L

View metadata, citation and similar papers at core.ac.uk brought to you byf/\; CORE

provided by Kazan Federal University Digital Repository

Hyperfine Interact (2016) 237:9 @ CrossMark
DOI 10.1007/510751-016-1251-3

Mossbauer forward scattering: time-domain spectra

E. K. Sadykov! - A. A. Yurichuk! - R. R. Gainov! -
F. G. Vagizov!

© Springer International Publishing Switzerland 2016

Abstract The transmission of the Mdssbauer radiation through an absorber being in the
acoustic oscillation mode under forward scattering (FS) conditions has been analyzed. The
modification of the existing models of the FS spectra (frequency and time) formation to the
case of the arbitrary phase correlation of nuclear oscillations in the sample has been pro-
posed. An adequate description of the time delayed experiments with the 5TFe Mossbauer
resonance using the modulation of the single-photon wave packet by acoustic field has been
obtained. One has been done in the frame of the Raman scattering of Mssbauer photons.
The models extended this way can be used to control the degree of phase correlation of
nuclear oscillations (or other processes) induced in the sample by external fields.

Keywords Mossbauer scattering - Effect of acoustic oscillations - Time spectra - Single
photon response

1 Introduction

The results of Mossbauer forward scattering experiments in conditions of external acous-
tic excitation of sample (target) were published first time in papers [1, 2, 4]. The frequency
distribution of gamma radiation emerging from the target in the forward direction (named
as FS spectrum) was found as consisting of ultrasound (US) satellites in these works. A
mechanism of the formation of US satellites in the FS spectra (coherent enhancement of
the forward Raman scattering) was emphasized in [4] also. The US satellite structure of FS
spectra, in contrast to the US structure of Mossbauer absorption spectra [5], is formed only
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Fig.1 The principal schemes setup for observing the FS Mossbauer spectra with a natural Mossbauer source:
a frequency spectra and b time-domain spectra

for thick samples and only in the case of perfect phase correlation of nucleus oscillations.
The model [4] was worked out for the case when all nuclei of the target are vibrating with
the same phase, and for the case of complete dissonance, when nuclei are vibrating with
arbitrary phases. The authors of [4] especially underlined the phenomenon of an unusual
increase of the Mossbauer FS intensity for the strict phase correlation condition of the
Maossbauer nucleus oscillations.

In this work, we propose a modification of the existing model of Mossbauer forward scat-
tering spectra [4] to the cases of the partial phase correlation of nuclei oscillations induced
in sample by the external (US) field. Such mode should be expected for samples in the
general case that leads to the dependence of the shape of the Mossbauer FS spectra on the
extent of the phase correlation of the corresponding processes. Last one allows to control
experimentally the mechanisms of the materials excitation by external fields. We underline
also another possibility of extension of the model [4]. That is the formation of the structure
of the time-domain Mdssbauer spectra in FS scheme as a consequence of coherent Raman
scattering of gamma photons. Such spectra are shaped usually in time delayed coincidence
experiments with the internal [6] or external [7] time mark. The acoustic effects under dis-
cussion are of interest as a source of additional information accessible on the basis of fitting
of both types (frequency and time-domain) Mdssbauer spectra. It must be noted also, the
model of time-domain FS spectra is topical as a tool of simulation (fitting) of experiments
on the time Mdssbauer spectroscopy (as an instrument for control of the photon states in the
gamma-range) [8] (Fig. 1).

We specify the above for the case of the >’ Fe isotope under the US excitation of the sam-
ple with a single resonance absorption line (for example stainless steel). In the expression
for the oscillation of a separate nucleus, u, (f) = u, sin (2t 4+ ¢,), the spread of oscilla-
tion amplitudes u, and of their initial phases ¢, is allowed now. The appearance of one for
the US amplitudes in the sample is confirmed by numerous experiments. The satisfactory
description of US Mdossbauer absorption spectra has been achieved by using the distribu-
tion functions for the oscillation amplitudes of the Rayleigh [9] or Rayleigh-Rice [10, 11]
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type. The Rayleigh distribution was used also at the simulation of experimental FS spectra
[4]. In this work we pay special attention to the consequences of the possible spread of the
initial phases (¢,) of acoustic oscillations of nuclei. It is natural to relate the appearance of
such inhomogeneity to the fluctuations caused by impurities and boundaries and also by the
thermal motion in the sample. As we will see below, the phase spread may decrease the effi-
ciency of the coherent enhancement of the forward Raman scattering intensity and leads to
more considerable changes in the satellite structure of FS spectra than the amplitude spread.
Quantitatively, the phase spread of nuclei oscillations in the sample can be given by a ran-
dom function ¢, (¢) having the ergodicity property. In this work, such function is introduced
by phenomenological way. We analyze the expected changes of the Mdssbauer FS spectra,
when the acoustic phase fluctuation process is described by the normal distribution function
R(9)

2 The effects of phase fluctuation

The random character of the initial phases of oscillations of nuclei in the absorber can be
taken into account within the model of the formation of the frequency Mdssbauer forward
scattering spectrum [4] based on the dynamic theory of the Raman scattering of gamma-
photons in the medium. According to this model, each Fourier component of the radiation
of the source E, (0) = &o (w) exp (—iwt) during the propagation through the oscillating
medium acquires Raman satellites, the amplitudes of which E,; (y) vary with the target
thickness y according to the system of equations (for details, see (3.19) in [4]):

0Ey ()

By = 2 GwrEor ), (1

with the general expression for the matrix of coefficients Gy

Gy = cwlﬁznglﬂl) Z (2n)3 Z<g|1(k)|e><e|; (ky)|g>
x [ o dTexp [—z(a) 0o — g +iT0/2) (t = DIY Jgrs (ba) Jyir (ba) P
x exp (=i (g + 1) ¢a (1) exp (i (g +1') ¢a (1)) exp (i (ky —k) R) .

Now however unlike [4], the oscillation phases are presented by random functions ¢, (t).
The matrix Gy reflects the mechanism of the Raman resonance scattering of photons by
nuclei g — e — g, k,, and k are wave vectors of photons incident on the target and
scattered in the resonance manner on nuclei, respectively, wg and I'g are the frequency and
width of the gamma-resonance of the target, summation is performed over nuclei (@) and
over the number of sound phonons of the frequency 2 participating in the Raman scattering
(g), R, is the equilibrium position of the a-th nucleus, J;4; (by) is the Bessel function.
Under the equality of the oscillation amplitudes in the sample, u, = ug (modulation indices
b, = by), the phase spread of oscillations of nuclei is taken into account by introducing the
fluctuation of the phase for a-th nucleus as Ag, (t) = ¢, (t) — ¢, where ¢ is the phase of the
external driving field set in the time scale of the nuclear process. A fragment of expression
(2) depending on Ag, (¢) has the form

exp (—ip (I = 1)) Y exp (i (k, —k)Ry) exp (—i (g + 1) Ag, (1))

. 3
x [! o dTexpl—i(@ —wy — qQ+iTo/2) (r — D]exp (i (¢ +1') Apa (7))
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Fig. 2 Intensity of Mossbauer forward scattering I (w) at different degrees of phase correlation of acoustic
oscillations 0; 2 = 10 MHz, b =3.05, 'y, = 1,0 = 1,1, = ooNo fLmY = 50, and ws; = wo

Further we consider two modes of the time dependence of fluctuations Ag, (7): slow
fluctuations and fast fluctuations. The fluctuations are slow if their lifetime is larger than
the lifetime of the excited nucleus. In this case, the exponent containing A, (t) =~ A, (t)
can be taken out of integral in (3). As a result (3) becomes

exp (—ig (I =) ) ,
i o—wo— g9t 1F0/2) Zexp )Ra)exp (—lA(pa (1) (l —1 )) . @

We rewrite the sum in (4) introducing the average over the ensemble (triangular
parentheses) as

> exp (i (ky — k) Ry) exp (=i Agy (1) (I = I')) = 27)* N’ (k, — k) , 5)

where
N’ = Ny(exp (—iAg (I =1'))). (6)

In the case of in-phase oscillations (Ag, (t) = const for all a values), expression (5)
is reduced to the well-known condition of the diffraction maximum (see, e.g., [12]). In the
case of the phase spread (Ag, (t)) equality (5) should be considered as a phenomenological
relation substantiated by the geometry (the collimation conditions) of the detection channel
of the measuring setup, with the effective value N’ smaller than the number of scattering
centers per unit target volume Nj.

The lifetime of fast fluctuations, on the contrary, is small in comparison with the lifetime
of the nucleus. It can be considered that the lifetime of the nucleus in the excited state is
sufficient for ¢, (7) to acquire values characteristic of a given random process. Now the
average over time (over the ensemble) can be taken out of the integral in (3); as a result, we
have instead of expression (5)

> exp (i (ky - k) Ra) exp (—iAg, (1) (@ + 1)) (exp (iA(p (q + l/))> = (2n)}N"s (k,, - k) ;

N” = Nolexp (irg (g +1'))) (exp (—iAp (g +1))) .
@
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Fig. 3 Time dependence of the counting rate (see (16))N (7, €2, ¢o, t); comparison of calculations (solid
line) with experiment (points), ws; — wp = 22, g9 = 0

Averaging in (5) and (7) with allowance for the stationary character of fluctuations
(using the normal distribution function R (Ag) = (1 /cr 271) exp (—(Ap)? /202) with
parameter o) makes it possible to obtain coefficients G in (2) for slow (a) and fast (b)
fluctuations, respectively (we note that opis maximum resonance cross section below):

o0 fLm No Foef(lfl/)z‘fz/z
4 (w—wy — q2+ iFo/Z)’

G = —i Y e 0 (b)Jgir (b)
q

(8a)

_ 2 N2\ .2
00 f1a NoToe (@+02+(g+1)7)a? /2

L —i(I-1")g b (b : b
Gu que Ja+1 (0) g1 (B) 4(w—awp—qQ+ilo/2) (e

In view of the appearance of the phase spread of acoustic oscillations, the solution of the
system of equations (1) cannot be found by the iteration method (which was used in [4]).
Instead, the matrix exponential method (see [13, 14]) is used. The radiation at the absorber
output (y = Y) due to the harmonic &g (w) exp (—iwt) at its input in the presence of the
phase spread of oscillations of atoms can be presented as

Ey (Y, 1) ~ g0 (@) Y e e {exp (G (0, @, ¢,0) - V) » )
1

where G (w,, w, ¢, 0) is the matrix of coefficients (8a). Using (9), one can easily
determine the frequency forward scattering spectrum according to the algorithm of
the calculation of such spectra (see [4, 13]). Model calculations using |go (cu)|2 =
(Ts /27) / [(w —wy)? + Ty / 2)2] with Mossbauer source parameters (wy, I's) confirm
the considerable weakening of the intensity of satellites in forward scattering spectra with
increasing o and further their complete disappearance (Fig. 2).
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Fig. 4 The model spectrum calculated on the basis of (18) by numerical method: b=1.8, t, =5, s — wy =
—Q,Q2=516MHz, I’y =Ty =1

2.1 Single-photon response experiment under acoustic excitation

Further we analyze the formation of the time-domain spectrum (the time dependence of
the count rate in the detector) of the gamma radiation behind the oscillating target in time-
delayed coincidence condition. It means, the mechanism of generation of Raman amplitudes
of gamma radiation in the target we describe on the basis of model [4] (using (1)). It must
be noted, however, that the matrix of coefficients G;in (1) must now be reconsidered for
single-photon response.

The radiation field of the Mossbauer source E (¢) under conditions of the single-photon
experiment (implemented by the delayed coincidence method) can be presented by the
Fourier transformation &g (w):

E (1) =T20 (1) exp [—iwst — Tyt/2] = / dw 8o (@) exp (—iwt) , (10)
where &g (w) = i0(t) I’l/2 Qo) (w— ws + iFs/Z)_l. The Fourier component
&0 (w) exp (—iwt) generates in the oscillating absorber a gamma wave with the slowly vary-
ing amplitude E,(y,1) = 6 (1) > ;Ey (y)e’m” , the Raman terms of which satisfy the
system (1) with the boundary conditions E;(0) = 80 - ils/? (27) ™! (0 — s +iT/2)~!
in accordance with the conditions of the considered experiment. For the phase correlated

oscillations of nuclei (with the same amplitude) the matrix of coefficients (2) for system (1)
is re-written as

27 fLm ~xs’
Gp=— cohCly+1) Z/ 27) Z<g|1 (k)|€>< elj (ky)|g>Jq+l (b) Jg+1 (b)

€8

t
[drexp[z(a) wo— qQ—l—zFo/Z)(t—t)]exp —l Zexp k, k )

00 fumNoTo (1—exp (i (w—wo—qQ-i-lFo/z) 1))
4(w—wo—qR+ilo/2) '

=—iy 'Yy (0)Jyrr ()
q

(1)
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Fig. 5 Counting rate N (T, 2, ¢o, t) as a function of the effective thickness?.: 2 = 7.26 MHz, b = 3.05,
¢0=0,A¢p =7m/2, s =T = land wy — wy = 2Q2

Expression (11) is obtained by substituting the integration | ! oo d7 in (2) by I (; dt. The
solution of system (1) can be found by the iteration method For the harmonic E,; (¥) behind
the absorber we have

Eo (Y) = 50(@) Y exp (=ilg) Jirg (b)Jq (b) exp (iGy (@) - Y),
q

(1 —exp(i(w—awy—qgQ+ile/2) 1))

Gy (@) = —0oNo fr—m (To /4) (@ —wp— Qg +iTo /2)

12)

We integrate E,, (Y, t) exp (—iwt) over all radiation frequencies of the source in order to
determine the resultant field on the detector E’ (Y, 2, ¢, t):

E (Y,Q, ¢, t):/da) exp (—ia)z)Zl Eu (Y)exp (—ilQt)

= qu{l}(% b, f)Eg Y, 1), (13)
q

Py (@, b, t) = Zexp (—ilQ2t) exp (—ilg) Jiyq (b) J4 (D).
I

The counting rate of photons (with allowance for the nuclear-resonance interaction) is

1 potre/2 2
N (T,, 2, 00, t) = —f |E" (T, 2, ¢.1)| dg, (14)
A¢ Jog—ng)2

where we introduced in E’ (Y, 2, ¢, t) the effective thickness of the absorber 7, by relations
te = 00fL—mNoY and T, = t,["9/4. Expression (14) sets the counting rate of pair events:
the detection (by D1) of a signal photon from of 122 keV transition of the 57 Fe isotope at
time ¢+ = 0 and further (at time ¢) the detection of the Mossbauer14.4 keV photon (see Fig.
1b). It is important to note that out of the multitude of pair events only those are accumu-
lated, for which the sound phase ¢, at the moment of detection of the signal photon is located
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Fig. 6 Dependence of the N (T, 2, ¢p, t) on the phase value ¢g (solid line - ¢p = 0, dashed line - ¢p = 7,
see [15]): R =7.26 MHz, b =3.05, A¢p = /2, Ty =T9g=1,ws —wy =22, and 1, =5

within the significantly narrow interval of Ag + 27 n with the center of the Ag range in ¢g.
An essential feature of the N (T, 2, ¢, t) function is determined by integrals of the type

(1—exp(i(w—wy)—qX+ily/2)1)) }

E// Y — 7 = _'Te
q( ) /da)exp( za)t)eo(w)exp{ i (@ —wo—qQ +iT0/2)

15)
where the expression under the integral contains only one singular point unlike the integral
considered in [6]. This difference is the consequence of the specification of the theoretical
model [4] performed above for single-photon experiments. It is required for the description
of the experimental time spectrum. The use of expression (15) in this case made it possible
to achieve the correspondence between the model time spectrum calculated on the basis of
(14) and the experimental time spectrum in the entire time interval (Fig. 3).

The experimental spectrum in Fig. 3 was obtained using the delayed coincidence scheme.
The block scheme of the used setup is given in [15]. Stainless steel with the thickness of
25 pm served as a resonance absorber. It was glued with epoxy on the plate of a poly-
mer piezoelectric converter (PVDF — polyvinylidene fluoride), which was excited by the
high-frequency voltage with the frequency of 7.26 MHz. The oscillation amplitude of the
absorber corresponded to the modulation index b = 3.05 that provided the maximum inten-
sity of the second ultrasound satellite in the Mdssbauer absorption spectrum. The velocity
of the Mossbauer radiation source (°’Co in the Rh matrix) was tuned to this (second) satel-
lite. The delayed coincidence spectrum was measured only for the photons, that appear in
the source at times corresponding to the acoustic phase in the absorber in the interval from
do — A /2 to ¢po + Ag /2, where g = 0 and A¢p = /2.

We note that the time dependence of the experimental spectrum differs from the depen-
dence N (t) by the constant factor due to the electron absorption (with coefficient of
absorption p,) of gamma-photons:

N(T,, 2,¢0.t) = N (Te, 2, ¢o, t) - exp (—e - Y) . (16)
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Fig. 7 Time dependence of the counting rate N (7, 2, ¢o, t) for different values of the phase correlation of
acoustic oscillations o: Q = 7.26 MHz, b = 3.05, ¢pp = 0, Ap = /2, 'y =T'p = 1, and w; — wy = 2€2,
te=35

Two types of time-domain Mossbauer spectra have been mentioned above: namely, with
an internal time mark and with an external time mark. In the first case as a time mark a
some time signal related to the radiating nucleus, usually the moment of its appearing in
excited state of the Mossbauer transition may be used. Another way to do this is the use
of some time-dependent parameter (say the phase) of the external field interacting with
the nucleus. From this point of view, the time dependence of the count rate of gamma
photons in (14) corresponds to the definition of the spectra of internal time mark type.
At the same time, the parametrical dependence of expression (14) on the initial phase of
acoustic oscillations ¢g (in nuclear time scale) is caused by the external field. The external
parameter-dependence of the counting rate becomes as main one if in the experimental setup
the counting of Mdssbauer photons is not conditioned by the time delayed coincidences
(i.e. the signal photons are not registered). In this case the experiment, strictly speaking, is
not a single-photon type experiment. Now the Mossbauer photons are detected irrespective
of the detection of signal photons. In case of the Mdssbauer source with small enough
activity the count-rate time dependence Ny, (¢) (in a laboratory time scale) may be written
using the expression (14): p

1
Next(Tes Q,q)o,t) = hmﬁ / dt W(Te, Q, (7)) + QT, t— T), (17)
T — o0 T

2
W(T,. Q. 00.1) = |E' (T, Q, 00, 1)|".

We see, Neyt(Te, 2, @o,t) is a result of summing over pair events mentioned above
(detection of signal photon and Mossbauer photon) differing from each other only by time
moments of appearing of signal photon (7) in time interval —7 <7 <t, where t > 0 is a
moment of detection of Mossbauer photon and T > t,, 7,- nucleus life time. In Fig. 4 the
model spectrum calculated on the basis of (17) by numerical method is presented.
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2.2 Model calculations of single-photon time-domain Mdssbauer spectra

Expression (14) was used also for model calculations illustrating the dependence of the
time structure of the single-photon Mdssbauer spectra on i) the effective thickness #, of the
absorber (Fig. 5), ii) the value of the sound phase ¢ at the moment of the detection of the
signal (122 keV) gamma-photon (Fig. 6) and iii) the extent of the phase correlation of oscil-
lations of nuclei in the sample given by the parameter of the normal phase distribution o
(Fig. 7). When calculating the last spectrum, for G;; the expression (11) was used supple-
mented by a factor taking into account the degree of phase correlation of Mdssbauer nuclei
oscillations in the sample in the approximation of slow fluctuations (see (8a)). As in the
case of frequency spectra, the system of equations (1) was solved by the matrix exponential
method.

With increasing o the characteristic structure in the forward scattering spectra is trans-
formed (destroyed) and the time dependence N (¢) approaches an exponential one (see
Fig. 7).We also note that fitting of the experimental spectrum (see Fig. 3) on the basis of
the model expanded to the case of partial phase correlation of nuclei in the sample showed
a rather good phase correlation of acoustic oscillations in this experiment (o < 0.1).

3 Concluding remarks

In this work, we have presented the theoretical models of the formation of Mdssbauer (fre-
quency, time) forward scattering spectra for a thick sample containing nuclei exposed to
acoustic oscillations. The model for frequency spectra was obtained by the generalization of
the model [4] to the case of arbitrary phase correlation of nuclei oscillations in the sample.
The model of the time-domain FS spectra we present is of special interest for a description
of acoustical effects in Mossbauer experiments performed with the timedelayed coincidence
method Our model contains the mechanism of the influence of sound oscillations in the
target on the shape of the wave packet of the forward scattered gamma-photon and, like
the frequency model, can be used for the determination of the coherency extent of forward
scattering. The importance (necessity) of this model was shown convincingly. The adequate
description of an acoustical Mossbauer experiment performed by us in the time-delayed
coincidence condition (single-photon experiment) was achieved.

At last the presented models should be distinguished from models of Mdssbauer exper-
iments [16, 17] using the synchrotron radiation (SR) as a source of resonance gamma
photons. The application of SR caused the powerful development of Mossbauer studies. In
particular, a wide class of interference phenomena which are caused by acoustic oscillations
in the sample and substantially affect on the formation of the Mdssbauer response (time-
domain Mossbauer spectra) was studied. The presented model and experimental results are
in qualitative agreement with the results of the above works (in particular, associated with
acoustic methods [18-20]), supplement them, and at the same time differ from them con-
cerning the mechanisms of the formation of the Mossbauer spectra and detection schemes
inherent to the natural Mossbauer source.

The above analysis (see also [8, 13, 14, 21]) demonstrates a series of features of
Mossbauer forward scattering on thick absorbers excited by external (ultrasound or radio-
frequency) fields. Under these conditions we reveal the increasing of the information
capability of the Mossbauer experiment. They are associated with the dependence of the
interference effects (the extent of coherence of forward scattering) on the phase synchro-
nism of processes initiated on nuclei by the external fields. The possibility to get such kind
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information from the observed structure (time, frequency) of Mossbauer forward scattering
spectra is confirmed by the model calculations.

Acknowledgments This work was supported by the Russian Foundation for Basic Research (project no.
14-02-01078a) and in part by the Program of competitive growth of the Kazan Federal University.

References
1. Asher, J., Cranshaw, T.E., O’Connor, L.A.: J. Phys. A. Math. Nucl. Gen. V. 7, 410 (1974)
2. Tsankov, L.T.: J. Phys. A. Math. Gen. V. 13, 2959(1980); 2969(1980)
3. Tsankov, L.T.: J. Phys. A. Math. Gen. V. 14, 275 (1981)
4. Shvydko, Y.V., Smirnov, G.V.: J. Phys. Condens. Matter. V. 4, 2663 (1992)
5. Ruby, S.L., Bolef, D.I.: Phys.Rev. Lett. 5, 5 (1960)
6. Lynch, EJ., Holland, R.E., Hamermesh, M.: Phys. Rev. V. 120, 513 (1960)
7. Monahan, J.E., Perlow, C.J.: Phys. Rev. A. V. 20, N 4, 1499 (1979)
8. Vagizov, F., Antonov, V., Radeonycheyv, Y., et al.: Nature 508, 80 (2014)
9. Abragam, A.: L’Effet Mossbauer (Gordon and Breach, New York, 1964), p. 22
10. Mkrtchyan, A.R., Arakelyan, A.R., Arutyunyan, G.A., Kocharyan, L.A.: JETP Lett. 26, 449 (1977)
11. Sadykov, E.K., Dudkin, V.A.: Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 7, 54 (1979)
12. Smirnov, G.V., Kohn, V.G.: Phys. Rev. B52, 3356 (1995)
13. Sadykov, E.K., Dzyublik, A.J., Petrov, G.I., Arinin, V.V,, Spivak., Y.V.: JETP Lett. V. 92, 250 (2010)

. Sadykov, E.K., Yurichuk, A.A., Vagizov, EG.: JETP Lett. V. 102, 139 (2015)

. Shakhmuratov, R.N., Vagizov, F., Odeurs, J., Kocharovskaya, O.: Phys. Rev. A80, 063805 (2009)

. Kagan, Y.u., Afanas’ev, A.M., Kohn, V.G.: J. Phys. C 12, 615 (1979)

. Smirnov, G.V.: Hyp. Interact. 123/124, 31 (1999)

. Smirnov, G.V., Potzel, W.: Hyp. Interact. 123/124, 633 (1999)

. Potzel, W., van Biirck, U., Shindelmann, P., Hagn, H., Smirnov, G.V., Popov, S.L., Gerdau, E., Shvyd’ko,

Y.u.V,, Jaschke, J., Riiter, H.D., Chumakov, A.L, Riiffer, R.: Hyp. Interact. 152/153, 263 (2003)

. Shvyd’ko, Y.V., Chumakov, A.L, Smirnov, G.V., Kohn, V.G., Hertrich, T., van Biirck, U., Gerdau, E.,

Riiter, H.D., Metge, J.: Europhys. Lett. 22, 305 (1993)

. Sadykov, E.K., Yurichuk, A.A.: JETP Lett. 99, 174 (2014)

@ Springer



	Mössbauer forward scattering: time-domain spectra
	Abstract
	Introduction
	The effects of phase fluctuation
	Single-photon response experiment under acoustic excitation
	Model calculations of single-photon time-domain Mössbauer spectra

	Concluding remarks
	Acknowledgments
	References




