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On the basis of qualitative analysis of the system of differential equations of the standard cos-
mological model it is shown that in the case of zero cosmological constant this system has a
stable center corresponding to zero values of potential and its derivative at infinity. Thus, the
cosmological model based on single massive classical scalar field in infinite future would give
a flat Universe. The carried out numerical simulation of the dynamic system corresponding
to the system of Einstein - Klein - Gordon equations showed that at great times of the evo-
lution the invariant cosmological acceleration has an oscillating character and changes from
−2 (braking), to +1 (acceleration). Average value of the cosmological acceleration is negative
and is equal to−1/2. Oscillations of the cosmological acceleration happen on the background
of rapidly falling Hubble constant. In the case of nonzero value of the cosmological constant
depending on its value there are possible three various qualitative behavior types of the dy-
namic system on 2-dimensional plane (Φ,Φ̇), which correspond either to zero attractive fo-
cus or to stable attractive knot with zero values of the potential and its derivative. Herewith
the system asymptotically enters the secondary inflation. Carried out numerical simulation
showed that at cosmological constantΛ< m23 ·10−8 the macroscopic value of the cosmolog-
ical acceleration behaves itself similar to the case Λ= 0, i.e. in the course of the cosmological
evolution there appears a lasting stage when this value is close to −1/2 which corresponds to
non-relativistic equation of state.

Keywords: standard cosmological model, quality analysis, numerical simulation, com-
puter gravitation.
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1. Basic Relations of the Standard Cosmological Model

Let us consider the space-flat Friedman Universe

d s2 = d t 2 −a2(t)dℓ2
0 (1)

(dℓ2
0 is a metrics of 3-dimensional Euclidean space), generated by homogenous massive

scalar field whose potential Φ(t) complies with the Klein - Gordon equation:

Φ̈+3
ȧ

a
Φ̇+m2Φ= 0 (2)

where the derivative of t is denoted with a dot. Herewith the scale factor a(t) complies
with a unique non-trivial Einstein equation:

3
ȧ2

a2 =Λ+8π(Φ̇2 +m2Φ2), (3)
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where Λ is a cosmological term which we further suppose non-negative:

Λ≥ 0. (4)

These well known equations1 (2) and (3) represent a system of autonomous ordinary dif-
ferential equations the analysis of which is a subject of this research.
Let us introduce the further required scalar functions: Hubble constant

H(t) = ȧ

a
(5)

and invariant cosmological acceleration:

Ω(t) = äa

ȧ2 ≡ 1+ Ḣ

H 2 (6)

Let us note the following useful relation between Ω and barotropic coefficient κ in the
equation of state p = κε:

Ω=−1

2
(1+3κ). (7)

Let us also write down the expressions for the scalar field’s energy density and pressure:

ε= Φ̇2 +m2Φ2; p = Φ̇2 −m2Φ2, (8)

so that
ε+p = 2Φ̇2, (9)

2. Qualitative Analysis of the Dynamic System of the Standard Cosmological
Model

2.1. Reduction of the System of Equations to the Canonical Form

First, let us carry out scaling of the equations proceeding to new dimensionless time vari-
able τ

τ= mt ,⇒ ḟ = m f ′, (10)

where f ′ = d f /dτ. Thus, from (2) and (3) we get:

Φ′′+3HmΦ
′+Φ= 0; (11)

3H 2
m =Λm +8π

(
Φ′2 +Φ2), (12)

where Hm(τ) andΛm are the Hubble constant and cosmological constant, both measured
in Compton time units:

Hm(τ) = a′

a
= H

m
; Λm = Λ

m2 . (13)

Let us notice that equations (11) and (12) represent a system of ordinary nonlinear dif-
ferential equations. Taking into account condition

ȧ ≥ 0 ⇔ H ≥ 0 (14)

1 see e.g. [2].
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and using a standard substitution this system can be reduced to the form of normal au-
tonomous system of ordinary differential equations on a plane:

Φ′ = Z (t); (15)
Z ′ = −3Hm Z −Φ, (16)

where function Hm(Φ, Z ) is algebraically defined through the Einstein equation using
functions Φ(τ) and Z (τ):

Hm = 1p
3

√
Λm +8π

(
Z 2 +Φ2

)
. (17)

Thus, we finally get a system of autonomous differential equations of the dynamic system
on the plane (Φ, Z ):

{
Φ′ = Z (t);

Z ′ =−p3π
√
Λm +8π

(
Z 2 +Φ2

)
Z −Φ;

(18)

or, in terms of qualitative theory of ordinary differential equations (see e.g. [3]):




d x

d t
= P(x, y);

d y

d t
=Q(x, y)

(19)

where

x ≡Φ; y ≡ Z ; P(x, y) ≡ y ;

Q(x, y) ≡−
p

3π
√
Λm +8π

(
x2 + y2

)
y −x. (20)

This system of equations can be investigated and asymptotic behavior of the solutions at
t → ±∞ can be defined with a help of qualitative theory of differential equations. The
next property of the Standard Cosmological Model (SCM) is an important one:
The evolution of the Universe in the SCM with cosmological term in terms of time variable

τ is defined by the only one parameter Λm and initial conditions.

2.2. Singular Points of the Dynamic System

Singular points of the dynamic system M0(x0, y0 (19) are defined by zeroes of the deriva-
tives (see e.g. [3]):

P(x0, y0) = 0; Q(x0, y0) = 0.

It is not difficult to see that the dynamic system (19) as in the case Λ≡ 0 has a unique
singular point:

M0 = (0,0)←→ x0 =Φ0 = 0; y0 = Z0 = 0. (21)
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2.3. A Kind of Singular Point

To define a kind of a singular point it is necessary to find the eigenvalues of the charac-
teristic polynomial:

∆(λ) =
∣∣∣∣∣∣

P ′
x(x0, y0)−λ P ′

y (x0, y0)

Q ′
x(x0, y0) Q ′

y (x0, y0)−λ

∣∣∣∣∣∣
= 0, (22)

where partial derivatives of functions P(x, y), Q(x, y) are calculated in a singular point
M0. Calculating derivatives of functions P,Q in (20), let us find:

P ′
x(0,0) = 0; Q ′

y (0,0)= 1;

Q ′
x(0,0)=−1; Q ′

y (0,0)=−
√

3Λm

Thus, the characteristic polynomial (22) is equal to:

∆(λ) =
∣∣∣∣∣∣

−λ 1

−1 −λ−p
3Λm

∣∣∣∣∣∣
= 0,

where from we find its roots

λ± =−1

2

√
3Λm ± 1

2

√
3Λm −4. (23)

Eigenvalues satisfy the following identity:

λ1λ2 ≡ 1. (24)

Thus, four essentially different cases are possible (see [3]):
1. The case of zero cosmological term:

Λm ≡ 0 (25)

we have two complex conjugated imaginary eigenvalues:

λ± =±i . (26)

Since eigenvalues turned to be pure imaginary ones then a unique singular point (21) of
the dynamic system (19) is its center (see [3]). In this case at τ→+∞ the phase trajectory
of the dynamic system is winded round this center making an infinite number of turns.

2. The case of small cosmological term:

0 <Λm < 4

3
(27)

we have two complex conjugated eigenvalues and it is

Re(λ) =−
p

3Λm

2
< 0. (28)
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In this case in accordance with qualitative theory of differential equations, point M0 (21)
is an attractive focus, all phase trajectories of the dynamic system at τ→+∞ are twisting
spirals, which are winded round the singular point performing an infinite number of
turns. This case effectively coincide qualitatively with the previous one.

3. The case of great value of the cosmological term:

Λm > 4

3
(29)

– then we have two various real and, according to (23), negative eigenvalues λ1 6= λ2,
λ1 < 0,λ2 < 0. In such a case the singular point is a stable attractive knot. At τ→ +∞
all phase trajectories of the dynamic system enter the singular point and all all the tra-
jectories apart two exceptional ones, when coming to this singular point, are tangent to
eigenvector u1, which corresponds to eigenvalue, being minimal by its module, i.e. λ1.
Two exceptional trajectories are tangent to the second eigenvector u2. Mentioned eigen-
vectors are equal to:

u1 = (1,λ1); u1 = (1,λ2). (30)

The angle α between the eigenvectors is defined by means of the relation:

cosα≡ u1u2√
u2

1u2
2

=
√

4

3Λm
< 1. (31)

At very large values of Λm the angle between the eigenvectors tends to π/2, at Λm → 4/3
this angle tends to zero.

4. The degeneration case:

Λm = 4

3
(32)

– this case effectively coincides with the previous one with an account of the circum-
stance that all trajectories enter the singular point tangent to unique eigenvector – this
exactly corresponds to mentioned above extreme case α→ 0. Thus, the phase trajectory
of the dynamic system based on the equation of classical massive scalar field (2) and the
Einstein equation (3), in the plane (Φ, Z ) has a single zero singular point (attractive focus
or attractive stable point) (21), where it is:

t →+∞⇒Φ→ 0; Φ̇→ 0 ⇒ H →
√
Λ

3
, (33)

Ω→
{

1, Λ 6≡ 0;
0, Λ≡ 0.

(34)

All that is changing is a type of the singular point and along with that the details of the
approach of the phase trajectories to the singular point Φ= 0, Φ̇= 0 at τ→+∞.
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2.4. The Asymptotic Behavior of the Scale Factor

Since at τ→+∞ (or t →+∞) Φ→ 0 and Φ̇→ 0, then in the absence of other forms of
matter apart from the scalar field, the Universe stays alone with the Λ - term, therefore
in consequence of the Einstein equation (3) the scale factor evolves by the inflation law:

a(t) ∼ eH0t , t →+∞, (35)

where H0 is the Hubble constant:

H0 =
√
Λ

3
≡ m

√
Λm

3
. (36)

At early stages it is τ→−∞, until:

Φ(τ) ≈Φ0 = Const;−→ 8πΦ2
0 ≫Λm , (37)

H(t) ≈ H1 =
mp

3

√
Λm +8πΦ2

+0 > H0 (38)

early inflation takes place:
a(t) ∼ eH1t , t →−∞ (39)

Thus, the invariant cosmological acceleration

Ω= äa

ȧ2 ≡ 1+ Ḣ

H 2 (40)

at Λ 6≡ 0 tends to one at early and late stages:

Ω(t) → 1, t →±∞. (41)

Along with this, the Hubble “constant” has constant values in these extreme cases:

H(t) → H1; (t →−∞),

H(t) → H0; (t →+∞); (H1 > H0). (42)

2.5. The Phase Trajectories of the Dynamic System (18)

It is necessary to bear in mind that time variable on all the plots is τ, i.e. the time mea-
sured at Compton scale. Since the evolution of the investigated dynamic system (19) is
defined only by initial conditions and the value of normalized cosmological constantΛm ,
let us consider the dependency of the evolution details on the value of the cosmological
constant and the initial conditions. Further, let us accept the assumption that Φ̇(−∞) = 0.
We will investigate the properties of phase trajectories in terms of the plot shown on
Fig. 1:
1. The initial stage with a duration ∆τ with Φ ≈Φ0 – right part of the plot; this stage is
characterized by a rapid fall of the potential’s derivative from 0 to “enigmatic number”
−0.115. Actually there is no any enigma in this number (see (18)):

Z0 =− 1p
24π

≈−0.1151647165. (43)
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Fig. 1. The qualitative view of the phase trajectory of the dynamic system (18) at Λm ≪ 1. On
this figure∆τ is a characteristic time of decrease of the potential rate of change till the “bottom”of
the plot, Z0 ≈−0.115, ∆t is a characteristic time of decrease of the potential value with a constant
velocity Φ′ ≈ Z0. After this instant of time there start the winding of the phase trajectory round
the zero center. The number of spiral turns is infinite.

Actually, inflation happens at this stage.

2. TheMiddle stage with duration∆t is a medium part of the plot; Z =Φ′ ≈ Const = Z0

at this stage. Potential falls to significantly small values at this stage.

2.6. Zero Value of Λ: Λm = 0

3. The final stage of evolution with infinite duration; damped oscillations of the potential
and its derivative happen at this stage. The Universe stays asymptotically flat.
The plots below show the results of numerical simulation of the dynamic system (18) at

various initial conditions. In this paper it is used a Rosenbrock’s method well adapted to
integration of stiff systems of differential equations. Let us show the characteristic exam-
ples of phase portraits of the dynamic system (18), obtained using numerical simulation
methods in the system of the applied mathematics Maple XVII.
Since characteristic properties of the system’s (18) phase portraits have incomparable

scales, we show fragments of phase planes on different time intervals.

Small Values of Λ: Λm = 0.1< 4
3

In this case the final point of the phase trajectory is the attractive focus (21) Φ0 = 0; y0 =
Z0 = 0.

Large Values of Λ: Λm = 10> 4
3

In this case the final point of the phase trajectory is the stable attractive knot (21) Φ0 =
0; y0 = Z0 = 0. The large-scale picture of the phase trajectory does not qualitatively differ
from the previous one however the method of entry to this point is changed (Fig. 12 –
13).
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Fig. 2. The large-scale phase portrait of
the dynamic system (19) τ ∈ [−1000,1000];
Φ(−1000) = 10, Z (−10000)= 0.

Fig. 3. The initial stage of descent of the dy-
namic system (18) (the right-most part of the
plot on Fig. 1) τ ∈ [−1000,−999.9]; ∆τ . 10−1;
Φ(−1000) = 10, Z (−10000)= 0.

Fig. 4. The middle stage of the dynamic sys-
tem (18) Φ′ ≈ Const ≈ −0.115 τ ∈ [−950,100];
Φ(−1000) = 10, Z (−10000)= 0.

Fig. 5. Winding round the center M0 = (0,0)
of the dynamic system (18) (the left-most part
of the plot shown on Fig. 1) τ ∈ [−915,−700];
Φ(−1000) = 10, Z (−10000)= 0.

3. Numerical Integration of the Dynamic Equations

However, phase portraits of the dynamic system (18) presented on Fig. 2 – 13 do not pro-
vide information about certain details of the cosmological evolution which are possible to
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Fig. 6. The final stage of the dynamic system
(18): winding round the center M0 = (0,0) at
initial conditions: Φ(−1000) = 10,Φ̇(−1000) = 0;
τ ∈ [−900,−700].

Fig. 7. The final stage of the dynamic system
(18): winding round the center M0 = (0,0) of
the dynamic system (18) (left part of the plot
shown on Fig. 1) τ ∈ [−800,−100].

Fig. 8. The large-scale picture of the phase
trajectory τ ∈ [−1000,1000] at initial values:
Φ(−1000) = 10; Z (−1000)= 0.

Fig. 9. The stage of the phase trajectory’s de-
scent at times τ ∈ [−1000,−999.9] at initial val-
ues: Φ(−1000) = 10; Z (−1000)= 0.

obtain only by direct numerical integration of the original systemof Einstein - Klein -Gor-
don equations. Moreover, they do not provide information about original 3-dimensional
dynamic system which also includes the Einstein equation (3) as well as they do not pro-
vide information about observed cosmological scalars H(t) and Ω(t). We should apply
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Fig. 10. The stage of winding of the phase
trajectory round the attractive focus: τ ∈
[−915,−700] at initial values: Φ(−1000) = 10;
Z (−1000)= 0.

Fig. 11. The final stage of the phase trajec-
tory – twisting spiral line: τ ∈ [−800,−100] at
initial values: Φ(−1000) = 10; Z (−1000)= 0.

Fig. 12. Approach to the attractive knot of
the phase trajectory: τ ∈ [85,1000] at initial val-
ues: Φ(−1000) = 10; Z (−1000)= 0.

Fig. 13. Passing through the attractive knot
of the phase trajectory: τ ∈ [400,600] at initial
values: Φ(−1000)= 10; Z (−1000)= 0.

methods of direct numerical integrations of the original system of differential equations
to obtain this information. Below we show the results of numerical integration of these
equations using Rosenbrock’s method, which is well adapted for numerical integration of
systems of ordinary differential equations possessing the stiffness criteria. In series of
more simple cases we used the standard Runge - Kutta - Fehlberg method of 4-5 orders
and in series of more complex cases- the Runge-Kutta method of 7-8 orders.
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3.1. The Evolution of the Potential and its Derivative

At the initial stages τ→∞ at large enough values of the potential the scalar field evolves
the sameway as in the caseΛ= 0: the value of the scalar field’s potential falls linearly with
time. Then the transition to oscillating mode happens. Fig. 16 – 17 show the evolution

Fig. 14. The evolution of the potential at
early stages at small value of the cosmological
constant Λm = 0.001; Φ(−1000) = 100.

Fig. 15. The evolution of the potential at late
stages at small value of the cosmological con-
stant Λm = 0.001; Φ(−1000)= 100.

of the potential at stage of damped oscillations in the case of zero and small values of
the cosmological constant. It is seen that at the same initial values of the scalar potential
at this stage the amplitude of the potential’s oscillations at the same time is by order of
magnitude greater in the case of zero value of the cosmological constant.

Fig. 16. The evolution of the potential at
stage of oscillations at zero value of the cos-
mological constant Λm = 0 in the logarithmic
time scale; Φ(−1000)= 100.

Fig. 17. The evolution of the potential at
stage of oscillations in the logarithmic time
scale at small value of the cosmological con-
stant Λm = 0.001; Φ(−1000)= 100.
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3.2. The Evolution of the Hubble Constant H(t )

The fall of the Hubble constant from H1 (38) till H0 (36) starts the later, the bigger is the
initial value of the scalar field’s potential Φ0 =Φ(−∞) (Fig. 18 – 19).

Fig. 18. The dependency of the Hubble
constant’s evolution on initial value of the
scalar potential: bottom - up: Φ(−1000) =
0.1;1;10;30;100 at small value of the cosmolog-
ical constant Λm = 0.01.

Fig. 19. The dependency of the Hubble con-
stant’s evolution on value of the cosmological
constant: bottom - up: Λm = 0;0.0001;0.1;1;10
at initial values: Φ(−1000) = 100; Z (−1000)= 0.

3.3. The Scale Factor

The evolution of the scale factor is shown on Fig. 20 – 21. The values of the ln function
are put on the Y-axis of the plots on these pictures

L(τ) = ln(a(τ)).

Therefore value lnL = 10 corresponds to value L ∼ 104 and the value of the scale factor
a/a0 ∼ 109566.

3.4. The Evolution of the Invariant Cosmological Acceleration

The cosmological acceleration Ω is calculated using the following formula:

Ω(τ) = 1+ H ′
m(τ)

H 2
m(τ)

. (44)

The value of the cosmological acceleration also oscillates with period ∼ 2π after the
stage of primary inflation. Fig. 22 – 23 show the stage of the cosmological acceleration’s
oscillations. In particular, Fig. 23 allows us to see how the average value of the cosmo-
logical acceleration grows approximately from −1/2 to 1.
It should be noted that the oscillating character of the cosmological acceleration at

late stages for the case of classical massive scalar field also was discovered at numerical
integration of the equations of the cosmological model with scalar charged particles [4].



Yu.G. Ignat’ev 143

Fig. 20. The dependency of the scale factor’s
evolution on the initial value of the scalar po-
tential: bottom-up: Φ(−1000) = 0.1;1;10;100 at
small value of the cosmological constant Λm =
0.1.

Fig. 21. The dependency of the scale fac-
tor’s evolution on the cosmological constant:
bottom-up: Λm = 0;0.1;4/3;10 at initial values:
Φ(−1000) = 1; Z (−1000)= 0.

Fig. 22. The large-scale evolution of the
cosmological acceleration: Φ(−1000) = 100 at
small value of the cosmological constant Λm =
0.00001. The black-painted range of the plot
represent damped oscillations.

Fig. 23. The range of oscillating stage of
the evolution of the cosmological acceleration
Λm = 0.001 at initial values: Φ(−1000) = 0.1;
Z (−1000)= 0.

3.5. The Average of the Cosmological Acceleration

The fact that the invariant cosmological acceleration has an oscillating character at great
times (Fig. 25), having the period of these oscillation on the time scale τ of the order of 2π,
i.e. in the ordinary time scale T ∼ 2π/m being an obviously microscopic value, leads to
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necessity of introduction of the average value of the invariant cosmological acceleration
averaged by large enough number of oscillations i.e. by large enough interval∆τ= N ·2π,
where N ≫ 1:

Ω(τ,∆τ)≡ 1

∆τ

τ+∆τ∫

τ

Ω(τ′)dτ′. (45)

Using (45) in formula (44) and carrying out elementary integration, let us find the follow-
ing expression for the average cosmological acceleration:

Ω(τ,∆τ)= 1+ 1

∆τ

( 1

h(τ)
− 1

h(τ+∆τ)

)
. (46)

Fig. 24. The evolution of the average cosmo-
logical acceleration: Φ(−1000) = 100 at cosmo-
logical constant Λm = 0.1. The duration of the
interval of averaging ∆τ= 20π.

Fig. 25. The evolution of the average cosmo-
logical acceleration: Φ(−1000) = 100 at cosmo-
logical constant Λm = 0.0001. The duration of
the interval of averaging ∆τ= 100π.

4. The Conclusion

Thus, we can state a fact that at small values of the cosmological constant Λm ≤ 3 ·10−8

the evolution of the dynamic system laid in the basis of SCM, at large time intervals very
weekly differ from the evolution of the dynamic system without account of the cosmo-
logical constant. In particular, sufficiently long non - relativistic stage appears in that
system.
It must be noted that if using the standard model of the elementary particles with

mass of Higgs boson of order of 10 Tev∼ 10−15mpl in the capacity of the base model , this
limitation gives us Λ ≤ 3 ·10−38. As is known, the value of the cosmological constant is
estimated as 10−123, so that the real cosmological situation relates exactly to the consid-
ered case, which corresponds to the first kind of a the singular point – attractive pole. As
we noted above, the final stage of such a cosmological model is the inflation one while at
intermediate stages of expansion there automatically appears the non-relativistic mode.
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Fig. 26. The evolution of the average cosmo-
logical acceleration: Φ(−1000) = 100 at cosmo-
logical constant Λm = 0.00001. The duration of
the interval of averaging ∆τ= 100π.

Fig. 27. The evolution of the average cosmo-
logical acceleration: Φ(−1000) = 100 at cosmo-
logical constant – bottom-up: Λm = 10−8;3 ·
10−8;10−7;10−6;10−5;10−4. The duration of the
interval of averaging ∆τ= 100π÷200π.

In conclusion, the Authors express their gratitude to the members of MW seminar for
relativistic kinetics and cosmology of Kazan Federal University for helpful discussion of
the work.
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