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Abstract. A new approach providing a direct calculations of equilibrium constants, parameters 

of the chemical exchange reactions, and spectral characteristics of complexes on the basis of 

data of several methods including pH-potentiometry, multi-wavelength electronic spectroscopy, 

and NMR relaxation within a single computer program was proposed and realized in the 

program STALABS. Application of the STALABS program has been demonstrated on the 

example of investigation of the complex nickel(II) - L-histidine system by joint usage of the 

above three methods. 

 

1. Introduction 

Determination of thermodynamic and kinetic parameters of equilibria and spectral characteristics of 

coordination compounds in solutions of complex systems is an important problem of coordination and 

physical chemistry which cannot be resolved without a computer simulation. In most of the programs 

intended for these purposes only one additive physico-chemical response dependent on pH or 

component concentrations of the equilibrium system is modeled [1]. 

Earlier in the Kazan University two programs, CPESSP [2] and STABLAB [3], for computation 

of equilibria and physico-chemical properties of coordination compounds were created. The program 

CPESSP is able to calculate separately data of the methods of pH-potentiometry, spectrophotometry, 

or spin-lattice NMR relaxation in conditions of “rapid chemical exchange”. The program STABLAB is 

used for the simultaneous calculation of the thermodynamic parameters of equilibria and kinetic 

characteristics of the proton and ligand exchange reactions from the parallel measurements of the spin-

lattice (T1) and spin-spin (T2) relaxation times of the solvent nuclei. 

The major aim of the present work is to develop a new approach for simultaneous calculation of 

equilibrium constants, parameters of the chemical exchange reactions, and spectral characteristics of 

complexes based on the data of several methods including pH-potentiometry, ion-selective 

potentiometry, multi-wavelength electronic spectroscopy, and NMR relaxation within a single 

computer program. The approach was implemented in the new program STALABS. The second aim of 

the work is to demonstrate the applicability of the STALABS program for investigation of the complex 

system nickel(II) - L-histidine. 
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2. Results and discussion 

In the base of thermodynamic calculations of equilibrium system the Brinkley algorithm [4, 5] applied 

to the matrix algebra is put. A minimum set of components (Bl, 1
,1 ml  ), called a basis, is selected 

from all chemical forms (Aj, 1,j M ) participated in the reactions to determine the equilibrium 

concentrations of all the present species. So the reaction of any form Aj can be written as follows: 
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where νjl is stoichiometric coefficient at the Bl component in j-th reaction and βj is the equilibrium 

constant of this reaction. Equilibrium in the system with reactions of the type (1) corresponds to a 

minimum of the Gibbs potential which satisfies equations of the mass action law and mass balance: 
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where [Aij] is equilibrium concentration of the species Aj, θ = lnβ, ][
il

B  and cil are respectively 

equilibrium and total concentrations of the basis species in i-th experiment, Ni ,1 , and N is the 

number of experiments.  

For the calculation of the equilibrium concentrations of all the components of the system the first 

derivatives of the total concentrations of basis species by their equilibrium concentrations are used: 
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Symmetric Jacobi matrix J is composed from the values of these derivatives.  

Minimization step is calculated by equation (5): 

 1( )i i i
Δ J r  (5) 

where ri is the residuals vector with the exp. calc.
ik ik ikr c c   elements. The next values of the Bil 

components of the B vector on (x+1)-th iteration are given by equation (6): 

 1ln[ ] ln[ ]x x
i i i
  B B   (6) 

The Bjerrum function (ni) used in the pH-potentiometric data processing is calculated in the 

general form: 
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Experimentally this function is calculated by the equation (8): 
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where 0V  is the initial volume of solution, iV  is the added volume of titrant, T
0c  is the titrant 

concentration, aH and aOH are the activity coefficients of proton (H
+
) and hydroxide ion (OH

-
) 

respectively, and α is the ligand titration fraction.  

To reduce the systematic errors in the program the joint or separate fitting of equilibrium constants 

with the following independent variables is provided: ciL, T
0c , α, aH, and aOH. Potentiometric methods 

are the simplest methods for calculation and analytical and numerical derivatives in this case match 

with great accuracy. 
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Spectrophotometric method is less accurate but more informative method for calculations of equilibria 

in solutions. The response function for the spectrophotometric method is written in the following 

matrix form: 

 M M
D C E  (9) 

where D
M

 is matrix of the system absorption per unit concentration of the absorbing particles of 

dimension N×W (W is number of wavelengths), С
M

 is matrix of the mass fractions of the absorbing 

particles of dimension N×S (S is number of the absorbing particles), and E is the molar extinction 

coefficients matrix of dimension S×W. 

Calculations of the molar extinction coefficients and equilibrium constants are performed 

separately by the variable separation method. The molar extinction coefficients are calculated as 

follows: 

 1( ) M M
E C D  (10) 

at i =w or 

 1(( ) ) ( ) M T M M T M
E C C C D  (11) 

at i ≠ w. Such scheme of calculation is correct in the absence of species with negative molar extinction 

coefficients. Otherwise the method of non-negative linear least-squares should be used. Algorithm 

FNNLS [6] was applied to solve the problem of finding molar extinction coefficients with non-

negative constraints by minimizing the system of equations for the residuals vector r: 

 ( ) ( ) M T M M T M
r C D C C E  (12) 

Calculations of the analytical derivatives of the response function by the equilibrium constants were 

performed by the method described [7]. 

In the case of NMR relaxation method paramagnetic contributions (p) to the measured spin-lattice 

(T1) and spin-spin (T2) relaxation times of the nuclei of the solvent (A0) from the M chemical forms 

 A 1j , j = ,M  which are generated in solution and undergo exchange with the dominant state of solvent 

A0 (diluted solutions) are given by additive relations [8]: 
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where T1(A) и Т2(А) are spin-lattice and spin-spin relaxation times of the nuclei in pure solvent A0; [Aj] is 

equilibrium concentration of the Aj form, and K1j и K2j are the molar coefficients of spin-lattice and 

spin-spin relaxation respectively. For each Aj form with q nonequivalent positions of the nuclei 

including the outer coordination sphere the relaxation coefficients K1j and K2j take the generalized form 

[9, 10]: 
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where n is number of the nonequivalent position, P’(n) = P(n)/[Aj], P(n) is probability of presence of the 

solvent nuclei in n-th position of the Aj form; τ(n) is the nuclei lifetime in corresponding position; T1(n) и 

T2(n) are spin-lattice and spin-spin relaxation times of the nuclei in this position, Δω(n) is difference of 

the Larmor precession frequency of nuclei between A0 and n-th position of the Aj form (the j index of 

each element in the formulas (15) and (16) is omitted). Lifetime τ(n) is defined by the solvent nuclei 

chemical exchange between the n-th position in the coordination sphere of the Aj form and free states 

in the bulk solution as following [11]: 
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where k0
(n)

 and km
(n)

 are the rate constants of the chemical exchange reactions of first and second 

kinetics orders respectively without and with activation by certain chemical forms which are selected 

in subsets  ( ) ( ), 1,m n nA m M  for each n value. When Δω(n) = 0 equation (16) is similar to equation (15). 

If T1(n) >> τ(n) then the molar relaxation coefficients are calculated similarly to the molar extinction 

coefficients in spectrophotometry. The analytical derivatives of the response function by the 

equilibrium constants in the NMR relaxation method are approximately calculated as in 

spectrophotometry. Physico-chemical parameters of the NMR relaxation method are assumed to be 

independent of each other, the equilibrium concentrations, equilibrium constants, and other system 

parameters. Data calculations using numerical and analytical derivatives are in good agreement with 

each other. 

Joint processing of the experimental data on the s properties measured by several methods 

with the simultaneous determination of physico-chemical parameters can be carried out by non-linear 

methods via minimization of the objective function. 
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where η is set of the spectral, NMR relaxation, and kinetics parameters, rki is normalized i-th residual 

for k-th property (Yk) having the form  
1

exp. calc.( )ki ki ki ki kr Y Y w N
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  , Nk is number of experimental 

points by the k-th method data, wki is statistical weight giving by relation 2 exp. calc.

01/ ( )ki ki kiw Y Y , σ0 is 

the method error. The generalized residuals vector r of dimension 
1

s

k

k

N N


 and the generalized 

Jacobian J of dimension N×d (d is number of fitted parameters) are introduced. Thus, to find the 

equilibrium constants by the several method data the following system of equations should be solved: 

 T T
J  J Δθ J  r  (19) 

The correction vector to the approximated parameters, Δθ (minimization step), results from equation 

(19). For these systems of equations the program provides two solution ways: 

1) The subspace trust-region method based on the interior-reflective Newton method [12, 13]. This is 

a large-scale algorithm with variation of minimization step in each iteration by the approximate 

solution of a large linear system of equations using the preconditioned conjugate gradient method. 

This algorithm is able to optimize a large number of parameters in a small number of iterations and 

can converge from initial values far from the minima. It solves equilibrium problems better than 

many other classical minimization methods using first derivatives. It works with continuous 

functions and the number of data points must be greater than the number of parameters. Increment 

1k k k Δθ θ θ is an approximate solution of the quadratic subproblem 
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kp  > μ (μ is the validity criterion) then 
1k k k  θ θ Δθ , otherwise 

1k k θ θ  and calculation 

continues. 

2) The method of the Jacobian matrix singular values decomposition [14, 15]. This method converges 

even when T
J  J  matrix is poor conditioned (having determinant close to zero). Poor conditionality 

occurs when initial parameters are far from real values or when two or more parameters are highly 

correlated. Firstly singular values decomposition of the weighted Jacobian matrix is performed: 

 J = U Σ V  (20) 

where U is the unitary matrix of dimension N×N, Σ is rectangular diagonal matrix of dimension 

N×d (d is number of fitted parameters), V is the unitary matrix of dimension d×d. Then error 
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0 max( )  Σ  is computed and vector p is composed from indexes of the diag(Σ)  elements which 

are greater than τ. After that minimization step is calculated as follows: 
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where 1,j P  is index of the vector p element, 1,k N  is number of experimental points, 1,i D  is 

number of fitting parameters. This algorithm often converges in less iteration than the previous one 

when initial estimates are near the local minima, additionally it requires less computer time 

according to simplicity of calculation. Disadvantages of the algorithm are poor convergence by the 

initial approximations far from minima and forever loop in some cases. 

Both of the minimization algorithms can work with analytical or numerical first derivatives. 

The program calculates the following statistical information: 

sum of weighted squared residual errors SSE  T
r  r , 

confidence intervals 

1( ( ) ) SSE

N D

 




T
diag J  J

δθ , 

and the Hamilton’s R-factor. 

Program was written in Qt Development Environment [16] with use of Eigen mathematical library 

[17]. Calculation data can be loaded in the form of formatted text or inserted into special dialog 

window. 

 Applicability of the STALABS program was tested on the example of investigation of the complex 

nickel(II) – L-histidine system by joint usage of the pH-potentiometry, multiwavelength 

spectrophotometry, and NMR relaxation methods. The computed species distribution diagram and 

reconstructed electronic absorption spectra of all the revealed species are given on Figures 1 and 2 as 

examples. 

 

 

 

 
Figure 1. Species distribution as a function of 

pH for the Ni(II) – L-HisH system at a 1:4 

metal:ligand ratio and T = 298 K with 1.0 M 

KNO3 as background, cNi(II) = 0.01 M; 1 – 

Ni
2+

, 2 – HisH3
2+

, 3 – HisH2
+
, 4 – HisH, 5 – 

His
-
, 6 – Ni(HisH)

2+
, 7 – Ni(His)

+
, 8 – 

Ni(His)(HisH)
+
, 9 – Ni(His)2, 10 – 

Ni(His)(HisH-1)
-
, 11 – Ni(HisH-1)2

2-
, 12 – 

Ni(His)2(HisH), 13 – Ni(His)3
-
. 

 Figure 2. Reconstructed electronic absorption 

spectra of species in the Ni(II) – L-HisH system 

at T = 298 K with 1.0 M KNO3 as background 

(numeration is given as on Figure 1). 
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 Only four complexes (Ni(HisH)
2+

, Ni(His)
+
, Ni(His)(HisH)

+
, and Ni(His)2) have been described 

previously in the nickel(II) – L/DL-histidine systems [18]. The joint use of the above three methods in 

wide pH range (2-14) enables us to reveal and characterize four new complexes, Ni(His)2(HisH), 

Ni(His)3
-
, Ni(His)(HisH-1)

-
, and  Ni(HisH-1)2

2-
 (see Figure 1), and to establish the relaxation, chemical 

exchange kinetic, and spectral parameters for all the found species (Figure 2).  

 

3. Conclusions 

New computer program STALABS for a calculation of equilibrium constants, kinetic, relaxation, and 

spectral parameters of coordination compounds by the data of several physico-chemical methods 

including pH-potentiometry, multi-wavelength electronic spectroscopy, and spin-spin and spin-lattice 

NMR relaxation was elaborated.  

Application of the STALABS program for investigation of the nickel(II) – L-histidine system by 

joint usage of the above methods allows one to achieve the most complete description of complex 

formation thermodynamics, ligand exchange reaction kinetics, and NMR relaxation and spectral 

characteristics of the eight complexes in this system.  
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