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The optimal conversion of a continuous inter-particle potential to a discrete equiv-

alent is considered here. Existing and novel algorithms are evaluated to determine

the best technique for creating accurate discrete forms using the minimum number

of discontinuities. This allows the event-driven molecular dynamics technique to be

efficiently applied to the wide range of continuous force models available in the liter-

ature, and facilitates a direct comparison of event-driven and time-driven molecular

dynamics. The performance of the proposed conversion techniques are evaluated

through application to the Lennard-Jones model. A surprising linear dependence of

the computational cost on the number of discontinuities is found, allowing accuracy

to be traded for speed in a controlled manner. Excellent agreement is found for static

and dynamic properties using a relatively low number of discontinuities. Molecular

dynamics of the converted Lennard-Jones discrete potential outperforms traditional

time-stepping methods for gases but is significantly slower at higher densities.

PACS numbers: Valid PACS appear here

Keywords: DEM, Event-Driven Dynamics, Stepped Potentials

1



I. INTRODUCTION

Particle simulation techniques are now over 50 years old1 and have become a vital tool

in exploring natural processes at all scales. Molecular dynamics, granular dynamics2, dis-

sipative particle dynamics, and even smooth particle hydrodynamics3 algorithms are all

fundamentally identical. They each attempt to solve classical equations of motion for a

large number of particles which represent the mass of the system. In such models, con-

servative interactions between particles are typically defined through a pairwise additive

inter-particle potential Φ(r), where r is the distance between the particles. The force Fij

acting on particle i due to particle j is given by

Fij = −
∂

∂ri
Φ(|ri − rj|)

where ri is the position of particle i, and rj is the position of particle j.

There are two broad categories of inter-particle potentials: continuous and discrete. For

continuous potentials, the interaction energy is a continuous function of the particle posi-

tions. The Lennard-Jones potential is a classic example of a continuous potential:

ΦLJ(r) = 4 ε

[

(σ

r

)12

−
(σ

r

)6
]

where r is the distance between the two particles, ε is the minimum interaction energy, and

σ is the separation distance corresponding to zero interaction energy.

Continuous potentials are prevalent in the simulation literature, beginning with the first

simulations of Lennard-Jones systems by Verlet in 19674 to the complex many-body poten-

tials used for biological systems today5,6. One reason for their popularity may be due to the

ease in which physical scaling laws can be implemented into the potential. For example, the

r−6 term in the Lennard-Jones potential was selected to match the known scaling of molec-

ular dispersion forces. The finite difference techniques used in simulations of continuous

potentials are also well-developed and are straightforward to implement7.

In discontinuous (also known as “stepped” or “terraced”8) potentials, the interaction

potential changes only at discrete locations. Discrete potentials are equally as popular as

continuous potentials, due to their amenability to theoretical analysis, and are at the heart

of thermodynamic perturbation theory (TPT)9,10 and kinetic theory11. However, there has

not been the same explosion of molecular force fields and software tools as for continuous
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FIG. 1. A comparison of the continuous Lennard-Jones potential (solid) and three stepped ap-

proximations created using Eq. (4) for step placement and Eq. (11) for the step energies.

potentials (e.g., GROMACS12 and ESPResSo13). This is even more surprising given that

the very first particle simulations were carried out using a discrete potential1, almost ten

years before Verlet’s simulations.

It is only relatively recently that fine-tuned discrete potentials for detailed, atomistic

simulations have started to appear; these include force fields for a broad range of compounds,

including hydrocarbons14 and fluorocarbons15, organic acids16, esters, ketones and other

organic compounds17,18, phospholipids19, and peptides and proteins20. The use of TPT has

even allowed rapid and direct fitting of discrete potentials to experimental data10,14,20,21. In

addition, standard simulation packages for event-driven molecular dynamics have also begun

to appear22.

The strong theoretical frameworks and stable simulation algorithm makes discrete po-

tentials an attractive alternative to continuous potentials.

Complex discontinuous potentials are typically reported as a table of discontinuity loca-

tions and energies23. Although these two classes of potentials are distinct, it is clear that

they may be made equivalent, provided a sufficient number of discontinuities or steps are

used, as illustrated in Fig. 1. The optimal number, location, and energetic change of the dis-
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continuities for an accurate representation of a continuous potential is not well understood

and is the subject of this paper.

It is desirable to have a mechanism to convert continuous potentials to discrete forms.

This mapping must be optimized in the sense that it uses the smallest number of discontinu-

ities to reduce the complexity of the converted potential and to minimize the computational

cost of simulation. Chapela et al.23 was the first to attempt to represent the continuous

Lennard-Jones potential by an equivalent discrete form. This mapping was optimized “by

hand” to reproduce the thermodynamic properties at one state point, but more recent

work24–27 has focused on using regular stepping to automate the conversion process. Con-

tinuous potentials have also been used to directly specify the location of discontinuities8

allowing a convenient implementation of asymmetric potentials in event-driven dynamics;

however, the optimization of this conversion is yet to be explored. Recently, there has been

an attempt to replace the soft interactions of continuous potentials entirely with collision

dynamics at low densities28 but this approach is restricted to low density systems.

In this work, the mapping of a continuous potential to a discrete form is investigated

using the Lennard-Jones potential. In the following section, the placement of discontinuities

and allocation of step energies is discussed before the methods are evaluated in Sec. III. The

most efficient mapping scheme is then evaluated for a range of thermodynamic and transport

properties in Sec. IV. A comparison between time-stepping and event-driven simulation is

performed in Sec. V. Finally, the conclusions of the paper are presented in Sec. VI.

II. DISCRETIZATION OF THE POTENTIAL

The primary aim of this work is to develop an algorithm to convert a continuous po-

tential to an optimal discrete form: one that provides an accurate approximation of the

original continuous potential and can be simulated at a minimal computational cost. As the

computational cost of an event-driven simulation is roughly proportional to the number of

discontinuities encountered by the particles, it is vital that the number of discontinuities or

steps used to achieve a set level of accuracy is minimized.

The location of a single step i in a spherically-symmetric discrete potential is specified

by the segment [ri+1, ri] between the ith and i + 1th discontinuities. The discontinuities,

located at ri and ri+1, bounding each step are also the limits of the neighboring steps. A

4



simplification made in this work is to require that each step is directly representative of the

segment of the continuous potential lying within the same limits [ri+1, ri]. This allows the

task of discretizing the potential to be split into two smaller tasks: the optimal placement

of discontinuities and the determination of an effective step energy for a segment of the

continuous potential.

It is common to accelerate molecular dynamics calculations by truncating the interaction

potential at a cut-off radius rcutoff, thus requiring only local particle pairings to be considered

in force calculations. Typically in time-stepping simulations, the potential is also shifted to

eliminate the discontinuity at the cutoff in order to avoid the presence of impulsive forces.

For example, the truncated, shifted Lennard-Jones potential is given by

Φ(r) =











ΦLJ(r)− ΦLJ(rcutoff) if r ≤ rcutoff

0 if r > rcutoff

. (1)

As each step of the discontinuous potential represents a segment of the original continuous

potential, the first discontinuity is defined to lie at the cutoff radius (i.e. r1 = rcutoff), while

all other discontinuities lie within in the region r ∈ (0, rcutoff). It is tempting to also define

an inner hard-core radius of the stepped potential using one of the available methods (e.g.,

see Ref. 29); however, this would require each step energy to somehow compensate for

the overly repulsive core, inextricably linking step placement and energy once again. The

available methods for placing discontinuities are reviewed in the next section before the

algorithms used to generate representative step energies are discussed.

A. Location of Discontinuities

The simplest approach to place the discontinuities of a discrete potential is to divide the

region r ∈ (0, rcutoff) into a number of steps of equal width ∆r25.

ri,∆r = rcutoff − (i− 1)∆r (2)

The total number of discontinuities/steps in the potential (including the cutoff) is given by

⌊rcutoff/∆r⌋+ 1.

It is not immediately clear that a uniform radial placement of the steps is the natural

choice for a spherical potential. An alternative choice is to fix the volume ∆v bounded by
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each step of the potential. In this case, each step location is determined using the following

recursive expression

ri,∆v =

(

r3i−1,∆v −
3∆v

4 π

)1/3

(3)

The total number of discontinuities in the potential is then ⌊4 π r3cutoff/3∆v⌋+ 1.

The primary disadvantage of the approaches outlined above is that they do not attempt

to adapt the step locations according to the behavior of the potential. It is likely that the

performance of both algorithms is particularly sensitive to the configuration of the steps

near the minimum of the potential where the interaction energy changes rapidly.

It has also been proposed8,27 to discretize continuous potentials by placing discontinuities

at fixed intervals of interaction energy ∆Φ. This approach allows a controlled resolution

of the potential, while balancing the contribution of each step and allows a straightforward

extension to asymmetric potentials. The locations of the discontinuities are the ordered

solutions to the following set of equations

Φ(r) = j∆Φ j ∈ Z (4)

The application of Eq. (4) to the shifted, truncated Lennard-Jones potential results in an

infinite number of steps due to the singularity at r = 0. In practice, the high-energy steps

are inaccessible and only a small number need to be computed during the simulation.

Before these approaches can be evaluated, a technique for determining the step energies

must be selected. This is discussed in the following section.

B. Step Energy

With the location of each step defined through one of the above algorithms, an algorithm

for determining the effective energy of a segment of the potential is required. In the limit of

a large number of discontinuities/small segments, the original continuous potential must be

recovered. Chapela et al.25 have evaluated three approaches based on point sampling of the

continuous potential.

ΦLeft
i = Φ(ri+1) (5)

ΦMid
i = Φ

(

ri + ri+1

2

)

(6)

ΦRight
i = Φ(ri) , (7)
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where Φi is the energy of step i over the region [ri+1, ri] of the discontinuous potential.

Chapela et al.25 report that mid-point sampling (ΦMid
i ) of the underlying continuous poten-

tial is the most effective at reproducing the original behavior of the Lennard-Jones potential,

whereas left sampling is more appropriate for the Yukawa potential. It is easy to define

other methods of point sampling, such as the minimum edge energy used by van Zon and

Schofield8. A straightforward choice is to sample the potential at the distance which divides

the step into two equal volumes.

ΦMid V ol
i = Φ

(

[

r3i + r3i+1

2

]1/3
)

. (8)

It is also possible to define alternative approaches which do not rely on point-sampling,

such as an equal area approach27; however, it is more desirable to directly match the ther-

modynamic properties of the converted potentials. Unfortunately, matching properties, such

as the pressure, would require the use of an accurate free energy, which is typically unavail-

able. Successful attempts have been made to adjust stepped potentials to directly match

the predictions of the TPT to experimental data for a range of thermodynamic properties26;

however, the resulting equation of state is still approximate and the expressions are rather

complicated. In this work, the focus is on directly reproducing the properties of the con-

tinuous potential system. One simple approach is to use the lowest order density correction

to both the pressure and free-energy, given by the second virial coefficient, which is directly

calculated from the interaction potential. The contribution of a segment of the potential to

the second virial may be calculated as follows

B2(ri, ri+1, T ) = −2 π

∫ ri

ri+1

(

e−βΦ(r) − 1
)

r2 dr (9)

where β = 1/(kBT ), T is the absolute temperature of the system, and kB is the Boltzmann

constant. The energy of the step can then be set to match the contribution to the sec-

ond virial coefficient for the corresponding segment of the continuous potential, using the

following expression

Φvirial
i (T ) = −kB T ln

(

3

r3i − r3i+1

∫ ri

ri+1

r2 e−βΦ(r) dr

)

. (10)

Application of this algorithm leads to excellent agreement at low densities for the pressure;

however, the algorithm has a cumbersome dependence on the temperature, which may not

be available a priori (e.g., in the microcanonical ensemble). In the high-temperature limit,
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equating the virial contribution reduces to taking a volume average of the energy within a

step:

ΦV olume
i =

3

r3i − r3i+1

∫ ri

ri+1

Φ (r) r2 dr. (11)

This indicates that the volume averaged approach will also yield a good reproduction of

the pressure near the ideal gas limit of high-temperature and low-density. It should be

noted that both virial and volume-averaging approaches will set an infinite energy for the

innermost step of the Lennard-Jones potential due to the singularity at r = 0. This can

have a dramatic effect on the potential as the step placement algorithms in Eqs. (3) and (4)

use a finite number of steps to represent the repulsive core.

III. COMPARISON OF MAPPING PROCEDURES

To compare the various methods for mapping potentials, molecular dynamics simulations

of N = 1372 discontinuous and continuous Lennard-Jones particles with rcutoff = 3σ were

performed over a range of densities, ρ = N/V , and temperatures, kB T . To collect thermo-

dynamic properties, each simulation was run for 20 (mσ2/ε)1/2 for equilibration before five

production runs of 30 (mσ2/ε)1/2 were used to collect averages and obtain estimates of the

uncertainty. Dynamical properties were collected using three runs, each 103 (mσ2/ε)1/2 in du-

ration. Averages are reported here with error bars corresponding to the standard deviation

between runs. Simulations for the continuous truncated, shifted Lennard-Jones potential

were performed using the ESPResSo13 package with a time step of 0.002 (mσ2/ε)1/2 and a

Langevin thermostat with a friction parameter of 1 (ε/mσ2)1/2. Discrete potential simula-

tions were performed using the DynamO22 package with an Andersen thermostat controlled

to 5% of the overall events. During the collection of dynamical properties, the thermostat is

disabled after the equilibration period and the temperature is monitored to ensure it remains

within 2% of the set value.

The mapping procedures must be evaluated on a basis of accuracy as a function of

computational cost. As event-driven simulators process events at a constant rate, the com-

putational cost is proportional to the number of events that must be processed per unit of

simulation time. Each additional discontinuity within the potential will generate additional

events provided particle pairs can access it; therefore, the computational cost is dominated
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by the number of discontinuities in the well of the potential. A straightforward parameter for

the order of approximation of the potential, Θ, can then be defined for each step placement

algorithm as follows:

Θ = 1 +



















(rcutoff − rmin) /∆r for Eq. (2)

4 π
(

r3cutoff − r3min

)

/3∆v for Eq. (3)

−Φ(rmin)/∆Φ for Eq. (4)

where rmin = 21/6 σ is the location of the minimum of the Lennard-Jones potential. The

parameter Θ is continuous, and as Θ → ∞, the continuous Lennard-Jones potential is re-

covered. The integer part of Θ corresponds to the number of discontinuities in the attractive

section of the potential and at whole integer values of Θ, a discontinuity is placed at the

minimum of the potential.

A. Placement of the discontinuities

The methods for placing the discontinuities of a discrete potential (Eq. (2)–(4)) are eval-

uated first. An example comparison of the calculated pressure and internal energy for a

high-density super-critical state point using the mid-point sampling algorithm (Eq. (6)) to

set the step energies is given in Fig. 2. A temperature of kB T/ε = 1.3 is used in these

simulations as it is well-above the critical temperature kBTc/ε ≈ 1.15 of the rcutoff = 3 σ

system30 to avoid entering the two-phase region. It is clear from this comparison alone that

the algorithm using fixed energy intervals (∆Φ, Eq. (4)) is superior to the other approaches.

The algorithm demonstrates rapid convergence to the result obtained from the continuous

potential simulations once Θ > 2, and allows a controlled approximation of the continuous

potential. The slight offset in the pressure at higher values of Θ is later shown to be an

artifact of using the mid-point sampling method for the step energy. The radial placement

algorithm (Eq. (2), ∆r) appears to converge towards the continuous potential result for the

internal energy but requires a large number of steps and its performance is erratic. The

radial and volumetric placement algorithms are particularly sensitive to the order of ap-

proximation. For example, the volumetric algorithm is only accurate for the internal energy

at integer values of Θ which correspond to a discontinuity placed at the minimum of the

potential. This highlights the importance of a good approximation of the potential in this

region at high densities.
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FIG. 2. Pressure, p, and internal energy, U , for a super-critical LJ liquid (kB T/ε = 1.3, ρσ3 = 0.85)

as a function of the number of attractive steps, Θ, in the potential. The solid line indicates the

continuous potential result. Each set of data points correspond to a different algorithm for placing

the steps whereas the Φmid
i algorithm is used to set the step energy in all cases.

Further simulations have been carried out using all step-energy algorithms over a range

of densities and temperatures and are in qualitative agreement with the trends outlined

in Fig. 2; therefore, it is clear that the fixed energy interval algorithm given in Eq. (4) is

the most appropriate as it is the only approach which allows a controlled approximation of

the stepped potential. A full review of the available step energy algorithms using the fixed

energy interval algorithm is performed in the following subsection.
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B. Step energy

The algorithms for setting the step energy, given in Eqs. (5)–(11), are evaluated by

comparing predictions for the pressure (see Fig. 3) and internal energy (see Fig. 4) for two

super-critical state-points at low and high density. Equation (4) is used to specify the step

locations and the order of approximation is again controlled by specifying the number of

discontinuities Θ in the attractive section of the potential. To confirm that Θ is the correct

basis for comparison of these algorithms, the simulation event rates as a function of Θ are

presented in Fig. 5. Each step-energy algorithm has an almost identical cost as a function of

Θ and, for Θ > 2, a remarkable linear correlation is observed between the rate of events. As

the event-driven simulation algorithm processes events at an approximately constant rate for

a given cutoff and density, this demonstrates that there is a direct correspondence between

Θ and the computational cost, making it a suitable basis for comparison.

At low densities, equating the virial contributions provides an excellent agreement for

the pressure for all orders of approximation (see Fig. 3a), as expected. This is particularly

interesting as for Θ ∈ (1, 2) the discontinuous potential is a core-softened square-well po-

tential. For predictions of the internal energy, the virial approach performs well only once

a step is added between the minimum and the cutoff (Θ > 2 in Fig. 4a). The results of the

Left sampling algorithm are not visible in the figures as they appear to enter the two-phase

region, resulting in a very poor approximation. The Left, Mid, and Right algorithms display

a strong dependence on the step placement through large changes near integer values of Θ.

The relatively smooth dependence of the Volume, and Virial algorithms on the Θ parameter

indicates that these approaches provide a relatively unbiased sampling of the underlying

potential. The MidVol algorithm performs worse overall than the Mid-point sampling ap-

proach and the Volume averaging algorithm performs almost as well as the Virial algorithm.

The Volume algorithm appears to be a suitable replacement for the Virial if the temperature

is not known and provided Θ > 1. At high densities (see Figs. 3b and 4b), the Virial and

Volume averaging approaches still perform well but surprisingly the Mid-point sampling out-

performs all other techniques for 1 < Θ < 4. This is likely due to a fortuitous cancellation

of errors rather than an inherent advantage of the method, as its performance worsens for

higher order approximations (Θ > 4). It is clear that an excellent approximation is obtained

for Θ > 5 with volume or virial stepping.
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FIG. 3. A comparison of the stepped potential predictions for the pressure, p, of a kBT/ε = 1.3

Lennard-Jones fluid as a function of attractive step count Θ at (a) low (ρσ3 = 0.1) and (b)

high (ρσ3 = 0.85) densities. The solid line indicates the continuous potential result and each

symbol represents a different energy stepping algorithm (Eqs. (5)–(10)). Discontinuity locations

are calculated using Eq. (4). Error bars are the standard deviations between the five production

runs.
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Overall, setting the step energy through a volume average of the energy of the underlying

continuous potential appears to yield a good approximation, provided Θ > 1. The additional

complexity of a temperature-dependent potential through using the Virial approach does not

appear justified at these conditions unless Θ < 1, but the reproduction of the internal energy

is unacceptable at such a low order of approximation. Although it might be expected that the

temperature dependence will become increasingly important at lower temperatures, further

simulations carried out in the liquid branch at kB T/ε = 0.85 and ρσ3 = 0.85 yielded similar

results to those reported, indicating the temperature correction is unjustified even when well

within the liquid phase.

In summary, the placement of discontinuities using Eq. (4) and allocation of their energies

using Eq. (11) appears to provide the best approximation of the continuous Lennard-Jones

potential of the methods examined for the evaluated state points. As the computational

cost primarily depends on the integer portion of Θ (see Fig. 5), it is optimal to select values

of Θ with large fractional parts, such as Θ ≈ 5.8.

IV. OPTIMAL ALGORITHM EVALUATION

The conversion algorithm which yielded the best performance, given in Eq. (4) and

Eq. (11), is now fully evaluated across a wide range of state points. In particular, the

trade-off between accuracy of reproduction and computational cost is explored. All values

of Θ have a fractional part of .8 due to the step-wise scaling of the computational cost with

Θ (see Fig. 5).

A. Thermodynamic Properties

To validate the thermodynamic properties of the system, the phase diagram (see Fig. 6)

and vapor pressures (see Fig. 7) are calculated using Monte Carlo simulations in the grand

canonical ensemble, using multi-canonical sampling to overcome the free energy barrier

between the liquid and vapor phases31–33. The simulations were performed in a cubic box of

side length 7σ. Approximately 100× 106 configurations were sampled at each temperature,

with 50% attempted displacement moves and 50% attempted particle insertion/deletion

moves. Simulations were started near the critical point, and histogram re-weighting was

13



used to determine the multi-canonical weights at the lower temperatures. The coexistence

point at each temperature was determined by adjusting the chemical potential to equate the

areas of the density histogram corresponding to the liquid and vapor phase.

The critical point is estimated by using a least-squares fit of the critical scaling of the

density difference and the law of rectlinear diameters

ρL − ρV = C1

(

1−
T

Tc

)βc

(12)

1

2
(ρL + ρV ) = ρc + C2 (T − Tc) (13)

where ρL and ρV are the liquid and vapor densities at a temperature of T , and Tc and ρc

are the critical properties which, along with C1 to C2, are fitting parameters. A critical

exponent of βc = 0.3265 is used here. The optimal conversion procedure appears to deliver

a smooth convergence to the continuous potential result for the phase envelope in Fig. 6,

highlighting the value of Θ as an order of approximation. The Θ = 10.8 system closely

reproduces the thermodynamic behavior of the continuous Lennard-Jones potential, with

only a slight under-estimation of the liquid transition density for low-temperature liquids.

For values of Θ = 3.8 and 5.8, the approximation is remarkably close for such a low order

approximation but for Θ = 2.8, the approximation rapidly deteriorates. Given the relatively

low values of Θ, the potential appears to be performing well when compared to previous

conversions23,25,27, although direct comparisons are difficult due to different choices for the

cutoff radius. Results for the vapor pressures in Fig. 7 confirm the close reproduction of the

continuous potential phase diagram for the Θ = 10.8 system.

Although the discrete approximations appear to converge to the thermodynamic prop-

erties of the Lennard-Jones fluid, there are subtle differences in the microscopic structure.

The discontinuities in the energetic potential lead to discontinuities in g(r), as illustrated

for a high-density state point in Fig. 8. For low-order approximations the differences are sig-

nificant, but for Θ = 10.8 the g(r) is closely reproduced. The continuous cavity distribution

function, defined as y(r) = g(r)eβΦ(r), yields a close agreement between all approximations

(see Fig. 8b). The sampling of y(r) is poor for the continuous potential near r → 0.9 as

the g(r) is low in this region; however, the use of the event-rate formulas allows a higher

accuracy of sampling in this region for the stepped potential which explains the discrepancy.

Despit these small differences in micro-structure, the overall thermodynamic properties of

the system are effectively captured by the stepped potentials.
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B. Dynamical Properties

To fully validate the effectiveness of the conversion process, a number of dynamical prop-

erties have been calculated and are compared against the reference simulation results of

Meier et al.35–37, and Bugel and Galliero38. Dynamical properties are difficult to calculate

accurately as they require long simulation times to allow hydrodynamic behavior to appear.

The literature values used here have been obtained using larger cut-offs (in the range of

rcutoff/σ = 5 to 6, depending on density). This will only cause small deviations except

near the critical point of the literature fluid (kB Tc/ε ≈ 1.34) which is above that of the

rcutoff/σ = 3 fluid used here (kB Tc/ε ≈ 1.17). Density sweeps are performed at two su-

percritical temperatures, kB T/ε = 1.35 near to the critical point of the reference data and

kB T/ε = 2.5. Relative error estimates are obtained by combining the standard deviation

between simulation runs for both the reference and discontinuous results.

Results for the self-diffusion coefficient are presented in Fig. 9. It is clear that dynamical

properties such as the diffusion coefficient are much more difficult to approximate when

compared with the thermodynamic properties. Low-order approximations have a reduced

diffusion coefficient when compared to the continuous potential. This effect is due to the

difference in critical temperatures which results in an lower reduced temperature for the

low-order approximations in the theorem of corresponding-states. The results for Θ = 10.8

are acceptable with a maximum deviation of ≈ 8% over both isotherms.

Results for the viscosity are presented in Fig. 10. The Θ = 10.8 results are within 10% of

the continuous results for both isotherms, except at the lowest two densities. The disagree-

ment at low densities is likely due to the increased proportion of glancing interactions which

shifts the emphasis from a close reproduction of the well to the outer tail of the potential. It

may be that regular stepping of the potential using radial or volumetric placement is more

suitable at very low gas densities. Overall, agreement is good given the uncertainty in the

results.

Results for the thermal conductivity are presented in Fig. 11. Agreement is good for high

temperatures but for the kB T/ε = 1.35 isotherm the stepped approximations significantly

underestimate the thermal conductivity of the continuous potential. The disagreement at

low-density may again be caused by an increase in glancing interactions but the discrepancy

persists at moderate densities. Although there is typically very little change in the thermal
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conductivity with cutoff range there is an enhancement of the thermal conductivity in region

of the critical point38. As the literature values at this temperature are near the critical point

the stepped potential results will slightly under predict the thermal conductivity. For liquid

densities (ρ σ3 & 0.6), the stepped approximation satisfactorily reproduces the continuous

potential behavior.

V. COMPUTATIONAL COST

Using the selected conversion procedure, the computational cost of stepped/event-driven

and continuous/time-stepping techniques can be compared on an equal basis. The relative

speed of each method, defined as the simulation time processed per unit of CPU time, for

a kB T/ε = 1.3 isotherm is presented in Fig. 12. It is immediately apparent that the use of

event-driven methods is only advantageous at gas densities (ρ σ3 . 0.02) or below, where it

significantly outperforms time stepping methods. Hybrid time-stepping/event-driven meth-

ods also display this dramatic increase in performance at low densities39 as the system

dynamics becomes dominated by two-particle collisions. The use of stepped potentials will

eliminate some of the overhead of hybrid techniques which indicates promising future ap-

plications of the potentials developed here in rarefied gas flow simulation. The comparison

carried out here is only for serial execution performance; however, parallel algorithms for

event-driven simulation exhibit good scaling40 and will be evaluated in future.

VI. CONCLUSIONS

In this work, we have examined several methods for mapping a continuous interaction

potential to a discrete, stepped potential. These methods were compared on their ability of

the resulting discrete potential to reproduce the thermodynamic and transport properties of

the continuous potential system over a broad range of conditions. Of the various methods

which were examined to locate the discontinuities of the potential, the best was found to be

at fixed intervals of energy. Setting the step energy through a volume average of the energy

of the underlying continuous potential appears to give the a good overall approximation

provided Θ > 1 and an excellent approximation for Θ = 10.8.

The computational cost for simulating the continuous potential and several levels of

16



stepped potential approximation were compared on the basis of their processing rates for a

unit of simulation time. Stepped Lennard-Jones potentials are increasingly efficient when

compared to continuous forms at gas densities or lower (ρ σ3 . 0.02 which is around 33 kg/m3

for Argon). This indicates the potentials here may be used to significantly accelerate simu-

lations of shock waves39 or other complex rarefied gas systems where DSMC techniques are

currently applied.

Short range or repulsive potentials, such as the Weeks-Chandler-Anderson potential,

should prove far more efficient targets for conversion given the speed of hard-sphere simula-

tions. The Hertz potential, used in simulations of solids particles, is particularly interesting

as the stepped equivalent may be arbitrarily steep. This, combined with the analytical

dynamics of the event-driven technique, will allow the stable and efficient use of realistic

materials parameters in granular simulations. The only obstacle to this application is the

conversion of the dissipative inter-particle forces which will be explored in a future publica-

tion.
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FIG. 4. A comparison of the stepped potential predictions for the internal energy U for the system

described in Fig. 3.
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FIG. 6. Phase diagram of the rcutoff = 3σ Lennard-Jones fluid. Symbols denote MCMC results

and the extrapolated critical point. Lines are the best fits of Eqs (12) and (13).
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FIG. 9. Diffusion coefficients relative to the reference continuous-potential data for two isotherms

over a range of densities. Reference data is taken from Meier et al.37.
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FIG. 10. Shear viscosity coefficients relative to the reference continuous-potential data for two

isotherms over a range of densities. Reference data is taken from Meier et al.36.
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FIG. 11. Thermal conductivity relative to the reference continuous-potential data for two isotherms

over a range of densities. Reference data is taken from Meier et al.35, and Bugel and Galliero38.
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