А. В. Багаев

Нижегородский государственный технический университет им. Р. Е. Алексеева, a.v.baqaev@gmail.com

ЕСТЕСТВЕННЫЕ СЛОЕНЫЕ РАССЛОЕНИЯ КАРТАНОВЫХ СЛОЕНИЙ

Исследуются слоения с трансверсальной картановой геометрией, называемые картановыми слоениями [1, 2]. Картановы слоения образуют широкий класс слоений, включающий в себя римановы, проективные, конформные, трансверсально однородные слоения. Основной конструкцией, применяемой при исследований картановых слоений, является слоеное расслоение [2].

Пусть (M, F) — картаново слосние типа (G, H), \mathfrak{g} и \mathfrak{h} — алгебры Ли групп Ли G и H, $\pi \colon \mathcal{R} \to M$ — слосное расслоение с поднятым слоением $(\mathcal{R}, \mathcal{F})$. Пусть K — группа Ли с алгеброй Ли \mathfrak{k} , $\iota \colon H \to K$ — гомоморфизм групп Ли и $\alpha \colon \mathfrak{g} \to \mathfrak{k}$ — линейное отображение, удовлетворяющие условиям:

(a)
$$\alpha|_{\mathfrak{h}} = \iota' \colon \mathfrak{h} \to \mathfrak{k};$$

(b)
$$\alpha \circ Ad_G(h) = Ad_K(\iota(h)) \circ \alpha \forall h \in H.$$

Гомоморфизм ι задает левое действие группы Ли H на K. Обозначим через $\pi^K \colon \mathcal{R}^K = \mathcal{R} \times_H K \to M$ главное K-расслоение над M, ассоциированное с главным H-расслоением $\pi, \ r^K \colon \mathcal{R} \times K \to \mathcal{R}^K$ — главное H-расслоение, $i \colon H \to G \times K \colon h \mapsto (h,e), \ F_0^K = \{\mathcal{L} \times \{k\} \mid \mathcal{L} \in \mathcal{F}, \ k \in K\}, \ \mathcal{F}^K = r^K(F_0^K).$

Показано, что $(\mathcal{R}^K, \mathcal{F}^K)$ является картановым слоением типа $(G \times K, i(H))$, при этом $r^K \colon \mathcal{R} \times K \to \mathcal{R}^K$ вместе

со слоением $(\mathcal{R} \times K, F_0^K)$ является слоеным расслоением картанова слоения $(\mathcal{R}^K, \mathcal{F}^K)$. Доказано, что картановы слоения $(\mathcal{R}^K, \mathcal{F}^K)$ и (M, F) имеют одну структурную алгебру Ли.

В слосном расслоении $\pi^K \colon \mathcal{R}^K \to M$ естественным образом строится проектируемая связность, согласованная с α и картановой связностью в \mathcal{R} ; наличие такой связности влечет тривиальность класса Атьи для этого слоеного расслоения.

Получены различные интерпретации ростковой группы голономии произвольного слоя слоения $(\mathcal{R}^K, \mathcal{F}^K)$. Доказано, что если $\iota \colon H \to K$ — инъективен, то каждый слой слоения \mathcal{F}^K имеет тривиальную группу голономии и диффеоморфен стандартному слою слоения (M,F), а сужение r^K на слой $\mathcal{L} \times \{k\}$ является регулярным накрытием с группой накрывающих преобразований, изоморфной ростковой группе голономии слоя $L = \pi(\mathcal{L}) \in F$.

Пусть $\rho \colon G \to GL(V)$ — представление G на конечномерном векторном пространстве $V, \pi^V \colon \mathcal{R}^V = \mathcal{R} \times_H V \to M$ — векторное расслоение, ассоциированное с главным H-расслоением $\pi, r^V \colon \mathcal{R} \times V \to \mathcal{R}^V$ — главное H-расслоение, $i \colon H \to G \rightthreetimes V \colon \ h \mapsto (h,0)$ — включение H в полупрямое произведение $G \rightthreetimes V, \ F_0^V = \{\mathcal{L} \times \{v\} \mid \mathcal{L} \in \mathcal{F}, v \in V\}, \ \mathcal{F}^V = r^V (F_0^V).$

Показано, что пара $(\mathcal{R}^V, \mathcal{F}^V)$ — картаново слоение типа $(G \times V, i(H))$, при этом $r^V \colon \mathcal{R} \times V \to \mathcal{R}^V$ вместе со слоением $(\mathcal{R} \times V, F_0^V)$ является слоеным расслоением картанова слоения $(\mathcal{R}^V, \mathcal{F}^V)$, и картановы слоения $(\mathcal{R}^V, \mathcal{F}^V)$ и (M, F) имеют одну структурную алгебру Ли. Рассмотрены различные интерпретации ростковой группы голономии произвольного слоя слоения $(\mathcal{R}^V, \mathcal{F}^V)$.

Доказано, что слоеное расслоение $\pi^V \colon \mathcal{R}^V \to M$ имеет есте-

ственную проектируемую линейную связность.

По аналогии с [3] мы называем построеные расслоения $\pi^K : \mathcal{R}^K \to M$ и $\pi^V : \mathcal{R}^V \to M$ естественными слоеными расслоениями картанова слоения (M, F).

ЛИТЕРАТУРА

- 1. Blumenthal R. Cartan submersions and Cartan foliations // Illinois J. Math. 1987. V. 31. P. 327-343.
- 2. Жукова Н. И. *Минимальные множества картановых* слоений // Тр. Матем. ин-та им. В. А. Стеклова РАН. 2007. Т. 256. С. 115–147.
- 3. Cap A., Slovak J. Parabolic geometries. I. Background and general theory. Mathematical Surveys and Monographs, 154. American Mathematical Society, Providence, RI. 2009. 628 p.

Ю. Ю. Багдерина

Институт математики с ВЦ УНЦ РАН, г. Уфа, yulya@mail.rb.ru

ОТДЕЛИМОСТЬ УРАВНЕНИЯ В СИСТЕМЕ ДВУХ ОДУ ВТОРОГО ПОРЯДКА

Данная работа является продолжением статьи [1], где рассматривалась задача полного разделения уравнений в системе

$$x_j'' = K_j + 2L_j x_j' + 2M_j x_k' + P_j x_j'^2 + 2S_j x_1' x_2' + Q_j x_k'^2 + x_j' (V_1 x_1'^2 + 2V_0 x_1' x_2' + V_2 x_2'^2), \quad j = 1, 2, \quad k = 3 - j,$$
(1)

в результате точечного преобразования общего вида и вида

$$\bar{t} = \theta(t), \qquad \bar{x}_1 = \varphi_1(t, x_1, x_2), \qquad \bar{x}_2 = \varphi_2(t, x_1, x_2).$$
 (2)