

Descriptive Complexity Theories

Joerg FLUM

ABSTRACT: In this article we review some of the main results of descriptive complexity theory in order to make the
reader familiar with the nature of the investigations in this area. We start by presenting the characterization
of automata recognizable languages by monadic second-order logic. Afterwards we explain the characteri-
zation of various logics by fixed-point logics. We assume familiarity with logic but try to keep knowledge of
complexity theory to a minimum.

Keywords: Computational complexity theory, complexity classes, descriptive characterizations, monadic second-order
logic, fixed-point logic, Turing machine.

Complexity theory or more precisely, computational complexity theory (cf. Papadimitriou
1994), tries to classify problems according to the complexity of algorithms solving
them. Of course, we can think of various ways of measuring the complexity of an al-
gorithm, but the most important and relevant ones are time and space. That is, we think
we have a type of machine capable, in principle, to carry out any algorithm, a so-called
general purpose machine (or, general purpose computer), and we measure the com-
plexity of an algorithm in terms of the time or the number of steps needed to carry
out this algorithm. By space, we mean the amount of memory the algorithm uses.
Time bounds yield (time) complexity classes consisting of all problems solvable by an
algorithm keeping to the time bound. Similarly, space complexity classes are obtained.
It turns out that these definitions are quite robust in the sense that, for reasonable
time or space bounds, the corresponding complexity classes do not depend on the
special type of machine model chosen.
 But are the resources time and space tied to the inherent mathematical complexity
of a given problem? We can try to classify problems also in terms of the complexity of
formal languages or logics that allow to express the problems (e.g., if problem P2 is
expressible in second-order logic but not in first-order logic then it is more complex
than a problem P1 expressible in first-order logic). We speak of descriptive complexity the-
ory (cf. Ebbinghaus & Flum 1999, Immerman 1999), if we have in mind this kind of
investigations. It is plausible that problems that are harder to check, i.e., problems that
are of higher computational complexity, might be harder to express, i.e., are of higher
descriptive complexity. What is surprising is how close the relationship between com-
putational and descriptive complexity is. In fact, the most important classes of compu-
tational complexity have descriptive characterizations. Hence, the computational com-
plexity of a problem can be measured in terms of the richness of a logic needed to
express this problem. These results show that (as Neil Immerman states it in Immer-
man 1999) “time and space are not model-dependent engineering concepts, they are
more fundamental”.
 However, descriptive characterizations of complexity classes have been criticized
for being merely simple translations of the original machine-based definitions of the
classes into a logical formalism and therefore, for not providing new insights. Al-
though it is certainly true that the logical characterizations are often very close to the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/19734093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Joerg FLUM

48

machine descriptions, we do not agree with this criticism. We think that the descrip-
tive characterizations are important in various respects:

• Characteristic features of the logic may be seen as characteristic features of
the complexity class described by it and may add to a better understanding of
this class.
• They may help to recognize that a concrete problem is in a given complexity
class (by expressing it in the corresponding logic). Moreover, one can view the
logics involved as higher programming languages for problems of the corre-
sponding complexity class (since in all concrete descriptive characterizations
one easily sees how to convert a sentence of the logic into an algorithm ac-
cepting the class of its models and satisfying the required resource restric-
tions).
• The descriptive characterizations allow to convert problems, methods, and
results of computational complexity theory into logic and vice versa, thus
widening the methodological possibilities for both sides.

 There is a further way to define complexity classes: Starting from a problem P0,
mostly one takes a problem P0 of central importance in a given context, one considers
the class of all problems reducible to P0, where reducibility is defined in an appropriate
way. In fact, various classes of so-called parameterized complexity theory (cf. Downey
& Fellows 1999), a new branch of complexity theory, have been defined in this way.
For some of these classes, descriptive characterizations (but no machine-based charac-
terization) are known (cf. Flum & Grohe 2002) and have led to isolate and to under-
stand better the essential features of these classes.
 Moreover, these results show that not always descriptive characterizations are mere
translations of machine-based characterizations, since, as we just remarked, in some
cases no simple and natural machine descriptions of these parameterized classes are
known.
 The purpose of this article is to give an insight into the nature of results of descrip-
tive complexity. We assume some acquaintence with logic but try to keep knowledge
of complexity theory to a minimum.

1 Automata

We start with the -historically first- logical characterization of a complexity class. Of-
ten, this class is not considered to be a class of computational complexity theory, since
it is not defined in terms of time or space restrictions of a general purpose machine,
but it is obtained by restricting the “hardware” of the machine: We consider automata.
We want to show that the class of problems recognized by automata coincides with
the class of problems definable in monadic second-order logic. It turns out that this
simple case already reflects some of the crucial aspects encountered in the descriptive
characterizations of “real” complexity classes.
 By ∑ we always denote a finite alphabet, i.e., a finite set of letters or symbols. Then,
∑+ is the set of (finite and nonempty) words (or, strings) over ∑. If ∑={0,1} then 01101

Descriptive Complexity Theories

49

is a word over ∑. If w1:=010 and w2:=11011 then we denote by 1 2w w the concatena-
tion of w1 and w2, w1w2= 01011011.
 A problem (or, language) P on Σ is a set of words over Σ, P⊆∑+. E.g., for ∑={0,1},
Peven(0):={w∈∑+| w contains an even number of 0’s} and P0=1:={w∈∑+| w contains as
many 0’s as 1’s } are problems.
 Automata are machines with restricted memory and with restricted reading capa-
bilities, more precisely, an automaton A over the alphabet Σ is given by a finite set Q,
the set of states, an element q0 of Q, the starting state, a subset F of Q, the set of final
(or, accepting) states and a function δ:Q×Σ→Q, the transition function. The intuitive
meaning of δ (q, a)=q0 is: If the automaton is in state q and reads a, then it passes to
state q0.

 The function δ induces a function °δ :Q×∑+→Q, the meaning of °δ (q, w)=q0 be-
ing: If the automaton is in state q and reads w letter by letter, then it ends in state q0,

more formally, °δ (q,w) is defined by induction on the length of the word w:

If =w a ∈ Σ , then ° () (), : ,q a q aδ δ=

if w va= , then ° () ° ()()δ δ δ=, : ,q w q v a

 An automaton A accepts the word w if, in state q0, A reads w, it ends in a state of

F, i.e., if °δ (q0,w)∈F.
() { }: | accepts P w w+= ∈ ΣA A

is the problem accepted by A .
 For example, consider the automaton 0A with

 { } { }even odd 0 even even: , , : , :Q q q q q F q= = =
and with

() ()δ δeven odd even even,0 := ,1 :=q q q q ;

() ()δ δodd even odd odd, 0 := ,1 :=q q q q .

 One easily verifies that 0A accepts Peven(0), P(0A)=Peven(0). It can be shown that

there is no automaton accepting the problem P0=1:={w∈∑+| w contains as many 0’s
as 1’s}, the main reason being that any automaton only has a finite number of states
and no writing capability and hence, when reading a {0, 1}-word, it cannot memorize
the number of 0’s and the number of 1’s (or the difference of both numbers).
 We aim to show or at least to understand the following result linking the measure
“being accepted by an automaton” from computational complexity to the measure
“being definable in monadic second-order logic” from descriptive complexity:

A problem P⊆∑ is accepted by an automaton just in case it is definable in
monadic second-order logic.

 What does “P is definable in monadic second-order” logic mean? Given ∑ we con-
sider the vocabulary τ∑:={<,S,(Pa)a∈∑, min, max} consisting of the binary relation
symbols <, S, the unary relation symbols Pa for a∈∑, and the constant symbols min,

Joerg FLUM

50

max. For a word w=a1...an of length n let Bw:=({1,...,n},<w,Sw, (w
aP)a∈∑, minw, maxw) be

the word model associated with w, i.e., the τ∑-structure with universe {1,...,n}, where <w
denotes the natural ordering on {1,...,n}, Sw={(i,i+1)|1≤i≤n-1} is the successor rela-
tion, minw=0 and maxw=n, and where w

aP ={i|ai=a} is the set of positions of w carry-
ing the letter a.
 We denote by FO and by MSO the set of formulas of first-order logic and of monadic
second-order logic. In addition to first-order logic, monadic second order logic contains
monadic (unary) relation variables, called set variables.
 These variables can be quantified, universally or existentially, then ranging over all
subsets of the given universe. Now, we can give a precise formulation of the result
above-mentioned:

Theorem 1.1 (Büchi 1960, Elgot 1961)

Let ∑ be an alphabet and P⊆∑+.
 Then the following are equivalent:

(i) There is an automaton A accepting P, i.e. P(A)=P.
(ii) There is a monadic second-order sentence ϕ of vocabulary τ∑ such that for every
w∈∑+,

w∈P⇔Bw�ϕ.

Proof: We sketch a proof. First assume that there is an automaton A accepting P. We
just describe in MSO that there is an accepting computation of A (nearly in all char-
acterizations to come, one argues similarly for this direction): For every state
q∈Q:={q0,..., qm} of A we use a monadic second-order variable Xq for the subset of
the universe corresponding to the positions where the automaton is in state q before
reading the letter at this position. The sentence we aim at has the form

()
0 0
... ,...,

m mq q q qX X X Xψ∃ ∃ ,

where ()
0
,...,

mq qX Xψ is a formula (with no second-order quantifiers) expressing that

A starts in q0, behaves according to its transition function, and finally ends in an ac-
cepting state. Let us write down this formula explicitly for the automaton 0A accept-

ing ()
even oddeven(0) : ,q qP X Xψ is the following formula (we write Xe for

evenqX and X0

for
oddqX):

∀x(Xex↔¬Xox)∧Xemin∧∀x∀y(Sxy→((Xex∧Pox)→Xoy)
 ∧(Xex∧P1x)→Xey)

 ∧(Xox∧P0x)→Xey)
 ∧(Xox∧P1x)→Xoy)
 ∧((Xomax∧Pomax)∨(Xemax∧P1max))
(the last line takes care of the last letter of the given word). Now it should be clear that
for w∈∑+,

w∈Peven⇔Bw�∃Xe∃X0ψ(Xe, Xo).

Descriptive Complexity Theories

51

 For the other direction we need some notation. For ϕ∈MSO we denote by qr(ϕ)
the quantifier rank of ϕ, i.e., the maximal number of nested quantifiers in ϕ; e.g.,
qr(ϕ)=2 for ϕ:=∃x(∀XXx∧∃zQzx).
 For w∈∑+,and r ∈¥ let

MSOr(w):={ϕMSO-sentence|qr(ϕ)≤r, Bw�ϕ}

be the set of sentences of MSO of quantifier rank ≤r valid in Bw, the r-theory of w.
 We use the following two facts (the first one can be proved using, for example, the
Ehrenfeucht-Fraïssé method, a model-theoretic method (e.g. compare Ebbinghaus &
Flum 1999); the second one holds, since for every r, up to logical equivalence, there
are only finitely many sentences of MSO of quantifier rank ≤r, a fact that is easily
shown by induction on r):

(1) If MSOr(w)=MSOr(w') and a∈∑, then MSOr(wa)=MSOr(w'a).
(2) For fixed r the set Tr:={MSOr(w)| w∈∑+} of r-theories of words over ∑ is
finite.

 We come to a proof of the direction of (ii) to (i). So we assume that for the mo-
nadic second-order sentence ϕ of vocabulary τ∑ we have for every w∈∑+:

w∈P⇔Bw�ϕ.

 Set r:=qr(ϕ). Let A be the automaton with Q:=Tr

•

∪ {q0}. So, the set of states is
the set of r-theories together with an additional state q0, which is the starting state of
A . The transition function δ is given by

δ(q0,a):=MSOr(a)
δ(MSOr(w),a):=MSOr(wa)

 δ is well-defined by (1). Finally, we set F:={MSOr(w)|ϕ∈ MSOr(w)}. An easy in-

duction (on the length of w) shows that °δ (q0,w)=MSOr(w) and thus,
w∈P ⇔Bw�ϕ

 ⇔ϕ∈MSOr(w)
 ⇔MSOr(w)∈F

 ⇔ °δ (q0,w)∈F
 ⇔w∈P(A),

i.e., P=P(A). ÿ
 The characterization of the previous theorem can be used to get the decidability of
the monadic second-order theory of words (using results that more or less are trivial
for automata). On the other hand these investigations also led to so-called automata
on infinite words and automata on infinite trees; they allowed to study the monadic
second-order theory of corresponding structures and also led to decidability results for
some interesting mathematical theories and for several logics of programs.

Joerg FLUM

52

2 Time-bounded algorithms

In the following discussion the reader can everywhere replace “algorithm” by Turing
machine (or program for a Turing machine) or by any other general purpose machine
model he is familiar with. Indeed, the concepts to be introduced are robust with re-
spect to the type of (general purpose) machine model chosen.

 Let P⊆∑+ be a problem. Suppose that an algorithm takes 22
w

steps to decide
whether w∈P. Then, even for quite short w, this algorithm cannot be performed in
practice even with the fastest computers. Thus, it is conceivable that a problem P is
“theoretically”, but not “practically” solvable by an algorithm, since all algorithms de-
ciding membership in P are too costly, since they need too many computation steps or
too much memory. In fact, even for ∑={0, 1}, one can show the existence of such
problems.
 Denote by PTIME all problems that are solvable in polynomial time, i.e., all problems

P such that there is an algorithm A and a polynomial p(x) such that for all words w,

1. w∈P⇔A accepts w;

2. the algorithm A, on input w, stops after ≤p(|w|) steps.

 Here, |w| denotes the length of the word w.
 The importance of PTIME resides in the opinion that P coincides with the class of
problems that can be realistically solved by computers. Therefore, one often identifies
the “practically solvable” problems with the problems in PTIME. This “Church’s
Thesis of practical computability” can only be justified to a certain extent: note, for
example, that no restriction is imposed on the degree or the coefficients of the poly-
nomials. But experience shows that, as far as problems in practical applications (or
problems that arise naturally in mathematics) are concerned, essentially the existence
of an algorithm executable in practice corresponds to the existence of a polynomially
bounded algorithm. This experience is summarized in (Downey & Fellows 1999) as
follows: “When we can do anything clever at all, we can usually achieve polynomial-
time complexities with small exponent polynomials. This can be regarded as a fasci-
nating empirical fact about the ‘natural’ world of computational complexity”.
 Clearly, any problem P accepted by an automaton is in PTIME: In fact, an automa-
ton A with P(A)=P is an algorithm deciding w∈P in |w| steps. For many important
problems it is still open if they are in PTIME. We give an example. Let G=(G, EG) be

a (finite) graph, that is, G is a τ:={E}-structure, where E is a binary relation symbol;

hence, EG⊆G×G. The elements of G are the vertices of the graph. If EGab, we say that
there is an arc from a to b. A graph is 3-colorable if we can color the vertices of G such
that no adjacent vertices a, b, i.e., no a, b with EGab, are similarly colored. Is 3-
colorability in PTIME? To get a problem in the sense of the previous section we must
encode structures by words over some alphabet. This can be done in a straightforward
way. Since we already saw that words correspond to structures, it is consistent with

Descriptive Complexity Theories

53

our exposition so far, if in the rest of the paper we view problems as classes of finite
structures1.
 It is not known if the class of 3-colorable graphs is in PTIME. But it is in
NPTIME, the class of problems solvable by a nondeterministic algorithm in polyno-
mial time. In certain states such nondeterministic algorithms may have the choice be-
tween more than one possible behaviours (actions). By definition, a nondeterministic
algorithm accepts a given input, if there is at least one run accepting the input (that is, in
any nondeterministic step there is at least one choice of behaviour such that eventually
the algorithm accepts the input). In a precise framework, Turing machines correspond
to algorithms and nondeterministic Turing machines to nondeterministic algorithms.
Nondeterministic Turing machines are obtained by relaxing the notion of Turing ma-
chine similarly as the notion of algorithm is generalized in order to get nondeterminis-
tic algorithms. Nondeterministic Turing machines are an unrealistic but theoretically
important model of computation The class of 3-colorable graphs is in NPTIME: The
algorithm starts with a series of nondeterministic steps where it guesses a coloring of
all the vertices (say, to every vertex it assigns 0, 1, or 2) and then it (deterministically)
checks whether adjacent vertices have distinct colors.
 Clearly, PTIME⊆NPTIME. The question whether PTIME=NPTIME, the so-
called P=NP-problem, is still open. It is considered to be one of the most challenging
problems of complexity theory, yet even of mathematics.
 The class of 3-colorable graphs is axiomatized by the monadic second-order sen-
tence

∃X∃Y∃Z(
∀x(Xx∨Yx∨Zx)∧∀x(¬(Xx∧Yx)∧¬(Yx∧Zx)∧¬(Xx∧Zx))∧

∀x∀y(Exy→(¬(Xx∧Xy)∧¬(Yx∧Yy)∧¬(Zx∧Zy)))).
 This is a 1

1Σ -sentence, i.e., a second-order sentence of the form

∃X1...∃Xl

where ψ has no second-order quantifiers and X1,...,Xl are (not necessarily monadic)
relation variables. The following theorem generalizes this observation. It was the start-
ing point for the descriptive characterization of complexity classes.

Theorem 2.1 (Fagin 1974)

A class of structures is in NPTIME just in case it is axiomatizable by a 1
1Σ -sentence.

 But what about PTIME? We obtain a characterization of PTIME by adding to
first-order logic a so-called fixed-point operator (which resembles the µ-operator of
classical recursion theory). We explain this operator by an example.
 Consider a graph G= (G, EG). The sequence a0,..., an is a path from a to b of length n, if
a=a0, an=b, and EGa0a1,..., EGan-1an. We write d(a, b)=n, if there is a path from a to b of

1 The reader familiar with descriptive complexity theory will realize that throughout the paper we do not

address the problems that arise in absence of an order relation.

Joerg FLUM

54

length n and there is no path from a to b of length k with k<n. In particular, d(a, a)=0.
We write d(a, b)=∞, if there is no path from a to b.
 Consider the formula

ϕ(x,y,X):=(x=y∨∃z(Xxz∧Ezy)).
 It gives rise to a sequence F0, F1,... (more precisely, F0(ϕ,G), F1(ϕ, G)...) of subsets
of G×G defined by

F0:=∅ and Fn+1:={(a,b)∈G×G|G�ϕ[a,b,Fn]},

i.e., Fn+1 is the set of ordered pairs of elements of G that fulfill ϕ in G, if we inter-
prete X by Fn. An easy induction shows that

Fn:={(a,b)∈G×G|d(a,b)<n}.
 In particular,

F0⊆F1⊆F2⊆.... (1)
 We denote by

F+:={(a,b)∈G×G|∃n0∀n≥n0:(a,b)∈Fn}.

 By (1), F+=∪n∈NFn, i.e.,

F+:={(a,b)∈G×G|d(a,b)<∞}.
 Since Fn=Fn+1 implies Fn=Fn+1=Fn+2=...=F+ and since Fn⊆G×G for every n, we see
that the fixed-point of the sequence is reached after at most |G|2 steps, i.e., after a
number of steps which is polynomial in the size of G. Now, by definition, the formula
of “fixed-point logic”

∀x∀y[FPxy,Xϕ(x,y,X)] xy
expresses that all pairs are in the fixed-point, i.e.,

G�∀x∀y[FPxy,Xϕ(x,y,X)]xy ⇔ for all a, b: d(a,b) < ∞

 ⇔ G is connected.

 We come to the general case. Let ϕ(x1,..., xr,X) be an arbitrary formula of first-
order logic of vocabulary τ with a second-order variable X of arity r. Suppose A is a τ-

structure. Then ϕ gives rise to the sequence F0(=F0(ϕ,A)), F1,... defined by

F0:=∅ and Fn+1:={(a1,...,ar)∈Ar|A�ϕ[â,Fn]}
(here â abbreviates the sequence a1,...,ar). The set

F+:={(a1,...,ar)∈Ar|∃n0∀n≥n0:(a1,...,ar)∈Fn}
is called the (generalized) fixed-point of ϕ in A.

 Fixed-point logic consists of all sentences of the form ∀y1... ∀yr[1 ,FP
rx x Xϕ]y1... yr or

of the form ∃y1...∃yr[1 ,FP
rx x Xϕ]y1...yr. By definition, in the structure A they express

that F+=Ar and that F+≠∅, respectively2.

2 Usually, fixed-point logic is defined as the set of all formulas obtained from atomic ones by closing un-

der the first-order operations and under the fixed-point operation just introduced; but it turns out

Descriptive Complexity Theories

55

 If ϕ is positive in X, that is, no occurrence of X in ϕ is in the scope of a negation
symbol (and we only use the connectives ¬, ∧, ∨ and the quantifiers ∃, ∀), then a
simple induction shows that F0⊆F1⊆F2⊆... and that F+= rAF . So in this case we only

need a number of steps polynomial in the size of the structure to reach the fixed-
point. We call the corresponding fragment of fixed-point logic the positive fixed-point
logic3. Indeed we have:

Theorem 2.2 (Immerman 1986, Vardi 1982)
A class of structures is contained in PTIME if and only if it is axiomatizable in positive fixed-point
logic.
 Theorem 2.1 and Theorem 2.2 yield the following purely logical reformulation of
the P=NP-problem:

Corollary 2.3

PTIME=NPTIME If and only if (on ordered finite structures) every property expressible by a 1
1Σ -

sentence is expressible by a sentence of positive fixed-point logic.

3 Space-bounded algorithms

In Theorem 2.2 we only considered sentences of fixed-point logic that were positive
in the fixed-point variable. What is the expressive power of full fixed-point logic? It
turns out that it corresponds to the complexity class PSPACE (“polynomial space”).

A problem P is in PSPACE, if there is an algorithm A and a polynomial p such that

for every input the algorithm decides membership in P and the memory used by A

(number of cells of the memory or the number of tape squares of a corresponding
Turing machine) is bounded by p (size of the input).
 Again consider a formula ϕ(x1,...,xr,X) and a structure A. Denote Fn(ϕ,A) by Fn.

Since Fn⊆Ar and the power set of Ar has ()2
rA elements, there are m,l≤ ()2

rA with

l≥1 such that Fm=Fm+l. An easy induction shows that Fk=Fk+l holds for all k≥m.
Hence,

() () () ()2 2 1 2 2
: ...r r r rA A A AF F F F+

+ +
= ∩ ∩ ∩ . (2)

 For any n, to calculate Fn+1 we just need Fn and not the whole sequence F0,...,Fn.
Hence, as |Fn|≤|A|r, we only need space polynomial in the size of A in order to cal-
culate F+ using (2)4. This is one direction of:

that every such sentence is equivalent to a sentence of the form above-mentioned. In the literature,
fixed-point logic is often called partial fixed-point logic.

3 Since then the fixed-point F+ is the least fixed-point of the corresponding operation, this fragment is
called least fixed-point logic in the literature.

4 Note that the time will be exponential in the size of A.

Joerg FLUM

56

Theorem 3.1 (Abiteboul & Vianu 1989)
A class of structures is contained in PSPACE if and only if it is axiomatizable by a sentence of
fixed-point logic.
As a corollary of Theorem 2.2 and Theorem 3.1 we obtain the following logical re-
formulation of an open problem of complexity theory:

Corollary 3.2 (Abiteboul & Vianu 1991)
PTIME=PSPACE if and only if positive fixed-point logic and fixed-point logic have the same ex-
pressive power.
 We give an axiomatization in fixed-point logic of a concrete class. For this pur-
pose, we consider a version of the Game of Life. Let τ:={E,S} with binary E and
unary S. Let G=(G,EG,SG), where (G,EG) is a undirected graph, i.e.,

(G,EG)�∀x¬Exx∧∀x∀y(Exy→Eyx).
 We interprete SG as the set of vertices hosting a live cell (of some species). Set
S0=∅, S1=SG, and for n>1, define Sn, the “nth generation”, by the following “repro-
duction rule”: For a∈G, a∈Sn iff (i) or (ii) holds, where

(i) a∈Sn-1 and, in Sn-1, a has exactly two neighbors hosting a live cell;
(ii) in Sn-1, a has at least three neighbors hosting a live cell.

 Then, Sn=Fn(ϕ, G) for the following formula ϕ(x,Y) where the first two lines corre-
spond to (i), the third one to (ii), and the last one gives the right value to the first gen-
eration:

(Yx∧∃y∃z((y≠z∧Exy∧Exz∧Yy∧Yz)
 ∧∀u((Exu∧Yu)→(u=y∨u=z)))
∨∃y∃z∃u(y≠z∧u≠z∧y≠u∧Exy∧Exz∧Exu∧Yy∧Yz∧Yu)
 ∨(¬∃xYx∧Sx).

 The statement “there is a vertex that eventually hosts a live cell” can be expressed
by the sentence of fixed-point logic:

∃x[FPx,Yϕ(x,Y)]x.
 Hence, this sentence axiomatizes the class of structures G=(G,EG,SG) that contain
a vertex that eventually hosts a live cell. By Theorem 3.1, this class is in PSPACE.
 For our last characterization of a complexity class we come back to the formula

ϕ(x,y,X):=(x=y∨∃z(Xxz∧Ezy)).
we analyzed at the beginning of Section 2, where we saw that the sentence
∀x∀y[FPxy,Xϕ(x,y,X)]xy expresses connectivity in graphs. The formula ϕ(x,y,X) can
equivalently be rewritten as

(x=y∨∃u∃z(Xuz∧u=x∧Ezy)),
which we abbreviate as

(x=y∨∃uz∈X(u=x∧Ezy));
hence, the corresponding fixed-point sentence expressing connectivity has the form

∀x∀y[FPxy,X(ψ1(x,y)∨∃uz∈Xψ(u,z,x,y))]xy, (3)

Descriptive Complexity Theories

57

where ψ1 and ψ do not contain the variable X. Each tuple in a new stage of the fixed-
point process in (3), say in Fn+1, is already witnessed by a single tuple of the preceding
stage Fn. Hence, (x,y)∈Fk if and only if there is a sequence (x1,y1),...,(xk,yk) with
(xk,yk)=(x,y) and

ψ1(x1,y1) and ψ(xi,yi,xi+1,yi+1) for i <k.

 This yields a nondeterministic algorithm A that, given a structure B as input,

checks whether B�∀x∀y[FPxy,X(ψ1(x,y)∨∃uz∈Xψ(u,z,x,y))]xy: Since F0⊆F1⊆..., we

have 2BF F+ = . For every a,b∈B, the algorithm A, step by step, guesses the elements

of a sequence (a1,b1),...,(ak,bk) with k≤|B|2, (ak,bk)=(a,b), and with
B�ψ1(a1,b1) and B�ψ(ai,bi,ai+1,bi+1) for i<k.

 At every step of the computation the algorithm A only has to store the counter i,

the previous guess (ai,bi), the actual guess (ai+1,bi+1), and the target tuple (a,b). Since we
may assume that B={1,...,|B|} we need log |B| bits to name the elements of B in bi-

nary. Altogether, A needs ≤c ⋅ log |B| cells of memory to check if B satisfies the

fixed-point formula in (3).
 This can be generalized. Let τ be an arbitrary vocabulary and consider a formula of
the form

() ()()11 , 1... ,
rr x x Xy y FP x z X x z yψ ψ ∀ ∀ ∨ ∃ ∈ . (4)

 In particular, neither ψ1 nor ψ contains X. Again, each tuple in a new stage of the
fixed-point process, say in Fn+1, is already witnessed by a single tuple of the preceding
stage Fn. Therefore, as in the preceding example, we see that the class of structures
axiomatized by the sentence in (4) is in NLOGSPACE. By definition, a problem P is

in NLOGSPACE, if there is an algorithm A just accepting the elements of P and if

there is a constant c∈N such that for every input the memory used by A (besides the

memory used to store the input) is bounded by c ⋅ log(size of the input).
 Our previous observation shows the “easy” part of the following result.

Theorem 3.3 (Immerman 1987)
A class of structures is in NLOGSPACE if and only if it is axiomatizable in fixed-point logic by a
formula of the form

() ()()11 , 1... ,
rr x x Xy y FP x z X x z yψ ψ ∀ ∀ ∨ ∃ ∈ .

 Immerman (Immerman 1988) used this characterization to obtain:

Corollary 3.4
NLOGSPACE is closed under complements.

Joerg FLUM

58

BIBLIOGRAPHY

Abiteboul, S., Vianu, V. (1989) "Fixpoint extensions of first-order logic and Datalog-like languages" in
Proc. 4th IEEE Symp. on Logic in Computer Science, 71–79.

Abiteboul, S., Vianu, V. (1991) "Generic computation and its complexity" in Proc. 23rd ACM Symp. on
Theory of Computing, 209–219.

Büchi, J. R. (1960) "Weak second-order arithmetic and finite automata", Zeitschrift für mathematische Logik
und Grundlagen der Mathematik 6, 66–92.

Downey, R. G., Fellows, M. R.. (1999) Parameterized Complexity, Springer-Verlag.
Ebbinghaus, H.-D., Flum, J. (1999) Finite Model Theory, Springer-Verlag, 2nd edition.
Elgot, C. C. (1961) "Decision problems of finite automata design and related arithmetics", Trans. Amer.

Math. Soc. 98, 21–52.
Fagin, R. (1974) "Generalized first–order spectra and polynomial–time recognizable sets" in R. M. Karp

(ed.), Complexity of Computation, SIAMAMS Proceedings, Vol. 7, 43–73.
Flum, J., Grohe, M. (2002) "Describing parameterized complexity classes" in Proceedings of STACS’02, Lec-

ture Notes in Computer Science 2285, Springer-Verlag, 359-371.
Immerman, N. (1986) "Relational queries computable in polynomial time", Information and Control 68, 86–

104.
Immerman, N. (1987) "Languages that capture complexity classes", SIAM Journal on Computing 16, 760–

778.
Immerman, N. (1988) "Nondeterministic space is closed under complement", SIAM Journal on Computing

17, 935–938.
Immerman, N. (1999) Descriptive Complexity, Springer-Verlag.
Papadimitriou, C. H. (1994) Computational Complexity, Addison-Wesley.
Vardi, M. Y. (1982) "The complexity of relational query languages" in Proceedings of the 14th ACM Sympo-

sium on Theory of Computing, 137–146.

Joerg FLUM is Professor of Mathematical Logic at the Albert-Ludwigs-Universität at Freiburg. He has
worked on various topics in model theory and theoretical computer science including infinitary
languages, topological model theory, descriptive complexity, and parameterized complexity. He is co-
author of a textbook in mathematical logic and of monographs on topological model theory and on finite
model theory

Address: Institut für Mathematische Logik, Eckerstr. 1, 79104 Freiburg, Germany. Email: Jo-
erg.Flum@mathematik.uni-freiburg.de

