
jt [by Definition 2]

= xj+11 t +Xj+11 t − X̂j+11 t −Xjt [by Definition 2]

= xj+11 t+1 [by (1)]0

For i > j + 1, the result follows directly from Definition 2.

Proof of Lemma 3. Fix �. By (5) and Definition 2,
Ft4�1xt � X̂t1Xt5− Ft4�1xt � X̂0

t 1X
0
t 5 becomes

4�0t +h0t −h1t56X0t −X0
0t7− 4r0t +h0t56X̂0t − X̂0

0t7

− 4r1t +h1t56X̂1t − X̂0
1t7

= 4�0t +h0t −h1t56X0t −X0
0t7− 4r0t +h0t56X̂0t − X̂0

0t7

− 4r1t +h1t56X̂1t − 4X̂1t +X0t −X0
0t57

= 4�0t +h0t +r1t56X0t −X0
0t7−4r0t +h0t56X̂0t −X̂0

0t70 (17)
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By Lemma 2(b), either X0
0t = 0 or X̂0

0t = 0; thus,
by Definition 2, (17) reduces to either 4�0t + r1t

− r0t5X0t or 4�0t + r1t − r0t5X̂0t , both of which are positive by
Assumption 1.

To prove (b), we proceed similarly: Ft4�1xt � X̂
j−1
t 1X

j−1
t 5−

Ft4�1xt � X̂
j
t 1X

j
t 5 becomes

4�jt +hjt −hj+11 t56Xjt −X
j
jt7− 4rjt +hjt56X̂

j−1
jt − X̂

j
jt7

− 4rj+11 t +hj+11 t56X̂j+11 t − X̂
j
j+11 t7

= 4�jt +hjt −hj+11 t56Xjt −X
j
jt7

− 4rjt +hjt56X̂jt +Xj−11 t −X
j−1
j−11 t − X̂

j
jt7

− 4rj+11 t +hj+11 t56X̂j+11 t − 4X̂j+11 t +Xjt −X
j
jt57

= 4�jt +hjt + rj+11 t56Xjt −X
j
jt7

− 4rjt +hjt56X̂jt +Xj−11 t −X
j
j−11 t − X̂

j
jt71 (18)

because X
j−1
j−11 t =X

j
j−11 t . By Lemma 2(b), first assume X̂

j
jt = 0.

Then, by Definition 2, X̂jt + Xj−11 t − X
j
j−11 t = Xjt − X

j
jt , and

(18) reduces to 4�jt + rj+11 t − rjt56Xjt −X
j
jt7, which is positive

by Assumption 1 and Lemma 2(c). If Xj
jt = 0, then, by Defi-

nition 2, (18) becomes 4�jt + rj+11 t − rjt5Xjt , which is positive.
Part (c) is established similarly.

Proof of Lemma 5. Suppose first that s0 < y0. Then,
given the yi+1 ≥ yi, yn ≥ · · · ≥ y0 > s0 ≥ s1 ≥ · · · ≥ sn, so that
none of the (ii), (iii), and (iv) can be true. Now suppose
that s0 ≥ y0 (i.e., part (i) is not true). Then, either sn ≥ yn or
sn < yn holds. Suppose that statement (ii), sn ≥ yn, is true.
Then, s0 ≥ s1 ≥ · · · ≥ sn ≥ yn ≥ · · · ≥ y0, and neither (iii) nor
(iv) can be true.

Now suppose that sn < yn and s0 ≥ y0 (i.e., (i) and (ii)
are not true). Assume there exists a j ∈ 811 0 0 0 1n9 such
that yj−1 ≤ sj < yj . Then, s0 ≥ · · · ≥ sj−1 ≥ sj ≥ yj−1 ≥ yj−2;
thus, there is no k ∈ 801 0 0 0 1 j − 19 such that yk > sk+1. Sim-
ilarly, yn ≥ 0 0 0 ≥ yj > sj ≥ sj+1 ≥ 0 0 0 ≥ sn, and there is no k ∈

8j1 0 0 0 1n9 such that sk ≥ xk. Thus, (iv) cannot be true. Let
there exist a j∗ 6= j such that yj∗ > sj∗ ≥ yj∗−1. If j∗ < j , then
sj∗ ≥ sj ≥ yj−1 ≥ yj∗ , a contradiction. If j∗ > j , then sj∗ ≤ sj <
yj ≤ yj∗−1, also a contradiction. Thus, j is unique.

Now suppose that (i), (ii), and (iii) are not true. To prove
uniqueness, let there exist a k ∈ 801 0 0 0 1n−19, such that sk ≥

yk > sk+1. Assume an i 6= k, such that si ≥ yi > si+1. If i > k,
then, si ≤ sk+1 < yk ≤ yi, which is a contradiction. If i < k,
then si+1 ≥ sk ≥ yk ≥ yi, which is a contradiction. Thus, k is
unique. To prove existence, we distinguish three cases.

Case (1): There does not exist any i, i ∈ 80111 0 0 0 1n9, such that
yn > si ≥ y0. Because sn <yn, there exists a j , j ∈ 80111 0 0 0 1n9,
such that yn > sj ≥ sj+1 ≥ · · · ≥ sn. Let kn 2= min 8j � sj < yn9.
Thus, skn = max 8sj � sj < yn9. Because s0 ≥ y0, there exists a
j ′, j ′ ∈ 80111 0 0 0 1n9, such that s0 ≥ s1 ≥ · · · ≥ sj ′ ≥ y0. Let k0 2=
max 8j ′ � sj ′ ≥ y09. Thus, sk0

= min 8sj ′ � sj ′ ≥ y09. Because there
is no i such that yn > si ≥ y0, then skn < y0 and sk0

≥ yn. By
definition of sk0

, sk0+1 < y0 (k0 < n because, by the original
assumptions, sn < yn). Thus, kn = k0 + 1 and sk0

≥ yn ≥ yk0
≥

y0 > sk0+1. The required condition holds with k = k0.
Case (2): There exists a single i ∈ 80111 0 0 0 1n9, such that yn >

si ≥ y0. If si ≥ yi, then si ≥ yi ≥ y0 > si+1, and the required

condition holds with k = i. If si < yi, then si−1 ≥ yn ≥ yi−1
> si; the required condition holds with k = i− 1.

Case (3): There exist multiple i ∈ 80111 0 0 0 1n9, such that yn >
si ≥ y0. Let i1 = min8i � yn > si ≥ y09; i2 = max8i � yn > si ≥ y09.
Thus, yn > si1 ≥ · · · ≥ si2 ≥ y0. Suppose that si1 < yi1−1. Then,
by definition, si1−1 ≥ yn ≥ yi1−1 > si1 , and the required condi-
tion holds with k = i1 − 1. Suppose instead si1 ≥ yi1−1. Then,
si1 ≥ yi1 (otherwise, yi1 > si1 ≥ yi1−1, which contradicts the
assumption that (iii) is not true). Let i∗ 2= max8i � i1 ≥ i ≥

i23 si ≥ yi9. Thus, si∗ ≥ yi∗1 and si∗+1 < yi∗+1. Because si∗+1 <
yi∗+1, then si∗+1 <yi∗ ; otherwise the initial assumption is vio-
lated. Thus, si∗ ≥ yi∗ > si∗+1. The required condition holds
with k = i∗.

Finally, assume there exists no k, k ∈ 801 0 0 0 1n− 19, such
that sk ≥ yk > sk+1. Then we must have (i) s0 ≥ · · · ≥ sn ≥ yn ≥

· · · ≥ y0, (ii) yn ≥ · · · ≥ y0 ≥ s0 ≥ · · · ≥ sn, or (iii) there exists a
j such that yn ≥ · · · ≥ yj > sj ≥ yj−1 ≥ · · · ≥ y0. This completes
the proof.

Proof of Lemma 6. There exist convex fj1 t+1 such that
ft+14�1yt5 =

∑L−1
j=0 fj1 t+14�1yjt5. Let Ŷt be a DS policy with

the threshold stage k. Then, Ŷjt = yjt for j < k, and
Ŷjt = Yjt = Ŷkt for j ≥ k. Define

f̃j1 t+14�1y5

2=







�t4�1y5+ bjty+�E6fj1 t+14�t+11y−Dt57 if j = 01

bjty+�E6fj1 t+14�t+11y−Dt57 if j > 0

for each j . We first construct the base-stock vector Ŝ∗
t 4�5,

then prove the results of the lemma. Using f̃j1 t+14�1y5,
Equation (10) becomes

ft4�1yt � Ŷt5 =

L−1
∑

j=0

4rj+11 t − rjt5yjt +
k−1
∑

j=0

cjtyjt +
L−1
∑

j=k

cjtŶkt

+

L−2
∑

j=k

f̃j1 t+14�1 Ŷkt5+Gk
t+14�1 Ŷkt1yt51 (19)

where

Gk
t+14�1 Ŷkt1yt5 = min

yjt≤Yjt≤yj+11 t
j=010001 k−2

[k−2
∑

j=0

f̃j1 t+14�1Yjt5

]

+ min
yk−11 t≤Yk−11 t≤Ŷkt

f̃k−11 t+14�1Yk−11 t5

+ min
Ŷkt≤YL−11 t

f̃L−11t+14�1YL−11 t50 (20)

Because f̃j1 t+14�1 ·5 is convex for each �, then, by CPUM,
Gk

t+14�1 ·5 is jointly convex in Ŷkt and yt . Because f̃j1 t+14�1 ·5
is also smooth, then by Lemma 4, for each � and each
j , 0 ≤ j ≤ k − 1, there exist smooth convex functions
gj1 t+14�1 ·5 and hj1 t+14�1 ·5, as well as a smooth convex
function gL−11t+14�1 ·5 (with h−11t+1 = g−11t+1 2= 0), such that
Gk

t+14�1 Ŷkt1yt5 becomes

k−2
∑

j=0

4gj1 t+14�1yjt5+hj1 t+14�1yj+11 t55+ gk−11t+14�1yk−11t5

+hk−11t+14�1 Ŷkt5+ gL−11t+14�1 Ŷkt50 (21)
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Because f̃j1 t+14�1 ·5 is smooth and convex, there exist, in
particular for j ≥ k, a smooth convex increasing func-
tion gj1 t+14�1 ·5 and a smooth convex decreasing function
hj1 t+14�1 ·5, such that fj1 t+1 = gj1 t+1 +hj1 t+1. Thus, gj1 t+14�1 ·5
and hj1 t+14�1 ·5 are now defined for all � and j . For each
j , 0 ≤ j ≤ L − 1, define Hj1 t+14�1y5 2= hj−11t+14�1yjt5 +

gj1 t+14�1yjt5 + cjt4�5y. Then, ˜Hj1 t+14�1 ·5 is convex and
smooth for each �. We make use of Hj1 t+14�1 ·5, (21) and
(20) to rewrite the original equation in (19) as

ft4�1yt � Ŷt5 =

L−1
∑

j=0

4rj+11 t − rjt5yjt +
k−1
∑

j=0

Hj1 t+14�1yjt5

+

L−1
∑

j=k

Hj1 t+14�1 Ŷkt50 (22)

For each �, and k, 0 ≤ k ≤ L− 1, define the following.

Gk1 t+14�1 Ŷkt5 2=
L−1
∑

j=k

Hj1 t+14�1 Ŷkt51 and

Ŝkt4�5 2= arg min
Ŷkt

Gk1 t+14�1 Ŷkt50

Thus, Gk1 t+14�1 ·5 is smooth and convex for each �, and
Ŝkt4�5 is its unconstrained minimizer.

We construct our desired base-stock vector Ŝ∗
t 4�5 recur-

sively as follows:

Ŝ∗

jt4�5=







ŜL−11 t4�5 if j = L− 11

max 6Ŝjt4�51 Ŝ∗
j+11 t4�57 if j < L− 1.

(23)

We now verify the desired properties of Ŝ∗
t 4�5. Part (a) fol-

lows directly from (23).
To prove (b), we make use of Lemma 5. Let � and yt be

given, and Ŷ ∗
t 4�1yt5 be as in (9).

Assume case (i): Ŝ∗
0t4�5 < y0t . Then, by (9), Ŷ ∗

0t4�1yt5 =

Ŝ∗
0t4�5 < y0t . Because y0t ≤ y1t , by the construction of
Ŝ∗
t 4�5, we get Ŝ∗

1t4�5 ≤ Ŝ∗
0t4�5 = Ŷ ∗

0t4�1yt5. Thus, Ŷ ∗
1t4�1yt5 =

Ŷ ∗
0t4�1yt5. Assume inductively that Ŷ ∗

jt4�1yt5= Ŷ ∗
0t4�1yt5 for

some j < L − 1. We get Ŝ∗
j+11 t4�5 ≤ Ŝ∗

0t4�5 = Ŷ ∗
0t4�1yt5 =

Ŷ ∗
jt4�1yt5. Thus, Ŷ ∗

j+11 t4�1yt5 = Ŷ ∗
0t4�1yt5. Consequently,

Ŷ ∗
kt4�1yt5 = Ŷ ∗

0t4�1yt5 for all k, and Ŷ ∗
t 4�1yt5 is a DS policy

(all upstream echelons are disposal saturated).
Assume case (ii): Ŝ∗

L−11 t4�5 ≥ yL−11 t . Then, Ŝ∗
0t4�5 ≥

Ŝ∗
L−11 t4�5 ≥ yL−11 t ≥ y0t , and we get Ŷ ∗

0t4�1yt5 = y0t . Assume
inductively that Ŷ ∗

jt4�1yt5 = yjt for some j < L − 1. Then,
Ŷ ∗
jt4�1yt55 + yj+11 t − yjt = yj+11 t , and we get Ŝ∗

j+11 t4�5 ≥

Ŝ∗
L−11 t4�5 ≥ yL−11 t ≥ yj+11 t , which gives Ŷ ∗

j+11 t4�1yt5 = yj+1t .
So, in this case, there are no disposals, and Ŷ ∗

t 4�1yt5 is a DS
policy.

Assume case (iii): there exists a unique j , j ∈ 811 0 0 0 1L−19
such that yjt > Ŝ∗

jt4�5 ≥ yj−11 t . Then, Ŷ ∗
jt4�1yt5 = Ŝ∗

jt4�5. Use
the induction steps from case (i) to show that Ŷ ∗

it 4�1yt5 =

Ŷ ∗
jt4�1yt5 for all i > j . Use the induction steps from case

(ii) to show that Ŷ ∗
it 4�1yt5 = yit for all i < j . Thus, stages

upstream of j are disposal saturated, and downstream
stages have no disposal, so Ŷ ∗

t 4�1yt5 is a DS policy.

Assume case (iv): there exists a unique k, k ∈ 801 0 0 0 1L−29
such that Ŝ∗

kt4�5 ≥ ykt > Ŝ∗
k+11 t4�5. Thus, Ŷ ∗

kt4�1yt5 = ykt . Use
the induction steps from case (i) to show that Ŷ ∗

it 4�1yt5= ykt
for all i > k. Use the induction steps from case (ii) to show
that Ŷ ∗

it 4�1yt5 = yit for all i < k, so that Ŷ ∗
t 4�1yt5 is a DS

policy. This completes the proof of part (b).
The proof of part (c) follows directly from expression (20).
To prove (d), first define, for convenience, f̄t4�1yt5 2=

ft4�1yt � Ŷ ∗
t 5. Next, define

f̄0t4�1y0t5 2=



















































4r1t − r0t5y0t +H01 t+14�1y0t5+G11 t+14�1 Ŝ
∗
1t4�55

if y0t ≤ Ŝ∗
1t4�51

4r1t − r0t5y0t +G01 t+14�1y0t5

if Ŝ∗
0t4�5≥ y0t > Ŝ∗

1t4�51

4r1t − r0t5y0t +G01 t+14�1 Ŝ
∗
0t4�55

if y0t > Ŝ∗
0t4�5;

and, for 0 < j ≤ L− 1,

f̄jt4�1yjt5

2=











































4rj+11 t − rjt5yjt +Hj1 t+14�1yjt5+Gj+11 t+14�1 Ŝ
∗
j+11 t4�55

−Gj1 t+14�1 Ŝ
∗
jt4�55 if yjt ≤ Ŝ∗

j+11 t4�51

4rj+11 t − rjt5yjt +Gj1 t+14�1yjt5−Gj1 t+14�1 Ŝ
∗
jt4�55

if Ŝ∗
jt4�5≥ yjt > Ŝ∗

j+11 t4�51

4rj+11 t − rjt5yjt if yjt > Ŝ∗
jt4�5,

where, for convenience, Ŝ∗
L1t4�5 2= 0 for all t and �.

Because Hjt4�1 ·5 and Gj1 t+14�1 ·5 are smooth and convex
for each j and �, then f̄jt4�1 ·5 is also smooth and convex.
It remains to verify that f̄t+14�1yt5 =

∑L−1
j=0 f̄j1 t+14�1yjt5 for

each �. We apply Lemma 5. Let �, yt , and Ŷ ∗
t 4�1yt5 be

given, and f̄jt4�1yjt5 be as given above.
Assume case (i): Ŝ∗

0t4�5 < y0t . By part (b), Ŷ ∗
jt4�1yt5 =

Ŷ ∗
0t4�1yt5= Ŝ∗

0t4�5 < y0t ≤ yjt for every j , and using the defi-
nition of f̄jt4�1yjt5, we get

L−1
∑

j=0

f̄j1 t+14�1yjt5=

L−1
∑

j=0

4rj+11 t − rjt5yjt +G01 t+14�1 Ŝ
∗

0t4�551

which, by Equation (22), is exactly f̄t4�1yt5 with the thresh-
old stage k = 0 and Ŷ ∗

0t4�1yt5= Ŝ∗
0t .

Assume case (ii): Ŝ∗
L−11 t4�5 ≥ yL−11 t . By part (b),

Ŷ ∗
jt4�1yt5= yjt for all j , and we get

L−1
∑

j=0

f̄j1 t+14�1yjt5=

L−1
∑

j=0

4rj+11 t − rjt5yjt +
L−1
∑

j=0

Hj1 t+14�1yjt51

which, by Equation (22), is exactly f̄t4�1yt5 when there are
no disposals, and Ŷ ∗

jt4�1yt5= yjt .
Assume case (iii). Given such a j , by part (b), Ŷ ∗

it 4�1yt5=

Ŷ ∗
jt4�1yt5 for all i > j , and Ŷ ∗

it 4�1yt5= yit for all i < j . Using
the definition of f̄jt4�1yjt5, we get

L−1
∑

j=0

f̄i1 t+14�1yit5 =

L−1
∑

i=0

4ri+11 t − rit5yit +
j−1
∑

i=0

Hi1 t+14�1yit5

+Gj1 t+14�1 Ŝ
∗

jt4�551
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which, by Equation (22), is exactly f̄t4�1yt5 with the thresh-
old stage j , and Ŷ ∗

jt4�1yt5= Ŝ∗
jt4�5.

Assume case (iv). Given such a k, by part (b), Ŷ ∗
it 4�1yt5=

ykt for all i > k, and Ŷ ∗
it 4�1yt5 = yit for all i < k. Using the

definition of f̄jt4�1yjt5, we get

L−1
∑

j=0

f̄j1 t+14�1yjt5 =

L−1
∑

i=0

4rj+11 t − rjt5yjt +
k−1
∑

j=0

Hj1 t+14�1yjt5

+Gj1 t+14�1ykt51

which, by Equation (22), is f̄t4�1yt5 with the threshold stage
k+ 1, and Ŷ ∗

k+11 t4�1yt5= ykt .

Proof of Theorem 3. By Assumption 3, f ∗
T+14�1 ·5 =

fT+14�1 ·5 is additively convex and smooth for every �.
Assume inductively that f ∗

t+14�1 ·5 is additively convex and
smooth for every �. Apply Lemma 6: There exists in
period t a disposal saturation policy specified by a set of
ordered base-stock levels, one at each echelon; the resulting
optimal inventory policy is the echelon base-stock policy;
and f ∗

t 4�1 ·5 is additively convex and smooth for every �.
This completes the proof.
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