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Abstract 

 

 

In nature, proteins with weak binding affinity often use a multivalency approach to 

enhance protein affinity via an avidity effect. Interested in this multivalency approach, 

we have isolated a carbohydrate binding module (CBM) that recognises sialic acid 

(known as a CBM40 domain) from both Vibrio cholerae (Vc) and Streptococcus 

pneumoniae (Sp) NanA sialidases, and generated multivalent polypeptides from them 

using molecular biology. Multivalent CBM40 constructs were designed either using a 

tandem repeat approach to produce trimeric or tetrameric forms that we call Vc3CBM 

and Vc4CBM, respectively, or through the addition of a trimerization domain derived 

from Pseudomonas aeruginosa pseudaminidase to produce three trimeric forms of 

proteins known as Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD). Due to 

the position and flexibility of the linker between the trimerization domain and the 

CBM40 domain, site directed mutagenesis was employed to introduce a disulphide 

bond between the monomers at positions S164C and T83C of the CBM40 domain in 

order to promote a stable orientation of the binding site for easier access of sialic 

acids. 

 

Data from isothermal titration calorimetry (ITC) reveals that interaction of multivalent 

CBM40 proteins with α(2,3)-sialyllactose was mainly enthalpy driven with entropy 

contributing unfavorably to the interaction suggesting that these proteins establish a 

strong binding affinity to their ligand minimizing dissociation to produce stable 

multivalent molecules. However, using surface plasmon resonance (SPR), a mixed 

balance of entropy and enthalpy contributions was found with all constructs as 

determined by Van’t Hoff plots. This proved that binding does not occur through a 

simple protein-ligand interaction but through disruption of hydrophobic and/or ionic 

hydration that provide the driving force to the process. Interestingly, the valency of 
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multiple-linked polypeptides also plays an important part in the protein stabilization. 

However, little is known about their detailed structure when in multivalent form, as 

attempts to crystallize the whole protein molecule of Vc-CBMTD (WT) failed due to 

linker and domain flexibility. Only the trimerization domain (TD) part from 

Pseudomonas aeruginosa pseudaminidase was successfully crystallized and 

structure was determined to 3.0 Å without its CBM40 domain attached.  

 

In this thesis, we have also reported on the potential anti-influenza and anti-

parainfluenza properties of these proteins, which were found to block attachment and 

inhibit infection of several influenza A and parainfluenza virus strains in vitro. As 

widely mentioned in literature, terminal sialic acids on the cell surface of mammalian 

host tissue provide a target for various pathogenic organisms to bind. Levels of viral 

inhibition were greatest against A/Udorn/72 H3N2 virus for Vc4CBM and Vc3CBM 

constructs with the lowest EC50 of 0.59 µM and 0.94 µM respectively, however most of 

the multivalent proteins tested were also effective against A/WSN/33 H1N1 and 

A/PR8/34 H1N1 subtypes. For parainfluenza virus, all constructs containing V. 

cholerae sialidase CBM40 domain showed great effect in inhibiting virus infection 

during cell protection assay. The best EC50 values were 0.2 µM from Vc-CBMTD (WT) 

followed by 1.17 µM from Vc4CBM and 1.78 µM from Vc-CBMTD (Mutant) which was 

against hPIV2, hPIV3 and hPIV5 infections respectively. Only a construct from S. 

pneumoniae sialidase known as Sp-CBMTD showed negligible effect on cell 

protection. All constructs were further tested for cytotoxicity in mammalian cell culture 

as well as undergoing an inhibition study on viral replication proteins. For the in vivo 

study, we also demonstrated the effectiveness of Vc4CBM to protect cotton rats and 

mice from hPIV3 and Streptococcus pneumoniae infections, when given intranasally 

in advance or on the day of infection. Therefore, these novel multivalent proteins 

could be promising candidates as broad-spectrum inhibitors or as a prophylactic 

treatment for both influenza and parainfluenza associated diseases. 
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Ala, A   Alanine 

Arg, R   Arginine 

Asn, N   Asparagine 
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Val, V   Valine 

 

II. Chemicals 

3’SL   2,3-sialyllactose, Neu5Ac(2,3)Gal(1-4)Glc 

6’SL   2,6-sialyllactose Neu5Ac(2,6)Gal(1-4)Glc 

BSA   Bovine serum albumin 

DDM   n-dodecyl-β-D-maltoside 

DMEM   Dulbecco's Modified Eagle Medium 

DMSO   Dimethyl sulfoxide 

DNAse   Deoxyribonuclease 

DTT   Dithiothreitol 

DSLNT  Disialyllacto-N-tetraose 

DSL   Disialyllactose 

EDTA   Ethylenediaminetetraacetic acid 

FCS   Fetal calf serum 

Gal   Galactose 

GalNAc  N-acetylgalactosamine 

GlcNAc  N-acetylglucosamine 

GFP   Green fluorescent protein 

GM1   Monosialotetrahexosylganglioside   

IPTG   Isopropyl thio--D-galactoside 

LB    Luria Bertani 

NAT   N-acetyl trypsin 
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Neu5Ac  N-acetylneuraminic acid, NANA 

PBS    Phosphate buffered saline 

PEG    Polyethylene glycol  

PSA   Poly 2,8-sialic acid, ploySia, colominic acid  

TEV   Tobacco etch virus 

 

III. Sialidases 

HN   Haemagglutinin-neuraminidase 

IT trans-sialidase Intramolecular trans-sialidase 

NA   Influenza virus sialidase 

NanA   S. penumoniae sialidase A 

NanB   S. penumoniae sialidase B 

NanC   S. penumoniae sialidase C 

NanJ   C. perfingens large sialidase 

NEU1   Human lysosomal sialidase  

NEU2   Human cytosolic sialidase  

NEU3   Human plasma membrane-associated sialidase 

NEU4   Human mitochondrial sialidase 

PaNA   P. aeruginosa sialidase 

TcTS   T. cruzi  trans-sialidase 

 

IV. Symbols 

a,b,c  Unit cell dimensions 

Å  Angstrom  

, ,    Angles of unit cell  

  Macroscopic change 

  Chemical shift 

 (I)  Error in intensity 

                   Extinction coefficient 

  Wavelength 

                  Micro (one millionth) 

Tm  Midpoint temperature 

∆H  Enthalpy change 

∆G  Gibbs free energy 

∆S  Entropy 

ka Association rate 

constant 

kD Dissociation rate 

constant 

KD Equilibrium dissociation 

constant 

TCID50 median tissue culture 

infective dose  

EC50 Median effective 

concentration 
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V. Technical & Miscellaneous 

3-D   Three dimensions  

ATCC   American Type Culture Collection 

a.u   Asymmetric unit 

AUC   Analytical ultracentrifuge 

bp   Base pair 

BN-PAGE  Blue-Native polyacrylamide gel electrophoresis 

CAZy   Carbohydrate-Active Enzymes 

CBM   Carbohydrate binding module 

CCP4   Collaborative Computing Project Number 4 

Da   Dalton 

DLS   Dynamic light scattering 

ESRF   European Synchrotron Radiation Facility 

HA   Haemagglutinin  

I.N   Intranasal 

Ig   Immunoglobulin 

ITC   Isothermal titration calorimetry 

LDL   Low density lipoprotein 

LPS   Lipopolysaccharides 

M   Molar concentration 

MR   Molecular replacement 

MS   Mass spectrometry 

MW   Molecular weight 

OD600   Optical density at 600 nm 

PCR   Polymerase chain reactions  

PCT   Pre-crystallization test  

PDB   Protein Data Bank 

Pfu   Plaque-forming unit  

p.i   Post infection 

r.m.s.d   Root mean square deviation 

r.p.m  Round per minute 

SD   Standard deviation 

SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

SEC   Size exclusion chromatography 

TD   Trimerization domain 

TNF   Tumor necrosis factor 
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Chapter 1 

 

Introduction 

 

1.1 Diversity of sialic acid 

 

The term sialic acid is often known as N-acetyl-neuraminic acid (Neu5Ac), which is an O- 

and N-substituted derivative with a nine-carbon monosaccharide called neuraminic acid 

(Figure 1.1). This Neu5Ac is linked to galactose residue of carbohydrate chain through 

α(2,3)- or α(2,6)-linkages or α(2,8) to another sialic acid as shown in Figure 1.2. Sialic acid is 

a negatively charged molecule and is normally located at a distal end of glycan chains on the 

cell surface glycoproteins and glycolipids; and usually used for recognition purposes in the 

immune system (Schauer, 2004; Varki, 1997). It is evident that sialic acids can be 

recognized by a variety of lectins range from animals, plants and microorganism as well as 

by certain naturally occurring antibodies (Varki, 1997). 

 

It was reported by Ulloa and Real (2001) that the α(2,3)-linked sialiosides are distributed 

more abundantly than the α(2,6)-linkages in the apical membrane of epithelial cells. On the 

other hand, the α(2,8)-linked sialic acid polymers are found in gangliosides and in 

glycoproteins of neural tissues (Schauer, 1982b) and also on the surface of some bacteria 

like E. coli K1 strain (Kleene and Schachner, 2004). 
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Figure 1.1 Structure of sialic acid also known as N-acetylneuraminic acid 

(Neu5Ac). 
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Figure 1.2 The most common linkages of Neu5Ac to other carbohydrates. (a) The 

(2,3)-linkages of Neu5Ac to Gal, GalNAc or GlcNAc; (b) the (2,6)-linkages of Neu5Ac to 

Gal or GalNAc; (c) the (2,8)-linkages of Neu5Ac polymers. 
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1.2 Roles of sialic acid 

 

Sialic acids are negatively charged substrates with the ability to repel cell-cell interactions 

but also function as ligands for variety of lectins as mentioned by (Varki, 1997). They are a 

fundamental component of many biological processes such as cell recognition, adhesion, 

defence, activation of cellular pathways, sialylation and desialylation events, and cell surface 

modification. For example, they have been involved in macrophage-lymphocyte interaction 

(Crocker et al., 1991), virus attachment (Feizi and Childs, 1985) and attachment of bacterial 

fimbriae to certain mucosal cells (Lindahl et al., 1987). Due to the presence of sialic acids at 

the termini of glycoconjugates on the cell surface, it can be exploited by various pathogens 

for recognition sites in order to enter the host cells (Lehmann et al., 2006).  

 

As mentioned before, its negatively charged features help in binding and transporting 

positive charged residues including pharmaceutical molecules as well as attraction and 

repulsion of cells such as erythrocytes in the blood stream (Kelm and Schauer, 1997; 

Schauer, 2004; Schauer and Kamerling, 1997). Besides that, sialic acid also ensures the 

viscoelastic properties of sialic acid-rich molecules and its intramolecular interactions which 

help in their molecule shape and form such as mucins (Montreuil, 1982). 

 

While in molecular physiology context, sialic acid can operate to modulate the half-life of 

some proteins (Ashwell and Harford, 1982; Weigel and Yik, 2002). Under pathological 

conditions, when sialic acids are missing on the surface of monosaccharides such as on the 

liver and other organs, it may cause some glycoproteins (biotherapeutic products) to be 

rapidly cleared away (Raju et al., 2001; Weigel and Yik, 2002). 
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1.3 The sialidase superfamily 

 

Sialidases also known as neuraminidases are grouped into families of exoglycosidases 

which catalyze the hydrolysis of terminal sialic acid residues from various glycoconjugates 

such as glycoproteins and glycolipids (Schauer, 1985). Sialidases have been found widely 

from various organisms, including viruses, bacteriophage, bacteria, fungi, mycoplasma, 

protozoa and some higher eukaryotes.  

 

Despite the remarkable diversities in their distributions, amino acids sequences and 

biological properties, the sialidases still contain significant molecular and structural 

homologies with each other, therefore are enclosed into the sialidase superfamily with EC 

3.2.1.18 (Roggentin et al., 1989). Sialidases can be classified based on their origins or the 

functional properties as mentioned in this subsection. Moreover, sialidases can also be 

classified based on enzyme molecular weight (MWs) into two families with the large 

sialidases family with MWs over 60 kDa and the small sialidases family with MWs of 42 kDa 

(Roggentin et al., 1993). 

 

One of the most widely studied sialidases is the influenza virus sialidase also known as 

neuraminidase (NA). This is due to the public health concern on the outbreak of influenza 

infections which caused, for example, the 1918 influenza pandemic. The role of influenza 

virus NA is to remove sialic acid from cell surface and progeny virions facilitating virus 

release from the infected cell. ls (Air and Laver, 1989; Matrosovich et al., 2004b). Related to 

this, NA is known as one of the virulence factors for influenza viruses whereas, for 

paramyxoviruses, heamagglutinin-neuraminidase (HN). This HN contains dual functions 

which recognizes sialic acid for cell attachment and also cleaves sialic acid during infections 

(Taylor, 1996). Interestingly, these enzymes were proved to be effective inhibitors for in vitro 
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influenza virus infection. It has been observed that when sialic acid was enzymatically 

removed from cell surface, the cells were less risk to infection by influenza viruses 

(Gottschalk, 1959). 

 

In addition to the viral sialidases, a variety of sialidases have been identified from some 

pathogenic bacteria, such as Vibrio cholerae, Clostridium perfringens, Streptococcus 

pneumoniae, Salmonella typhimurium and Pseudomonas aeruginosa (Roggentin et al., 

1993). In certain situations, this enzyme has a specific role in disease and known to be a 

virulence factors essential in bacterial colonization and infections (Corfield et al., 1992). 

There are various non-pathogenic and pathogenic sialidase producing bacteria that also use 

sialic acid as their carbon and energy source (Corfield et al., 1992). Some pathogenic 

bacteria are able to project the enzyme directly onto the host tissue and interfere with host 

immunologic mechanisms and defence system. This approach will unmask some receptors 

for bacteria adherence and colonization, for example exposure of the 

monosialotetrahexosylganglioside (GM1) receptor for toxin binding in V. cholerae 

pathogenesis (Galen et al., 1992; Snyder and Walker, 1987).  

 

Another interesting group of sialidases is the mammalian sialidases. Since the first cloning of 

a mammalian sialidase in 1993, it boosted research on this particular area with 12 different 

mammalian sialidases successfully cloned and sequenced. Due to its different subcellular 

distribution, mammalian sialidases are classified into several subtypes such as lysosomal 

(NEU1), cytosolic (NEU2), plasma membrane-associated (NEU3) and mithocondrial/ ER-

associated (NEU4) types (Miyagi and Yamaguchi, 2012; Monti et al., 2010; Monti et al., 

2002). All of them are classified as exo-sialidases and share a significant sequence similarity 

with viral and microbial sialidases (Fanzani et al., 2012). These enzymes provide great 

importance in various cellular functions, including lysosomal catabolism in which microbial 

sialidases play roles in nutrition and pathogenesis (Miyagi and Yamaguchi, 2012). 
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Besides this, there are other unique sialidases known as trans-sialidases, which have been 

identified from parasites such as Trypanosoma cruzi (TcTS). This sialidase is different from 

other hydrolytic sialidases described above due to the parasite unable to synthesize sialic 

acids on its own, which are vital for its virulence in the human body (Agusti et al., 2007; 

Cross and Takle, 1993). In order to provide sialic acids, this protozoa expresses an enzyme 

called trans-sialidase (TcTS), which is attached to its outer membrane to crop sialic acids 

from the host body (Alvarez et al., 2004). Since this parasite does not synthesize its own 

sialic acid, this specific decoration with host sialic acid by TcTS might protect the protozoan 

parasite from the host immune system (Haselhorst et al., 2004). Sialidases and trans-

sialidases and have been found in a few Trypanosoma species such as the sialidase in 

Trypanosoma rangeli which although it shares 70% sequence identity to the TcTS, is not a 

trans-sialidase (Buschiazzo et al., 2000).  

 

Different from any other sialidases characterized so far, the sialidase from Arthrobacter 

ureafaciens has the unique property of cleaving the internal sialic acids residues from 

gangliotetraose (Iwamori et al., 1997). This sialidase was found to cleave internal sialic acid 

of GM1 and fucosyl GM1 on V. cholerae at the highest rate among other sialidases tested. 

Another unusual type of sialidase is endo-sialidase (endo-N) from bacteriophages. It is a 

phage specific for Escherichia coli strain K1 which encoded de-polymerase that degrades 

the α(2,8)-linked polysialic acid chains (PSA) of Escherichia coli strain K1 which is essential 

for bacteriophage infection. (Petter and Vimr, 1993). PSA are synthesize usually by certain 

pathogenic bacteria and more widely distributed on vertebrate neural cell adhesion molecule 

(NCAM) and sodium channel polypeptide (Rutishauser and Jessell, 1988; Silver and Vimr, 

1990). Moreover, sialidase activities also shown present in many parts of human tissues, 

including salivary glands and lungs (Achyuthan and Achyuthan, 2001). 
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Despite details above, no two different sialidases have shared identical active site and 

biochemical properties with each other, even though they exhibit high sequence similarity. 

This feature of being structurally distinct around the active sites would provide different 

strategies for drug discovery (Russell et al., 2006).  

 

1.4 Relationship between sialic acids and human health 

 

Sialic acid is found to decorate all cell surfaces of vertebrates and higher invertebrates 

involved in modulating and mediating a variety of important pathological processes. Sialic 

acids have been known to serve as binding sites for various pathogens and toxins (Angata 

and Varki, 2002; Ilver et al., 2003; Schauer, 2000) thus mediating specific roles in human 

health and disease (Table 1.1).  

 

The binding of influenza viruses to sialic acids on the human airway epithelium is known as 

the first critical step in the process of infection (Russell and Webster, 2005; Suzuki, 2005). 

Details of influenza virus replication cycle can be refered to Figure 1.3. Both α(2,3)- and 

α(2,6)-linked sialic acid can be recognized by influenza viruses as a receptor (Ito, 2000; 

Schauer, 1982a) but  human viruses prefer α(2,6)-linked sialic acid, while avian and equine 

viruses predominantly prefer α(2,3)-linked sialic acid (Ito, 2000). Human respiratory 

epithelium basically expresses both forms of sialic asids, with α(2,6)-linked sialic acid being 

more abundant than α(2,3)-linked sialic acid (Hassid et al., 1999; Matrosovich et al., 2004). It 

is highly likely that infections of avian influenza viruses direct to human are possible to occur 

but it is very inefficient. Such phenomena require the virus haemagglutinin to undergo 

specific mutations in order to recognize the α(2,6)-linked sialic acid instead of α(2,3)-linked 

sialic (Stevens et al., 2006; Suzuki, 2005). More commonly, the virus infected wild birds and 

domestic poultry into other domesticated mammals like pig which is known as a ‘mixing 

vessel’ as it contains both α(2,3)-linked and α(2,6)-linked sialic acid on the epithelium 

(Suzuki, 2005).  
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Figure 1.3 Replication cycle of influenza virus. (a) The virus binds to receptors on the 

surface of the host cell via haemagglutinin, (b) virus is internalised into endosomes. (c) 

Fusion and uncoating events occur, which are pH dependent  due to low pH in endosomes 

result in (d) the release of the viral genome (in the form of viral ribonucleoproteins; vRNPs) 

into the cytoplasm. (e) The vRNPs are then imported into the nucleus for replication. (f) 

Positive-sense viral messenger RNAs (mRNAs) are exported out of the nucleus into the 

cytoplasm for (g) protein synthesis. (h) vRNP assembly, which occur in the nucleus. (i) Late 

in infection, vRNPs form and leave the nucleus, and (j) progeny viruses assemble and (k) 

bud from the plasma membrane.(l) neuraminidase cleave sialic acid on host cell surface to 

release and spread virus progeny (von Itzstein, 2007). 
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There is an example of direct avian to human transfer occurring during the 1918 influenza 

pandemic which killed tens millions of people (Glaser et al., 2005; Stevens et al., 2006). This 

phenomenon happened due to a large dose of virus inhaled by the patients that reached the 

lower airways contains α(2,3)-linked sialic acids present in humans (Glaser et al., 2005). 

Complications of influenza can include bacterial infections, viral pneumonia, cardiac and 

other organ system abnormalities. People with chronic medical conditions may be at 

increased risk for these complications.  

 

Other respiratory pathogens such as viruses belonging to the paramyxovirus families also 

utilise cell surface carbohydrates to bind and gain entry to a variety of mammalian tissues 

(Figure 1.4). Parainfluenza viruses (hPIVs) were first discovered in the late 1950s when 

three different viruses recovered from children with lower respiratory disease proved to be 

unique but closely related to influenza virus (myxoviruses), which shared a few antigenic 

sites with the influenza virus. These viruses replicated in the epithelium of the upper 

respiratory tract and spread to the lower respiratory tract (Moscona, 2005). As stated widely 

in  literature, hPIV is genetically and antigenically divided into types 1 to 4 (Henrickson, 

2003).  

 

Each year more than 5 x106 of lower respiratory infections occur in younger children under 5 

years old as reported in United States (Denny and Clyde, 1986; Glezen et al., 1984). From 

these cases, hPIV1 and hPIV3 are found in one-third of these infections (Denny and Clyde, 

1986; Glezen et al., 1984; Murphy et al., 1980). These hPIVs cause upper respiratory 

infections in infants, children and adults to a lesser extent while lower respiratory tract 

infections occur in immunocompromised patients with chronic disease (e.g. heart, lung 

disease and asthma) and also in elderly people (Falsey, 1991; Falsey et al., 1995; Glezen et 

al., 1984; Glezen et al., 2000; Lamy and Debacker-Willame, 1973; Muir and Pillay, 1998; 
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Murphy et al., 1980). Less is known about hPIV4 but still young infants and children are 

clearly infected by this virus (Henrickson, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Schematic illustration of parainfluenza life cycle. (a) Virus binds to cell 

surface receptor sialic acid by haemagglutinin-neuraminidase (HN) (b) Viral envelope then 

fuse directly with plasma membrane of the host cell, mediated by fusion protein (F protein), 

(c) thus release viral nucleocapsid into cytoplasm contains genome RNA (d) Viral mRNAs 

and a full-length template are transcribed and translated from the genome RNA (e) 

Replication of the genome RNA occurs in cytoplasm (f) New virus progeny is assembled and 

(g) virus bud from plasma membrane (h)  Neuraminidase cleave sialic acid receptor on the 

cell surface and allows the release of newly budded virus from the cell to begin a new round 

of infection (Moscona, 2005). 

 

(a) Entry/ binding 

(b) Fusion
   

(e) Replication 

(c) 

(d) 

(f) Viral assembly 

(g) 

(h) Release 
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There are also studies that link the level of sialic acids on lipoprotein to cardiovascular 

disease risk, apparently by affecting the interactions of lipoproteins in determining uptake of 

lipids by endothelium (Millar, 2001; Tertov et al., 2001).  Research done by Tertov et al. 

(2001) has identified the presence of trans-sialidase activity in human serum which removes 

sialic acid from low density lipoprotein (LDL) to glycoconjugates of lipoproteins, glycoproteins 

and sphingolipids in human serum may induce cholesteryl ester accumulation in human 

aortic intimal smooth muscle cells.  

 

It has been well reported that the relationship between intensity of sialylated glycoconjugates 

on the cell surface and the possible invasion and metastasis is shown in many types of 

tumours (Raval et al., 2003; Yamamoto et al., 1997). Furthermore, these sialylated 

molecules are easily detected in serum and can be used as markers for cancer progression 

(Varki, 2008). (Miyagi et al., 2004) reported that carcinogenesis, invasion and metastasis of 

tumor cells are related to abnormal expression of terminal sialic acids and in specific, α(2,3)-

linked sialic acids. This association is due to the recognition of malignant cells by selectins 

which caused interaction and circulating tumor cells with leukocytes, platelets and 

endothelium and further facilitating metastasis (Varki and Varki, 2002). Interestingly, 

decrease in migration ability of some cancers such as colon carcinoma cells and gastric 

cancer are due to the inhibition of α(2,3)-linked sialic acid residues (Ishizuka et al., 2008). 

This valuable information would provide a helpful clue for early diagnosis and prognosis of 

certain cancer.  
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Table 1.1 

Relation between pathogens and diseases with virulence factors  

Virulence factor Pathogens  Disease  

Neuraminidase (NAs) Ortomyxoviruses 

- Influenza virus A and B 

 

Bacteria  

- Pseudomonas 

aeruginosa 

- Streptococcus 

 

 

- Pneumococcus 

- Bacteroides 

- Helicobacter pylori 

- Actinomyces 

- Clostridia 

- Corynebacteria 

- Enterococcus 

- Escherichia 

- Vibrio cholerae 

 

Parasites 

- Trichomonas mobilensis  

- Trypanosoma rengeli 

 

- Trypanosoma vivax 

 

Bacteriophage 

- K1E and K1F 

 

- Influenza (humans, birds, 

horses, seals etc) 

 

- Cystic fibrosis 

 

- Septicaemia, pneumonia, 

meningitis, periodontal disease 

- Septicaemia, 

haemolyticuraemic syndrome 

- Gastritis 

- Periodontal disease 

- Gas gangrene, peritonitis 

- Septicaemia 

- Peritonitis 

- Peritonitis 

- Cholera 

 

 

- Colonic parasite (squirrel 

monkeys) 

- Non-pathogenic in vertebrates 

- African disease of animals 

- Meningitis 

Haemagglutinin-

neuraminidase (HN) 

Paramyxoviruses 

- Parainfluenza viruses 

- Sendai virus 

- Mumps virus 

- Newcastle disease virus 

 

- Respiratory disease of humans 

- Murine parainfluenza 

- Mumps 

- Respiratory disease of chickens 
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 and other birds 

Trans-sialidase (TSs) Parasites 

- Trypanosome cruzi 

- Trypanosome congolense 

- Trypanosome brucei 

- Pnuemocycstis carinii 

- Eimeria tenella 

 

 

- Chagas disease 

- African disease of animals 

- African sleeping sickness 

- Pneumonia 

- Diarrhoea disease of chickens 

 

 

1.5 Development of inhibitor against influenza and parainfluenza infections 

 

1.5.1 Antiviral drugs against influenza viruses 

 

Influenza infection caused by both influenza A (IFV A) and influenza B (IFV B) strains bring 

enormous effects to the socioeconomic impacts. This virus usually invades cells of the upper 

and central respiratory tract. Since 1997, the emergence of a new IFV A virus of H5N1 types 

has been causing epidemics in wild birds and domestic poultry. Alarmingly, in particular in 

Asia, increased levels of human infections by this virus has made the likelihood of a possible 

influenza pandemic a serious concern. Research done in the 1960s suggested that 

pandemics usually arise when strains of avian and human influenza combine. Vaccination is 

the core means in disease prevention, while antiviral agents are primarily introduced for 

treatment. At this present time, no antigenically-well matched vaccine is currently available 

against this future pandemic virus. The concern of human fatality caused by the infection has 

increased the awareness to this threat and many governments have implemented plans to 

develop new antiviral drugs as well as stockpiling available anti-influenza drugs for backup. 

 

The first drugs available for the treatment or prophylaxis of influenza were adamantane-

based M2 ion channel protein inhibitors, rimantidine (Flumadine®) and amantadine 
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(Symmetrel®) (Figure 1.5) (Douglas, 1990; Wintermeyer and Nahata, 1995). These drug 

only been used against influenza A strains because only A strains have the M2 ion channel 

proteins (Douglas, 1990; Pinto et al., 1992) but have been found to cause CNS side effects 

(Pinto et al., 1992; Wintermeyer and Nahata, 1995) and also produce rapid emergence of 

drug-resistant viral strains (Hay, 1992). The rate of adamantine resistance in the United 

States increased from 2% in 1995-2002 to alarmingly 92% in 2005-2006 influenza seasons 

(Bright et al., 2006) while 99.6% of seasonal influenza A (H1N1) were found resistant 

towards oseltamivir as stated by Centers for Disease Control and Prevention (CDC).  Rapid 

emergence of influenza viruses via mechanisms known as antigenic drift and shift (Webster 

et al., 1992) has cause insensitivity to the available drugs due to mutation or gene 

reassortment within the current influenza variant (Triana-Baltzer et al., 2009c).  

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Chemical structures of adamantane based inhibitors, rimantidine and 

amantadine. 

 

 

 

Rimantidine (Flumadine) Amantadine (Symmetrel) 
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Antigenic shift, which is seen only with influenza A viruses, results from the replacement of 

the haemagglutinin and sometimes the neuraminidase with novel subtypes that have not 

been present in human viruses for a long time. While, antigenic drift is a subtler process than 

shift which involves the accumulation of mutations within the genes that code for antibody-

binding sites. This results in a new strain of virus particles which cannot be inhibited as 

effectively by the antibodies that were originally targeted against previous strains (Treanor, 

2004). Due to these issues, there has been considerable effort worldwide to discover new 

therapeutic agents for all types of influenza strains.  

 

Another development of anti-viral drugs are known as neuraminidase inhibitors (NAI). The 

idea is that neuraminidase inhibitor must fit directly into the enzyme’s active site pocket to 

block the enzyme activity in order to maintain its function (Moscona, 2005). This action will 

block the function of viral neuraminidase preventing the virus from reproducing and exiting 

from infected cells (Jones et al., 2006). Such neuraminidase inhibitors show potency against 

influenza viruses and have been commercialized for prophylaxis and treatment. They are 

inhaled anti-influenza drug known as zanamivir (Relenza®, GSK) (von Itzstein et al., 1993) 

and orally bioavailable drug called oseltamivir (Tamiflu®, Roche) (Figure 1.6) (Kim et al., 

1997). An inhaled formulation normally will deliver the drugs directly to the specific infection 

site. These drugs are proven to be effective in reducing the duration of illness and risk of 

complications. However, because the drugs act at the stage of viral replication, they must be 

administered as early as possible after the onset of illness. Furthermore, their efficacy 

diminishes significantly if they are not taken within 36 to 48 hours of the onset of symptoms. 

Influenza strains can also develop resistance to these drugs, reducing their clinical 

effectiveness (Hedrick et al., 2000). 
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Figure 1.6 Chemical structures of neuraminidase inhibitors, zanamivir and 

oseltamivir. The active component of the anti-influenza agent, Relenza and Tamiflu.  

 

Both developments of zanamivir and oseltamivir give rise to new alternatives drugs called 

Fludase® (DAS181). Fludase® contains a recombinant fusion protein of the catalytic domain 

of Actinomyces viscosus sialidase and the epithelial anchoring domain of human 

amphiregulin as shown in Figure 1.7 (Triana-Baltzer et al., 2009b). It efficiently binds to 

respiratory epithelial cells and then removes cell surface sialic acid residues that are used by 

both avian and human influenza viruses to invade respiratory epithelial cells (Malakov et al., 

2006b). Fludase® functions by targeting host cells instead of the virus and may be less likely 

to induce drug resistance than virus-targeting compounds (e.g. adamantanes and 

neuraminidase inhibitors) (Belser et al., 2007; Triana-Baltzer et al., 2009c). It therefore 

represents a first-in-class influenza therapy and potentially an important new weapon in the 

fight against new strains of influenza virus, including new avian strains. 

 

 

 

Zanamivir (Relenza) Oseltamivir (Tamiflu) 
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Figure 1.7 Molecular model of Fludase (DAS181). The catalytic domain of 

Actinomyces viscosus sialidase is colored in green and the epithelial anchoring domain of 

human amphiregulin on C-terminus in blue (Malakov et al., 2006a). 

 

This drug has completed its preclinical development and entered clinical trials development 

to determine its safety and efficacy in humans. During the preclinical studies, Fludase® 

displayed potent antiviral activity against clinical influenza strains, including the deadly H5N1 

strain (Belser et al., 2007; Triana-Baltzer et al., 2009a). This drug is administered through 

oral inhalation and the presence of cell surface anchoring-domain aid its attachment to the 

respiratory epithelium thus increases its retention time and drug potency (Triana-Baltzer et 

al., 2010). Besides, from the in vitro and in vivo preclinical test, the drug was found to 

improve lung function, pathology and the mice survival subjected to viral challenge. While in 

another study which resembles human influenza infection, administration of Fludase® led to 

reduced signs of inflammation and illness through significantly inhibiting viral replication or 

viral shedding (Malakov et al., 2006a). Fludase has now entered Phase II clinical trials to 

measure the drug effect on influenza viral load, safety and its tolerability. Fludase® is one 



[CHAPTER 1: INTRODUCTION] 19 

 

 
 

from the three antiviral drugs developed by NexBio for the treatment of influenza. The others 

are known as Inviridin and Viracidin. 

 

The need for novel, effective and safe therapies is acute. In particular, treatments and 

prophylactics against the entire spectrum of influenza strains, and which are not subject to 

drug-resistance, are much-needed. Vaccines are only partially effective because of the 

variety of different circulating strains of influenza at any one time. Current anti-influenza 

therapy options are also restricted in efficacy by rapid viral evolution and subsequent drug 

resistance. 

 

1.5.2 Antiviral drugs against parainfluenza viruses. 

 

Parainfluenza viruses (hPIVs) were first discovered in the late 1950s when three different 

viruses recovered from children with lower respiratory disease were proved to be unique but 

closely related to influenza virus (myxoviruses)-shared a few antigenic sites with influenza 

virus. These viruses replicated in the epithelium of the upper respiratory tract and spread 

from there to the lower respiratory tract (Moscona, 2005).  

 

Respiratory viruses in the paramyxovirus family including hPIV have been left behind by 

influenza in terms of development of effective antiviral drugs and vaccine. Although effective 

prophylaxis strategies using for respiratory syncytial virus are available, there are no similar 

treatments available specific for hPIVs (Moscona et al., 2010). As with influenza, vaccination 

is also the primary strategy for the prevention, but due to other possibilities like pandemic 

outbreaks, vaccinations will become inadequate. Vaccines require several months to 

develop, as well as, phenomena such as antigenic drift in the virus may also render its 

protective effects. Due to this problem, development of alternative treatment is urgently 

needed. 
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Since 1960s, an inactivated trivalent vaccine for hPIV1, hPIV2 and hPIV3 used in infants 

was found immunogenic and did not offer protection from further infection (Chin et al., 1969; 

Fulginiti et al., 1969). This has highlighted the challenge to research teams to identify which 

elements of the immune response provide protection against hPIVs. Current approaches to 

develop hPIVs vaccines include intranasal administration of live attenuated strains, subunit 

strategies using the HN and F proteins, recombinant bovine/human viruses and strains 

engineered using reverse genetics (Henrickson, 2003).  From the literature, there is a 

vaccine developed from recombinant Sendai virus (SV) cocktails to work against hPIV1 and 

respiratory syncytial virus (RSV) infections in human, but this vaccine is still undergoing 

clinical trials (Hurwitz, 2008; Hurwitz et al., 1997).  

 

Other vaccines that have been developed, which are intranasally administered are bovine 

PIV3 (bPIV3) vaccine and cold-adapted PIV3 vaccine (Durbin and Karron, 2003). The bPIV3 

vaccine was found effective against both PIV3 and RSV infections in an African green 

monkey cell line while the cold adapted PIV3 vaccine has been evaluated throughout a 

range of pediatric age groups but still undergoing efficacy trials (Sato and Wright, 2008).  

Maeda et al. (2005) have described the development of a live bivalent vaccine against both 

influenza and parainfluenza viruses by using a reverse genetics approach. Practically, this 

combined vaccination in which patients are immunized with multiple pathogens at the same 

time are very desirable in the clinic. However, an important issue that needs to be evaluated 

is that simultaneous immunization can result in failure if one of the virus affects the 

replication and causes pathogenicity (Pichichero, 2000). Belshe et al. (2004) had developed 

another vaccine candidate for hPIV3 known as cp45 vaccine. This vaccine was shown to be 

safe and immunogenic in young children in Phase II trials but would still needs to be further 

evaluated in Phase III of efficacy studies. 
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Antiviral therapy for hPIVs is now being explored due to complexities in vaccine 

development. This could be a principal weapon against these diseases. Binding, fusion and 

entry stages of the hPIV’s life cycle can be critical for intervention to prevent the infection. 

One example is zanamivir (Relenza), which does not only inhibit the neuraminidase activity 

but also the receptor interaction of hPIV3 HN. However, there is a case where serial 

passaging of the virus in cell culture in the presence of zanamivir resulted in new hPIV3 

variant thus reduced sensitivity to the drug (Murrell et al., 2001). This was due to the 

changes in the catalytic site of hPIV3-HN which contribute to drug resistance (Alymova et al., 

2008; Porotto et al., 2004). Another development of an antiviral drug was described by 

Alymova et al. (2008) of BCX 2798 as a haemagglutinin-neuraminidase (HN) inhibitor 

against parainfluenza virus infections in vitro and in vivo (Figure 1.8) (Alymova et al., 2004) 

and against lethal synergism between hPIV and S. pneumoniae in a mouse model (Alymova 

et al., 2005). This synthetic drug is based on the binding of 2-deoxy-2,3-didehydro-N-

acetylneuraminic acid (Neu5Ac2en) compound to receptor on NDV neuraminidase active 

site and thus function to block the catalytic binding site of the virus HN molecule (Watanabe 

et al., 2009).  

 

 

 

 

 

 

 

 

Figure 1.8 Chemical structure of haemagglutinin-neuraminidase inhibitor known as 

BCX2798 (Alymova et al., 2005). 
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Recently, a study by Mao et al. (2008) has developed two novel small molecules (C5 and 

C7) from the screening of a small molecule from ChemBridge library. These compounds 

exhibited their inhibitory effects on hPIV3 infection in CV-1 and human epithelial A549 cells; 

moreover, they are also effective in preventing cytopathic effects in infected cells (Mao et al., 

2008). 

 

Nexbio (US pharmaceutical company) has developed an alternative treatment for hPIV 

infections using Fludase (DAS181), which has been used in clinical trials for treatment or 

prophylaxis of influenza. For this study, Fludase was shown to inhibit a recombinant strain of 

hPIV3 in a high throughput antiviral screening assay as mentioned by Roth et al. (2009). 

From the assay, Fludase exhibited the highest potency in EC50 among other 23 compounds 

tested (Roth et al., 2009). Moreover, the anti-PIV activity of Fludase in human airway 

epithelial cell (HAE), a culture that reflects human airway and in the cotton rat animal model 

has suggested that this compound to undergo further clinical studies (Moscona et al., 2010). 

This protein functions by removing sialic acids from the surface of epithelial cells, rendering 

the virus to bind to the receptors. However, by removing cel-surface sialic acids, other 

cryptic receptors can be exposed, which may serve as receptors for other pathogens. 

 

1.6 Carbohydrate Binding Modules (CBM) 

 

Carbohydrate binding modules (BMs) were previously classified as cellulose-binding 

domains (CBDs) based on the initial discovery of several modules that bound cellulose 

(Gilkes et al., 1988; Tomme et al., 1988) . However, additional modules in carbohydrate-

active enzymes were continually being found that bound carbohydrates other than cellulose. 

This led to the classification of CBMs as carbohydrate-binding modules (CBM).  

 



[CHAPTER 1: INTRODUCTION] 23 

 

 
 

A carbohydrate-binding module (CBM) is defined as a contiguous amino acid sequence 

within a carbohydrate-active enzyme with a discrete fold and having carbohydrate-binding 

activity (Boraston et al., 1998; Boraston et al., 1999). This type of domain has been found in 

both hydrolytic and non-hydrolytic proteins. For example, proteins which possess the 

hydrolytic activity includes cellulases and xylanases encompass a discrete modules 

(catalytic module and one or more CBMs) joined by unstructured linker sequences. 

Removing the CBM from the scaffolding will promote decreased enzyme activity (Carrard 

and Linder, 1999; Coutinho et al., 1993; Goldstein et al., 1993). 

 

As reported, CBMs can be divided into families based on amino acid sequence similarity, 

binding specificity and structure (Coutinho and Henrissat, 1999; Rodriguez-Sanoja et al., 

2005; Volkov et al., 2004). Currently, there are 67 defined families of CBMs based on 

Carbohydrate-binding Module Family Classification in the CAZY database  that display 

substantial variation in ligand specificity (Cantarel et al., 2009).  Some of these modules can 

be found in glycosyl hydrolases group which are discrete, non-catalytic modules that 

primarily exist to target the parent enzyme to its substrate for efficient hydrolysis through 

increasing the concentration of the enzyme at the substrate surface (Boraston et al., 2004b). 

CBM is able bind specifically to polysaccharide independently when isolated from the parent 

molecule and can behave in a cooperative manner when isolated in tandem (Boraston et al., 

2002b; Crennell et al., 1994).  

 

CBMs usually concentrate enzymes onto the polysaccharide substrate via its sugar-binding 

activity, maintaining the enzyme in proximity close with the substrate, allowing more efficient 

degradation of polysaccharides (Bolam et al., 1998a). In fact, dramatically decreased 

enzyme activity has been evident in cellulose degradation when CBM domain was removed 

from the scaffolding (Ali et al., 2005; Araki et al., 2004; Bolam et al., 1998b). There have 

been reports indicating that significant decreases in enzyme activity was due to the 
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proteolytic excision or genetic truncation of CBMs from the catalytic module (Hall et al., 

1995). 

 

Recently, the use of CBMs has been established in different fields of biotechnology and 

numbers of publications and researches have increased constantly. Its unique properties 

have made CBM a perfect candidate for various applications. This is due to the fact that 

CBMs are independently folding units and, therefore, are able to function autonomously in 

chimeric proteins. Thus, CBMs are excellent model systems to study the mechanism of 

protein-carbohydrate recognition and their diversity in ligand specificity that underpins the 

exploration of these protein modules in various biotechnological applications.  

 

 

1.7 Study of family 40 CBM from bacterial sialidases 

 

1.7.1 V. cholerae sialidase  

 

In bacteria, sialidases can contain accessory modules attached to the catalytic core of the 

protein. For example, the NanH sialidase from Vibrio cholerae is known to be composed of a 

canonical six-bladed β-propeller catalytic domain that has two CBMs that flank the catalytic 

domain as showed in Figure 1.9 (Crennell et al., 1994). Both CBM domains share the same 

structure topology despite sharing only 23% sequence identity. The N-terminal domain is 

classified as a family 40 CBM (CBM40) and recognizes single sialic acid moiety as the 

binding ligand but superimposition of both N- and C- domains showed the C-terminal domain 

to be shifted in space from the correct position for ligand binding. Thus it is highly unlikely 

that the C-terminal domain binds to sialic acid (Moustafa et al., 2004). Interestingly, even 

though other bacteria, for example Clostridium perfringens NanJ sialidase also possess the 

same domain but its displayed lower affinity towards sialic acid as compared to V. cholerae 

CBM40 domain (Boraston et al., 2007). 
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Figure 1.9 Schematic drawing of Vibrio cholerae sialidase. The central catalytic 

domain is flanked by two lectin-like domains. The C-terminal lectin domain is in green, the N-

terminal lectin domain, known as CBM40, is in maroon (Moustafa et al., 2004). 

 

 

As mentioned previously, CBMs are not involved in catalytic activity but serve to bring the 

substrate to the active site of the catalytic domain to help in hydrolysis (Rodriguez-Sanoja et 

al., 2005). Moreover, it is shown that the sialic acid-specific CBM from V. cholerae sialidase 

can be isolated independently from its parent enzyme and exploited to generate multivalent 

polypeptides that can bind to sialic acid (Figure 1.1), the monomer having a relatively high 

affinity Kd ~ 30 µM (Connaris et al, 2009).  This was reported as one of the highest affinity for 

a monosaccharide-protein interaction that recognized sialic acid (Moustafa et al., 2004), 

when compared to other sialic acid-protein interactions, such as wheat germ agglutinin, 

demonstrated a binding affinity of Kd ~ 100 µM with sialyllactose, involving also contributions 

from interactions of the galactose (Kronis and Carver, 1982), the influenza virus 

haemagglutinin monomer that has a Kd ~ 2.5 mM (Sauter et al., 1989) as does the sialic acid 

binding domain of rhesus rotavirus (Dormitzer et al., 2002). 
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Due to its relatively high monovalent affinity for sialic acid, tandem repeat polypeptides have 

been engineered to achieve higher affinity when interacting with a multivalent surface. 

Avidity effect is a term usually used to describe the strength of binding of a molecule with 

multiple binding sites by a larger one, for example the binding of a complex antigen by an 

antibody. In nature, protein-carbohydrate interactions (eg: CBM) may have evolved to have a 

weak binding capability towards glycans due to some restrictions such as during elevated 

temperature.  This phenomena occur frequently in thermo- or hyperthermophilic enzymes 

where binding affinity interactions can be improved by multivalency approach (Boraston et 

al., 2004a).  

 

1.7.2  Streptococcus pneumoniae sialidases (NanA, NanB and NanC) 

 

S. pneumoniae is a Gram-positive, alpha-haemolytic bacterium which belongs to the 

Bacillus/Lactobacillus/Streptococcus group. Besides being a major human pathogen, this 

bacteria is responsible for diseases like pneumonia, otitis media, septicaemia and meningitis 

(Tuomanen, 2004). Today, the broad-spectrum antibiotic treatments for these infections are 

not successful due to the increased emergence of drug-resistant strains. Each year, S. 

pneumoniae has caused more than 1 million of deaths each year worldwide (Williams et al., 

2002). Normal clinical infection of S. pneumoniae is preceded by bacterial colonization in the 

upper respiratory tract, predominantly in the nasopharynx. Interestingly, about 40% of 

healthy people are asymptotic carriers, which bring a significant reason in the increment of  

pneumococcal infections (Bogaert et al., 2004). 

 

During the successful S. pneumoniae genome sequencing, a number of genes encoding 

proteins have been identified contributing to the bacterial virulent roles and/or as protective 

antigens (Tettelin et al., 2001). Among the virulence factors mentioned,  sialidases are 

identified to contribute to the pneumococcal colonization and its early infection processes 

(Jedrzejas, 2001). Sialidases specifically catalyze the removal of sialic acid from cell surface 
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glycoconjugates, this action would caused damage to the host cells and unmask some 

important receptors for bacterial adherence and colonization (Mitchell, 2000). 

 

S. pneumoniae expresses three distinct sialidases, known as NanA (115 kDa), NanB (78 

kDa) and NanC (82 kDa). From a gene screening study, NanA gene is the main sialidase 

found from 342 clinical isolates; while nanB and nanC genes were identified in 96% and 51% 

of these strains respectively (Pettigrew et al., 2006). From gene knockout study in the MF1 

mouse models, NanA and NanB sialidases are found to be important during the S. 

pneumoniae infection in the respiratory tract and sepsis as mentioned by Manco et al. 

(2006). Furthermore, NanA also plays an important role in long-term nasopharynx and 

middle ear colonization of S. pneumoniae (Long et al., 2004; Simell et al., 2006). 

 

NanA and NanB share very little similarity in their amino acid sequences (around 24%) while 

NanC is a close homolog to NanB with over 50% sequence identity. From sequence 

analysis, an N-terminal signal peptide is shown to be present in all the sialidases to direct 

their secretion to the outside cells. Only NanA is known to have a surface-anchored protein 

with the presence of ‘LPTEG’ sequence motif. Moreover, this protein also contains a C-

terminal P/G- and T/S-rich region which is predicted to be naturally disordered. This feature 

promotes flexibility to the NanA protein when fixed to the pneumococci cell wall (Camara et 

al., 1994).  

 

Moreover, all three S. pneumoniae sialidases possess a CBM40 domain which flanks the 

catalytic domain similar to some other large sialidases. The RIP motif within the catalytic 

domain is also found conserved in all three sialidases having a catalytic arginine, with four 

repeating Asp-box motifs at similar positions within the whole sequence (Figure 1.10). This 

domain functions to recognize and bind sialic acids similar to the Vibrio cholerae sialidase 
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(Connaris et al., 2009). A study on CBM40 domain of NanA will be further discussed in 

Chapter 2 of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 Schematic views of the three S. pneumoniae sialidases. The sequences of 

NanA (UniProt accession number: P62575), NanB (Q54727) and NanC (Q97Q99) showing 

their domain structures. 

 

 

 

 

 

 

 

 

 

Signal peptide RIP Asp box Inserted domain 

1   42                          224                  358        454                      697      

1   42    86                          268                  402       498                       740     

1   53      121                          305                  449       531                       822                           1035              

CBM40 domain Catalytic domain P/G, T/S-rich region 

LPETG 

NanA 

NanB
 NanA 

 

NanC
 NanA 
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1.8 Multivalency of CBMs 

 

Recently, many researchers have focused on receptor–ligand interactions including 

interactions of molecules with its substrate, which are the key element to the functioning of 

all biological systems. Ligands that show multiple copies of recognition sites and elements 

are termed as multivalent (Zverlov et al., 2001). Multivalent carbohydrate ligands may be in 

the form of branched saccharides, clustered cell-surface glycans or polysaccharides as is 

the most relevant to CBMs (Boraston et al., 2004a). 

 

Some of sialic acid binding lectins such as viral glycoproteins, bacterial toxins as well as the 

mammalian lectin superfamilies (siglecs and selectins) bind to their receptor with high affinity 

due to multivalent nature of the molecules (Crocker, 2002). Generally, association constant 

for the binding of monovalent and divalent sialosides by lectins can reach 104 M-1 but due to 

their multivalency, some sialic acid binding lectins can interact with multivalent cell surface 

glycans and reach affinities up to 109 M-1. These enhanced affinities have been shown due 

to the improved structural packing of proteins promoted by ligand binding, associated with 

favourable binding energetics (Williams et al., 2004; Williams et al., 2003). Research by 

Mammen et al. (1998b) reported that one of the best studied multivalent lectin-sialic acid 

interactions is the influenza virus trimeric heamagglutinin, which can achieve affinities up to 

108 M-1 compared with 4 X 102 M-1 when one or both of the entities are not in a multivalent 

state. 

 

A recent report carried out by Connaris et al. (2009) demonstrated the multivalency of 

engineered polypeptides containing tandem repeats from V. cholerae CBM40. The 

constructs were designed containing two, three and four CBM40 modules with varying linker 

lengths between the modules. The four-CBM40 module protein has been proved to have 

700 to 1500 fold increases in affinity compared with single CBM40 module. This is due to the 
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stabilization of oligomers and their interaction when the CBM40 exists as tandem-linked 

polypeptides. Moreover, linker lengths between each CBM40 had shown little effect on the 

binding with only 1.2-fold increase in affinity when using 5 amino acid linker to 15 amino 

acids linker (Connaris et al., 2009). 

 

A multivalency approach is proven to be effective to overcome relatively weak binding 

between protein and ligand. One such example is the two family 2b CBMs from 

Cellulomonas fimi xylanase 11A. The association constant for xylan in tandem, was 

approximately increased to 106 M−1 compared to its individual association constants which 

was approximately 104 M−1 (Bolam et al., 2001). Interestingly, the appearance of multiple 

CBMs in glycoside hydrolases appears to occur most frequently in thermo- or 

hyperthermophilic enzymes (Boraston et al., 2003). This may be due to the need of these 

proteins to overcome the loss of binding affinity in most molecular interactions at elevated 

temperatures (Boraston et al., 2003).  

 

A previous report of synergy interaction between two discrete CBM domains joined by two 

cellulose binding domain from Trichoderma reesei, demonstrated cooperative binding to 

cellulose (Linder et al., 1996). This was shown that through the binding of one domain to its 

substrate helped to increase the affinity of second module to its target due to a proximity 

effect. A good example of CBMs naturally found to be multi-modular in glycoside hydrolases 

is the α-amylase from Lactobacillus amylovorus which contains five modules of CBM in 

tandem. The ability of the enzyme to absorb starch granules were found to be increased as 

the number of domain increased in which they strongly absorb cornstarch (Guillen et al., 

2007). Another example is xylanase from Clostridium stercorarium which has two repeated 

domains of family 6 CBM at the C-terminal that bind insoluble cellulose. The affinity of 

cellulose was enhanced due to avidity effect resulting from the co-operative binding to their 

polysaccharide (Boraston et al., 2002a). 
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1.9 Project aims and thesis plan 

 

As nature often uses multivalency to increase affinity through avidity (Lee and Lee, 2000), 

this led us to question whether we could increase the affinity of CBM40 domain for sialic 

acid-rich cell surfaces by linking copies of CBM40 unit together. One of the project aims was 

to isolate the gene encodes the CBM40 from V. cholerae sialidase, and generate 

polypeptides containing up to 4 repeat modules in tandem, linked by certain linker length. 

These polymers are able to bind (2,3)-, (2,6)- and (2,8) sialiosides. Biacore studies using 

an immobilized, multivalent biotinylated (2,3)-sialyllactose, demonstrated that increasing 

the number of linked modules increases the affinity of these CBM40 polypeptides for sialic 

acid, with a 7000-10,000-fold increase compared to the monomeric-monovalent interaction 

from Kd~18M to 3nM, at 25 °C. These results have been published by (Connaris et al., 

2009). Moreover, other CBM40 domain was also explored which was from NanA of S. 

pneumoniae sialidase in order to generate another multivalent construct to study its 

multivalency and affinity effect. Furthermore, this project would explore the use of a simpler 

and more efficient method to obtain mutlivalency by fusing the CBM40 to a domain that 

oligomerizes as a trimer. It would involve the use  of C-terminal domain of Pseudomonas 

aeruginosa pseudaminidase which is able to self-oligomerize to generate trimeric CBM 

molecules. This domain is known as oligomerization domain (Xu et al., 2009a). Proteins will 

then be expressed and tested for binding affinity to carbohydrates by calorimetry and surface 

plasmon resonance as well as protein crystallography trials. Overall, this project will involve 

the broad use of molecular techniques, protein expression and purification, biophysical 

characterization including spectroscopy, calorimetry (isothermal titration calorimetry), surface 

plasmon resonance and protein crystallography. 

 
Since the project focuses on the development of engineered multivalent CBM40s from V. 

cholerae sialidase, a large amount of experimental data is distributed in Chapter 2 which 
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include upstream work of this project. This includes the expression and purification works of 

these multivalent CBM40s from this bacterium. Chapter 3 presents the biochemical 

characterization of the constructs which includes thermal shift assays, ITC, SPR and 

crystallization trials.  

 
Due to the fact that mammalian cells surfaces comprise of numerous types of molecules 

including sialic acid, certain pathogens have exploit the presence of this molecule to 

bind/adhere and/or gain entry to host cells during pathogenesis. By exploiting the CBM's 

affinity to the cell surface carbohydrates, the use of these will provide a useful insight for the 

potential treatment against respiratory viruses such as influenza and parainfluenza virus. 

The in-vitro study of these multivalent constructs against influenza virus and parainfluenza 

virus together with cytotoxicity test and inhibition study, are all presented in Chapter 4 and 

Chapter 5. Finally, the additional chapter on in-vivo works of one of the best multivalent 

construct against hPIV3 and Pneumococcal infection is discussed in Chapter 6. The 

experimental procedures, as well as some supplemental data, are included in the Appendix 

section.  
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Chapter 2 

 

 Development, expression and purification of multivalent CBM40s  

 

2.1 Overview 

Bacterial sialidases are normally found as modular enzymes and have accessory domains 

attached to the catalytic core of the protein (Gaskell et al., 1995). One of these accessory 

domains has been identified as belonging to a family of carbohydrate-binding modules 

(CBMs) that are normally found in glycosyl hydrolases (Lis and Sharon, 1998). Currently, 

there are 67 defined CBM families entered in the CAZy (Carbohydrate-Active enZYmes) 

database based on their ability to adhere to carbohydrates and on their amino acid 

sequence similarity (Coutinho and Henrissat, 1999). Studies have also shown that CBMs are 

capable of binding specifically to either simple saccharides or to polysaccharides 

independently when isolated from the parent molecule and behave in a cooperative manner 

when isolated in tandem (Boraston et al., 2002c; Crennell et al., 1994). The role of CBMs is 

to concentrate the enzymes onto the substrate via sugar-binding activity to increase the 

catalytic efficienty of the enzyme (Thobhani et al., 2003).  

 

Crennell et al. (1994) had reported that the sialidase from Vibrio cholerae possesses two 

CBMs that flank the central catalytic domain. From a structural study of the N-terminal CBM 

from V. cholerea sialidase, it has been proved to recognize a single sialic acid moiety (Figure 

2.1) with relatively high affinity, KD ~ 30 µM which is one of the highest reported for a sialic 
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acid-binding protein. Due to its identification of binding to sialic acid, the N-terminal CBM 

was thus designated as a Family 40 CBM (Moustafa et al., 2004).  

 

In nature, protein-carbohydrate interactions often display a weak binding affinity, but nature 

achieves higher affinities through multivalent interactions, often through protein oligomers 

that gain affinity through an avidity effect.  Examples of nature’s multivalent molecules are 

viral glycoproteins, bacterial toxins (Lehmann et al., 2006), as well as mammalian lectin 

superfamilies (siglecs and selectins), which bind to their target receptor with high affinity 

(Crocker, 2002). Thus, this form of multivalency is effectively used by nature to overcome 

weak binding interactions in order to improve its affinity (Boraston et al., 2004a).  

 

Due to its high affinity and an interest in developing a multivalent protein-carbohydrate 

approach, tandem repeats of the CBM40 from V. cholerae sialidase have been engineered. 

The constructs were designed containing three or four repeats of the CBM40 domain with a 

short specific amino acid linker between the modules. It was hoped that the affinity towards 

sialic acid would increase along with the addition of CBM40 domains by an avidity effect. 

Other constructs were also engineered consisting of a CBM40 domain from Vibrio cholerae 

sialidase fused with an oligomerisation domain from Pseudomonas aeruginosa 

pseudaminidase (Xu et al., 2011). The incorporation of the oligomerization domain from P. 

aeruginosa pseudaminidase produced a trimeric protein with three binding sites for sialic 

acids. The linkers between the trimerisation domain and the CBM40 domain would produce 

an unknown orientation of the CBM40 domains, therefore site directed mutagenesis was 

carried out to introduce a disulphide bond between the monomers in order to create a more 

rigid trimer that may have its CBM40 domains pointing in the same direction. As well as the 

V. cholerae CBM40, we were also interested to study multivalent forms using the CBM40 

domain from Streptococcus pneumoniae NanA sialidase fused with the trimerization domain 

from P. aeruginosa pseudaminidase. 
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This chapter focuses on the development and engineering of the multivalent constructs 

mentioned above as well as the expression and purification steps involved in the process. 

 

 

 

 

 

 

 

Figure 2.1    Schematic view of the binding of sialic acid to the CBM40 domain of V. 

cholerae sialidase. 

 

2.2 General Methodology  

 

2.2.1 Production and expression of protein constructs 

 

All constructs (Vc3CBM, Vc4CBM, Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD) 

were cloned into pEHISTEV vector (Liu and Naismith, 2009).  Briefly, E. coli BL21 (DE3) 

culture harbouring the constructs were grown in Luria-Bertani broth containing 30 µg/ml 

Kanamycin and incubated at 37°C until the optical density of the culture reached 0.6 at 600 

nm. For soluble protein expression in E. coli, a heat shock step at 42°C for 30 minutes was 

introduced before cultures were cooled down to room temperature for about 10 minutes.  

The cells were then induced with 1 mM IPTG for protein expression and left to grow 

overnight at 18°C with 200 rpm. A lower temperature (25°C to 18°C) was used in order to 
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prevent insoluble protein expression, which would have led to accumulation of inclusion 

bodies. Cells were harvested at 8000 rpm for 15 minutes (4°C) by centrifugation and cell 

pellets were frozen at - 20°C prior to use.  

 

For lysing, cell pellets were lysed in a Resuspension buffer composed of 0.3 M NaCl, 10 mM 

Imidazole in Phosphate-buffered saline, supplemented with EDTA-free Protease inhibitor 

cocktail tablets (Roche Diagnostic, one tablet per 25 ml extract) and 0.2 mg/ml RNA’ase for 

30 minutes at room temperature with a gentle shake. The cells were then sonicated on ice at 

12 Amp for 30 seconds with 1 minute intervals to further lyse the cells. Cells were subjected 

to centrifugation at 17000 rpm for 20 minutes and the supernatant was then filtered through 

a 0.22 µm filter.  

 

2.2.2 Protein purifications protocol 

 

For all constructs, purification steps were performed, according to the following protocols 

unless stated otherwise. 

 

To obtain high purity of protein, a three-step purification strategy was carried out, which 

included nickel affinity, gel filtration and anion exchange chromatography. All polypeptides 

containing His-tag were initially purified by nickel affinity chromatography using a 

Resuspension Buffer (0.3 M NaCl, 10 mM imidazole in Phosphate-buffered saline) prior to 

being washed with a gradient concentration of imidazole (10 mM and 20 mM). The proteins 

were eluted from the column using an imidazole concentration of 250 mM. Samples were 

analyzed using SDS-PAGE and partially purified polypeptides were dialyzed into Tobacco 

Etch Virus (TEV) protease cleavage buffer (Phosphate-buffered saline, 0.3 M NaCl, 1 mM 

dithiothreitol, 0.5 mM EDTA, 20 mM imidazole) and digested overnight with TEV protease (1 mg/ml). 

The polypeptides were further dialyzed in Resuspension buffer before another purification on a 

nickel affinity column to remove undigested His-tagged polypeptides. All polypeptides were 
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concentrated to a certain volume using a 30 kDa cut-off concentrator tubes before final 

application on a HiPrep 16/60 Sephacryl S-100HR column for gel filtration chromatography 

purification. As an optional step, an anion exchange chromatography using a HiTrap Q (FF) 

column (GE Healthcare) was also performed with a linear gradient of increasing NaCl 

concentration to further purify the protein. Peak fractions containing purified protein were 

pooled and stored at - 80°C prior to use.  

 

2.3 Multiple tandem repeats of CBM40 domain 

 

The DNA fragment encoding the CBM40 from V. cholerae sialidase (residues 25-216) was 

amplified by PCR from pET30b+ construct containing NanH gene (Moustafa et al., 2004) 

using primer pair 1F and 1R (Table 2.1). The amplified DNA fragment (573 bp) was digested 

with NcoI and XhoI to be cloned into a pEHISTEV vector containing an N-terminal His-tag 

with a TEV protease cleavage site upstream of the multiple cloning site (Liu and Naismith, 

2009). This construct was then used to transform Escherichia coli DH5α.  

 

In order to incorporate different restriction endonuclease sites at the 5’- and 3’- termini, the 

following sets of primers were used (Table 2.1). This is to allow ligation of individual copies 

of the DNA fragment to generate three and four copies in tandem. The resulting fragments 

were then cloned into pEHISTEV vector until the desired number of modules was achieved. 

These were labeled as Vc3CBM and Vc4CBM, presenting three and four repeating sialic 

acid-binding domains, respectively.  

 

The tandem repeats of CBM40 V. cholerae sialidase were attached to different peptide linker 

lengths (Figure 2.2). Choices of linkers were designed composed of flexible residues like 

glycine and serine so that the adjacent protein domains are free to move relative to one 

another. It has been reported that, length and nature of the linkers (hydrophilic linkers) are 
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important to ensure two adjacent domains do not sterically interfere with one another and 

affect its functional activity (Robinson and Sauer, 1998a). This is because the linker 

sequence composition could have a significant effect on the folding stability of a fusion 

protein.  

 

All constructs were propagated in E. coli DH5α and positive clones were verified by DNA 

sequencing before transforming expression host E. coli BL21 (DE3) strain for protein 

production. Further information on both constructs can be referred to a paper by (Connaris et 

al., 2009). 

 

Table 2.1 List of oligonucleotides primers used to amplify DNA fragments 

Primer  Oligonucleotide sequence (5’- 3’) 

1F  CGTCCCATGGCACTTTTTGACTATAACGC (NcoI) 

1R CCGGCTCGAGCTAGTCGCCTTGAATTTCAAAC (XhoI) 

3F(5)* CTGCAAGCTTTGGGAATGGCACTTTTTGAC (HindIII) 

3R(5)* GCACTTCCAAAGCTTGCAGGTCGCCTTGAATTTC (HindIII) 

4F(5)* GGTAGGGAATTCGGGAATGGCACTTTTTGACTATAAC (EcoRI) 

4R(5)* GCACTCCCGAATTCCCTCCGTCGCCTTGAATTTC (EcoRI) 

*Note: number of amino acids in linker between each domain fused. 

Restriction enzyme sequences for each primer were shown as underlined. 
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Figure 2.2 Illustration of tandem repeat approach for Vc3CBM and Vc4CBM 

constructs with their linker sequences. 

 

2.4 Production and expression of multivalent CBM40 construct 

 

2.4.1 Expression and purification of Vc3CBM  

 

Briefly, small scale expression trials of Vc3CBM in E. coli BL21 (DE3) strain were performed 

in order to find out the optimal conditions for protein production. All proteins extracted from 

the cell lysates and supernatant were kept separately and assessed using sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) using 4-12% NuPAGE gel (Life 

Technologies). Successful soluble protein expression (Figure 2.3 (A)) was achieved after a 

heat shock step (42°C for 30 minutes) prior to IPTG induction. This step was introduced to 

the cultures after they reached an OD600 of 0.6 at 37°C. A lower temperature (20°C to 18°C) 

was used for protein expression in order to prevent insoluble protein and accumulation of 

CBM40 CBM40 CBM40 

CBM40 CBM40 CBM40 CBM40 

5 aa linker         ALNGS 
10 aa linker       ALNGSGGGSG 

15 aa linker       ALNGSGGGSGGGGSG 

LQALG 

LQALGGGGSL 
GGNSG 

Vc3CBM   HHHHHH 

Vc4CBM   HHHHHH 
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inclusion bodies. A complete procedure of the protein expression was discussed further in 

Section 2.2.1.  

 

For purification, four-step strategies were carried out as mentioned in Section 2.2.2, 

comprising two stages of nickel affinity, followed by gel filtration and anion exchange 

chromatography. During the TEV digestion, the whole process was performed at 4°C with a 

gentle stirring to avoid protein degradation and to ensure optimum digestion of his-tag 

protein (Figure 2.3 (B). In certain cases, more than 1 mg/ml of TEV protease was needed to 

completely digest the protein due to high concentration of protein present. As seen in Figure 

2.3 (A) and (C), after two rounds of Ni-column purification followed by a gel filtration 

chromatography (Figure 2.3 (E)) there was still some lower molecular weight protein 

contaminants associated with the protein of interest. A chromatogram of a peak with a 

shoulder was produced represented the quality of the purify protein (Figure 2.3 (D)). In order 

to remove the contaminants, the protein was therefore concentrated and dialysed against 

phosphate buffer containing 20 mM NaCl prior for loading into anion-exchange column, 

HiTrap Q (FF) column (GE Healthcare). Improved protein purity was observed after anion-

exchange chromatography as shown in Figure 2.3 (F). Protein identity was confirmed by a 

mass spectrometry (MS) fingerprint. The yield of pure Vc3CBM was around 35 mg from 2 L 

culture. An expected protein size of 63 kDa was shown after the N-terminal 6-His tag was 

removed, which corresponded to Vc3CBM construct. 

 

 

 

 

 

 

 



[CHAPTER 2: DEVELOPMENT, EXPRESSION AND PURIFICATION OF CBM40s] 41 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Expression and purification of Vc3CBM. (A) First Ni2+- affinity column 

purification. M, protein marker (Mark12 TM, Invitrogen); lane 1, cell lysate after IPTG 

induction; lane 2, flow-through (unbound protein) after sample loading onto the column; lane 

3-4, column wash with the buffer containing 10 mM and 20 mM imidazole; lane 5-7, elution 

in buffer containing 250 mM imidazole. (B) TEV protease digestion. Lane 1-2, undigested 

sample of Vc3CBM, lane 3, fully digested Vc3CBM at 4 °C, overnight. (C) Second Ni2+-

affinity column. Lane 1, TEV digested sample, lane 2-3, the digested sample after wash with 

10 mM and 20 mM imidazole containing buffer. Lane 4, elution of undigested protein with 

250 mM imidazole. (D) Gel filtration chromatogram (E) Eluted protein after gel filtration 

chromatography. (F) Lane 1, Vc3CBM before anion exchange column, Lane 2-5, Eluted 

protein after anion-exchange chromatography. Protein samples were run on 4-12% NuPAGE 

gel (Life Technologies). Red arrow represents protein of interest, Vc3CBM. 
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2.4.2 Expression and purification of Vc4CBM 

 

For Vc4CBM production, the same expression strategies as Vc3CBM were used (1 mM 

IPTG induction at 18°C for overnight) with a heat shock step at 42°C for 30 minutes after the 

culture reached an OD600 of 0.6.  Expressed Vc4CBM proteins were purified via a four-step 

purification strategy (nickel affinity, gel filtration and anion exchange chromatography). For 

anion-exchange purification, a Hi-Trap Q (FF) column (GE Healthcare) was then attached 

onto an AKTA purification system (GE Healthcare) and the protein was eluted with a linear 

gradient of increasing NaCl concentration. Most of the contaminants present in Vc4CBM 

(Figure 2.4 (E)) were successfully removed by anion-exchange chromatograpy. As seen in 

Figure 2.4 (F), no obvious contaminants could be seen from the SDS-PAGE gels after the 

anion-exchange purification. In order to make sure we are working with the correct protein, a 

gel fragment of Vc4CBM was cut out from the SDS-PAGE and sent for mass spectrometry 

analysis. The expected molecular weight of untagged Vc4CBM was found to be 85 kDa with 

a yield of pure protein to be approximately 30 - 40 mg from 2 L cultures.  
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Figure 2.4 Expression and purification of Vc4CBM. (A) First Ni2+-affinity column 

purification. M, protein marker (Mark12 TM, Invitrogen); lane 1, flow-through (unbound 

protein) after sample loading on to the column; lane 2, cell lysate after IPTG induction; lane 

3-4, column wash with the buffer containing 10 mM and 20 mM imidazole; lane 5-7, elution 

in buffer containing 250 mM imidazole. (B) TEV protease digestion. Lane 1-2, undigested 

sample of Vc4CBM, lane 3, fully digested Vc4CBM at 4°C, overnight. (C) Second Ni2+-affinity 

column. Lane 1, TEV digested sample, lane 2-3, the digested sample after wash with 10 mM 

and 20 mM imidazole containing buffer. Lane 4, elution of undigested protein with 250 mM 

imidazole. (D) Gel filtration chromatogram. (E) Eluted protein after gel filtration 

chromatography. (F) Lane 1, Vc4CBM before anion exchange column, Lane 2-7, Eluted 

protein after Anion-exchange chromatography. Protein samples were run on 4-12% 

NuPAGE gel (Life Technologies). Red arrow represents protein of interest, Vc4CBM. 
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2.5  Engineering of multivalent CBM40 using an oligomerization domain (TD) from 

Pseudomonas aeruginosa pseudaminidase.  

 

Pseudomonas aeruginosa is reported to encode an enzyme mimic sialidase known as 

pseudaminidase. This enzyme is structurally related to sialic acid but has a different 

stereochemistry at the 5-, 7-, and 8-positions and normally found in lipopolysaccharide (LPS) 

and on pili of Pseudomonas aeruginosa. The enzyme has a six-bladed β-propeller catalytic 

domain followed by a C-terminal of a small domain (Figure 2.5) with an immunoglobulin (Ig)-

like fold that self-oligomerizes to form a trimer (Figure 2.6). This Ig-like domain is described 

as a trimerization domain or oligomerization domain by Xu et al. (2009a). 

 

In this study, the trimerization domain was exploited to generate trimeric CBM molecules by 

subcloning the gene fragment encoding the trimerization domain (TD) and ligating it to the 

CBM40 domain to study its multivalent effect and affinity towards sialic acid. With this idea, 

we used the TD domain and fused it in tandem with a CBM40 domain either from the V. 

cholerae sialidase or the Streptococcus pneumoniae NanA sialidase to create two constructs 

designated as Vc-CBMTD and Sp-CBMTD. 
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Figure 2.5 View of the pseudaminidase monomer from Pseudomonas aeruginosa.  

The blue and red spheres indicating the N- and C-terminal respectively. The C-terminal 

domain (red) is known as the trimerization domain (Xu et al., 2009a). 
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Figure 2.6 Schematic view of pseudaminidase trimer from Pseudomonas 

aeruginosa (2W38). (A) Views from the side of the molecule; (B) Views from the three-fold 

symmetric axis. The protein shown as trimer due to the presence of the trimerization domain 

(TD).  
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2.5.1  Development of Vc-CBMTD construct from Vibrio cholerae sialidase 

 

2.5.1.1 Amplification of the pseudaminidase trimerization domain from Pseudomonas 

aeruginosa (PaTD) 

 

Amplification of the trimerization domain (TD) from P. aeruginosa was undertaken with a set 

of primers designated as PaTD_BamHI (F): 5’- GGT GGA TCC GTC CCG GAT TTT GAG 

TCA G -3’ and PaTD_XhoI(R): 5’- CCG ACT CGA GCT AAA TCC ATG CTC TGA CCC G -

3’. Furthermore, primers used to amplify Vc-CBM were listed as in Table 2.2. Both 

amplifications of PaTD and Vc-CBM domains used the same amplification protocol as 

described below.  

 

PCR was carried out in a final volume of 50 μl reaction mixture containing 10 μM dNTP, 1U 

Pfu DNA Polymerase (Promega), 1X Pfu Buffer, 1 μg template DNA from a recombinant 

PaNA-pEHISTEV plasmid and 1.0 μM forward and reverse primers. Typically, DNA 

amplification was started with an initial denaturation at 95°C for 30 seconds followed with 30 

cycles of 95°C for 30 seconds, 53°C for 1 minute, 72°C for 30 seconds and a final cycle at 

72°C for 7 minutes. The amplified fragments were cleaned with Wizard SV PCR Clean-Up 

System. The amplified gene was digested with the appropriate restriction enzymes before 

ligation to the pEHISTEV vector.  

 

Ligation was carried out as followed. The PCR products were directly cloned into the vector 

after digested with Xho1 and BamH1. The vector: insert ratio of 1:3 was used. About 50 ng 

of pEHISTEV vector was mixed with 1 μg of PCR products, 1X T4 DNA ligase buffer and 1 U 

of T4 DNA ligase. Sterile distilled H
2
O was added up to 20 μl final volume followed with 

incubation at 22°C for 1 hour. The mixture was then centrifuged briefly and used to 
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transform E. coli DH5α competent cells. Positive clones were identified by isolating DNA and 

sent for DNA sequencing (University of Dundee, DNA Sequencing Service). 

 

 

Table 2.2 Summary of oligonucleotide primers used to amplify Vc-CBM and PaTD.  

Primer Oligonucleotide sequence (5’- 3’) 

Vc-CBM (F) GGCTCCATGGCACTTTTTGACTATAACGC (NcoI) 

Vc-CBM (R) GCACGGATCCACCACCGTCGCCTTGAATTTC (BamHI) 

PaTD (F) GGTGGATCCGTCCCGGATTTTGAGTCAG (BamHI) 

PaTD (R) CCGACTCGAGCTAAATCCATGCTCTGACCCG (XhoI) 

Restriction site sequence shown in each primer is underlined. 

 

Results from the successful clones carrying both PaTD and CBM40 domains were shown in 

Figure 2.7 and Figure 2.8. PCR amplifications were performed to determine the presence of 

PaTD and CBM40 gene fragments in clones using appropriate primers outlined in Table 2.2. 

Figure 2.7 and Figure 2.8 showed an insert size of 321 bp and 588 bp, which corresponded 

to the TD domain of P. aeruginosa pseudaminidase and CBM40 domain from V. cholerae 

sialidase, respectively. For further confirmation of the constructs, both plasmids carrying the 

genes were sent out for sequencing (University of Dundee, DNA Sequencing Service). For 

long term storage, glycerol stocks of both clones were prepared in 20% glycerol and stored 

at - 80°C. 
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Figure 2.7 PCR amplification of P. aeruginosa trimerization domain (PaTD) from 

postitive clones. Bands size of 321 bp corresponds to the PaTD domain on 0.8% agarose 

gel, as denoted by a red arrow. 

 

 

 

 

 

 

 

 

 

Figure 2.8  PCR amplification of CBM40 domain from V. cholerae sialidase. The 

CBM40 domain showed size of 588 bp on 0.8% agarose gel, as marked with red arrow.  
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2.5.2 Site-directed mutagenesis of CBM40 

 

Our next approach was to mutate two amino acids in the CBM40 domain of Vc-CBMTD in 

order to introduce a disulphide bond between amino acids 83 and 164, which required the 

following mutations, S164C and T83C. The choice of serine (S) and threonine (T) mainly 

because they were surface exposed and on opposite sides of the CBM40 domain, which we 

had speculated may form disulphides bridge that would lock the orientation of the CBM40 

ddomains. The idea was to create a trimer where all three domains were oriented in the 

same direction such that they would face the cell surface and might help to increase the 

affinity of the domain towards sialic acid (Figure 2.9). 

 

Mutagenesis was carried out using the QuickChange Site-Directed Mutagenesis Kit 

(Stratagene) following the manufacturer's instructions. Constructs containing the 

carbohydrate-binding module (CBM40) from Vibrio cholerea sialidase fused with the 

trimerization domain from Pseudomonas aeruginosa pseudaminidase, labelled as CBMTD, 

were used for this study. Based on structural analysis of the CBM40 domain, site-specific 

mutations were introduced at S164C and T83C to allow the formation of a disulfide bond 

between both amino acids.   

 

The method relies on two complement PCR primers, which incorporates both the mutations 

at the selection site and the desired single base substitutions at the mutant site. The pair of 

primers used were CBMS164C (F): 5’-GAA TTG GTA TTC CTT CCT GGA TGT AAC CCA 

TCC GCT AGC TTT TAC-3’ and CBMT83C (F): 5’-CAA TGG ACA TAT TCT CTC TCT TGC 

AAT CAA CAT GCC CAA GCA TC-3’. The integration of CBM40 and PaTD domain (Figure 

2.10) were confirmed by colony PCR using primers as described previously in Table 2.2.  

From Figure 2.10, the presence of both genes encoding the domains (CBM40 and PaTD 

domain) in the contructs were confirmed with correct insert sizes of 588 bp and 321 bp 
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corresponding to each domains size, respectively.  Mutants were confirmed by DNA 

sequencing service at University of Dundee. Sequencing analysis has revealed two amino 

acid substitutions, which were S164C and T83C as shown in amino acid aligments from  

both mutant and wild type version of Vc-CBMTD (Figure 2.11).  
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Figure 2.9  Model of Vc-CBMTD (Mutant) shown as trimer. Molecules consist of the 

three identical CBM40 domains from V. cholerae with three identical TD domains P. 

aeruginosa. (A) views from the side of the molecule; (B) views from the three-fold symmetric 
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axis. Molecule was constructed and built using PyMol software. The space filling compounds 

represent amino acids involved in the mutation (S164C and T83C).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10  Colony PCR amplification of Vc-CBMTD (WT) and Vc-CBMTD (Mutant) 

clones. Two bands appeared correspond to CBM40 (588 bp) and PaTD (321 bp) domain. 

Samples were run on 0.8% agarose gel. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

3000 

kb 

250 

1000 

500 

M 1 2 3 4 

Wild type (WT) Mutant 

588 bp 

321 bp 



[CHAPTER 2: DEVELOPMENT, EXPRESSION AND PURIFICATION OF CBM40s] 54 

 

 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Amino acid alignments between wild type (WT) and mutant of Vc-

CBMTD. Amino acid replacement at S164C and T83C were shown with red asterisks. 

Sequence alignment was done with Cluster Omega version 1.1.0 (EMBL-EBI).   
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2.5.3 Protein expression and purification of Vc-CBMTD (WT) and Vc-CBMTD (Mutant) 

 

 

Expression and purification protocols of both Vc-CBMTD (WT) and Vc-CBMTD (Mutant) 

were as described in Section 2.2.1 and Section 2.2.2.  For the purpose of studying the 

expression of these proteins, samples were taken at several time points, which were at 0, 6 

and 18 hours after induction with 1 mM IPTG. Both pellets and cell supernatants collected 

were run through SDS-PAGE to study the expression pattern of the protein.     

 

It was shown that in the absence of heat shock treatment (42°C for 30 minutes), most of the 

proteins were expressed insolubly despite using 18°C as the induction expression 

temperature (Figure 2.12). As expected, the size of both Vc-CBMTD was observed as 33 

kDa on SDS-PAGE, which is the monomer of Vc-CBMTD. From Figure 2.12 (B), there was 

some evidence of slightly soluble protein expressed after 6 and 18 hours of incubation. 

However, compared to the cell pellet fractions, a significant amount of the proteins remained 

in an insoluble state. It is interesting to find out, after incorporation of the heat shock step 

(42°C for 30 minutes) most of the proteins were expressed soluble as shown in Figure 2.13. 

The over-expressed protein band was later cut out for protein identification by mass 

spectrometry. 
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Figure 2.12 Expression of Vc-CBMTD (WT) and Vc-CBMTD (Mutant) in LB broth 

before optimization steps. Fractions of samples were taken at 0 hr, 6 hr and 18 hr during 

expression at 18 °C. Lane 1, sample from Vc-CBMTD (WT); Lane 2, sample from Vc-

CBMTD (Mutant) (A) Soluble fractions from supernatant of Vc-CBMTD (WT) and Vc-CBMTD 

(Mutant). (B) Insoluble fraction from cell pellet of Vc-CBMTD (WT) and Vc-CBMTD (Mutant). 

Protein samples were run on 4-12% NuPAGE gel (Life Technologies). Small red arrow 

represents protein of interest.  
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Figure 2.13 Soluble expressions of Vc-CBMTD (WT) and Vc-CBMTD (mutant) after 

heat shock treatment. Both proteins were expressed at 0 hour and 18 hours in Luria-

Bertani broth. Protein samples were run on 4-12% NuPAGE gel (Life Technologies). The 

expressions of both proteins were denoted by red asterisk.  
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2.5.3.1 Purification of Vc-CBMTD (WT) and Vc-CBMTD (Mutant) 

 

For the purification stages, both proteins, Vc-CBMTD (WT) (Figure 2.14) and Vc-CBMTD 

(Mutant) (Figure 2.15) were purified using the same protocols mentioned in Section 2.2.2. 

After two nickel affinity chromatography steps, followed by final gel filtration with (HiPrep 

16/60 Sephacryl S-100HR) column, both proteins were purified to good quality despite 

having some aggregated or polymeric form of the protein (Figure 2.14 (D) and Figure 2.15 

(D)). These features were clearly shown on Figure 2.15 (A) with the presence of two 

additional bands due to its trimerization effect on SDS-PAGE gel.  The effect was far more 

obvious for the mutant version compared to Vc-CBMTD (WT) as shown in Figure 2.15 (A) 

due to the rigid folding of domains with the introduction of a disulphide bond. Purified 

proteins were analysed by mass spectrometry, confirming the identity of the target proteins 

as shown in Figure 2.14 (E) and Figure 2.15 (E). Fractions containing purified proteins were 

concentrated using a 30,000-Da MWCO centrifugal concentrator (MiIlipore) for crystallization 

trials later on. Usually, for both proteins, around 20-25 mg of protein can be purified per 2 L 

cultures. 
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Figure 2.14 Expression and purification of Vc-CBMTD (WT). (A) First Ni2+-affinity 

column purification. lane 1, cell lysate after IPTG induction; lane 2, flow-through  after 

loading sample onto the column; lane 3-4, column wash with the buffer containing 10 mM 

and 20 mM imidazole; lane 5-10, elution in buffer containing 250 mM imidazole;  M, protein 

marker (Mark12 TM, Invitrogen). (B) Second Ni2+-affinity column after completed TEV 

protease digestion. Lane 1, TEV digested sample, lane 2-3, the sample after wash with 10 

mM and 20 mM imidazole containing buffer. Lane 4, elution of undigested protein with 

250mM imidazole.(C) Gel filtration chromatogram for Vc-CBMTD (WT) protein. (D) Eluted 

protein after gel filtration chromatography. (E) Matched peptides of Vc-CBMTD (WT) 

identified by mass spectrometry. Protein samples were run on 4-12% NuPAGE gel (Life 

Technologies). Red arrow represents protein of interest, Vc-CBMTD (WT). 
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Figure 2.15 Expression and purification of Vc-CBMTD (Mutant). (A) First Ni2+- affinity 

column purification. lane 1, flow-through (unbound protein) after loading sample onto the 

column; lane 2-3, column wash with the buffer containing 10 mM and 20 mM imidazole; lane 

4-9, elution in buffer containing 250 mM imidazole;  M, protein marker (Mark12 TM, 

Invitrogen). (B) Second Ni2+-affinity column after completed TEV protease digestion. Lane 1, 

TEV digested sample, lane 2-3, sample after wash with 10 mM and 20 mM imidazole 

containing buffer. Lane 4, elution of undigested protein with 250 mM imidazole. (C) Gel 

filtration chromatogram for the protein. (D) Eluted protein after gel filtration chromatography.  

(E) Matched peptides of Vc-CBMTD (mutant) identified by mass spectrometry. Protein 

samples were run on 4-12% NuPAGE gel (Life Technologies). Red arrow represents protein 

of interest, Vc-CBMTD (Mutant). 
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2.6 Development of Sp-CBMTD-GFP constructs using the CBM40 domain from 

Streptococcus pneumoniae NanA sialidase 

 

The Streptococcus pneumoniae genome encodes three sialidases (NanA, NanB and NanC), 

which are known to be responsible in removing sialic acid from host cell surface in order to 

unmask receptors to facilitate bacterial adherence and colonization (Mitchell, 2000). In 

addition to the catalytic domain, all three sialidases have a lectin-like domain at the N-

terminus known as CBM40 where they are predicted to recognize sialic acid moiety. It is also 

known that, NanA and NanB are identified as Pneumococcal virulence factors and are 

potential drug targets (Manco et al., 2006; Parker et al., 2009; Pettigrew et al., 2006). 

 

It has been reported by Uchiyama et al. (2009), that NanA is anchored to the bacterium’s 

outer membrane and its CBM domain is responsible in enabling the bacterium to cross the 

blood brain barrier. Despite the fact that their function is not well understood, we believe that 

they might play cooperative roles in S. pneumococcal virulence activity. From this point of 

view, we have engineered a molecule consisting of CBM40 domain from S. pneumoniae 

NanA sialidase fused with trimerization domain (TD) from P. aeruginosa labeled as Sp-

CBMTD-GFP to study its effect in multivalent approach. This will be further discussed in next 

subsection. 
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2.6.1 Amplification of Streptococcus pneumoniae CBM40 

 

The amplification protocol for the P. aeruginosa trimerization domain was similar as 

described in Section 2.6.1, unless stated otherwise and using an annealing temperature of 

53 °C.  The primer set for the amplification was as followed: 

 

Sp-CBM (F): 5’-GGCTCCATGGTGATAGAAAAAGAAG-3’ (NcoI) 

Sp-CBM (R): 5’-CCGACTCGAGCTAAATCCATGCTCTG-3’ (XhoI) 

 

The DNA fragment encoding Sp-CBM was modified at the 5’- and 3’- termini to incorporate 

restriction sites to allow ligation of this domain to the trimerization domain of P. aeruginosa. 

The resulting fragments were cloned into an appropriately digested pEHISTEV vector before 

transforming to E. coli DH5α cells. For this construct, we have included a GFP tag as an 

additional tag to aid in protein solubility as well as to assist in our cell based work. 

 

In order to check for the presence of both domains (CBM40 and TD domains), PCR 

amplifications were carried out using plasmid pEHISTEV containing Sp-CBMTD gene as 

template DNA. Suitable primers were used as mentioned in description of Figure 2.16. For 

the CBM40 domain, a larger size insert (> 1.5 kb) was detected as supposed to 588 bp, due 

to the use of T7 primers. The size includes the presence of CBM40 domain with GFP-tag in 

the construct.  For the TD domain, the insert size was calculated to be 321 bp, which 

corresponded to the correct size. Moreover, to identify positive clones, plasmids were 

isolated and sent for sequencing using the University of Dundee sequencing service 

(www.dnaseq.co.uk). 
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Figure 2.16 PCR amplification of CBM40 and trimerization domain from positive 

clones. The amplification of CBM40 domain here was using T7 primers, while for TD 

domain a set of TD primers, PaTD (F) and PaTD (R) were used as described in Table 2.2. 

Samples were run on 0.8% agarose gel. 
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2.6.2 Expression and purification of Sp-CBMTD-GFP 

 

 

In order to express the Sp-CBMTD-GFP construct, successful clones were transformed into 

protein expression host strain E. coli BL21 (DE3).  During the expression process, Sp-

CBMTD fused with GFP tag was expressed and cultures were observed to have a vibrant 

green fluorescent colour, due to the presence of GFP protein in the construct. Later, the 

cultures were then scaled up to 4 L (Figure 2.17 (I)) and induced with 1 mM of IPTG for 

increase protein yields. Details of the expression and purification methods of the protein 

were as described in Section 2.2.1 and Section 2.2.2 unless otherwise stated.  

 

After two stages of nickel column purification, histidine tag digestion, followed by gel filtration 

chromatography, a band size of 33 kDa was obtained on the gel, which corresponded to the 

the size of Sp-CBMTD-GFP monomer (Figure 2.17 (II)). When using SDS-PAGE, protein 

that forms trimer will only show one band in an SDS-PAGE, which corresponds to the protein 

monomer (provided that denaturation is complete).  Protein purity was analysed by SDS-

PAGE and its identity was confirmed by mass spectrometry (Figure 2.18). The protein 

samples were concentrated further using a 30,000-Da MWCO centrifugal concentrator 

(Milipore) prior to storage at -80°C. Usually for 2 L cultures, about 16 mg of pure protein can 

be obtained.  
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Figure 2.17  (I) Expression and Ni2+-affinity column purification of Sp-CBMTD-GFP in 

E. coli BL21 (DE3). (A) First Ni2+- affinity column purification. lane 1, flow-through (unbound 

Sp-CBMTD-GFP) after loading sample onto the column; lane 2-3, column wash with the 

buffer containing 10 mM and 20 mM imidazole; lane 4-8, elution in buffer containing 250 mM 

imidazole;  M, protein marker (Mark12 TM, Invitrogen). (B) Second Ni2+-affinity column after 

completed TEV protease digestion. Lane 1, TEV digested sample, lane 2-4, the digested 

sample after wash with 10 mM and 20 mM imidazole containing buffer. Lane 5, elution of 

undigested protein with 250 mM imidazole. Protein samples were run on 4-12% NuPAGE 

gel (Life Technologies). Red arrow represents protein of interest. 
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Figue 2.17  (II) Gel filtration chromatography of Sp-CBMTD-GFP. (A) Gel filtration 

chromatogram for Sp-CBMTD-GFP protein. (B) Eluted Sp-CBMTD-GFP protein after gel 

filtration chromatography.  M, protein marker (Mark12 TM, Invitrogen), Lane 1-7, protein 

elution from the column. Protein samples were run on 4-12% NuPAGE gel (Life 

Technologies). Red arrow represents protein of interest. 

 

 

 

 

Figure 2.18 Mass spectrometry analysis of the Sp-CBMTD-GFP clone. Matched 

peptides were shown in red and bold. 
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2.7 Discussion 

 

 

It has been shown that the CBM40 domains from Vibrio cholerae and Streptococcus 

pneumoniae sialidases can be successfully isolated from their parent enzyme and exploited 

to generate multivalent polypeptides through molecular biology techniques. As widely 

reported, a multivalent approach can dramatically increase protein affinity and 

enhanced/altered protein selectivity (Kiessling et al., 2000; Liang et al., 1997). CBMs are not 

involve in catalytic activity but their role is to bring the substrate to the active site in the 

catalytic domain to help in hydrolysis (Rodriguez-Sanoja et al., 2005). 

 

Moustafa et al. (2004) had reported that the V. cholerae CBM40 recognized sialic acid with 

high affinity of KD ~ 30µm. This was reported as one the highest affinity of a single sialic-acid 

binding protein interaction recognizing a sialic acid moiety (Moustafa et al., 2004).  Other 

sialic acid-protein binding interactions have been reported, such as wheat germ agglutinin 

has a Kd ~ 100 µm with sialyllactose (Kronis and Carver, 1982), influenza virus 

haemagglutinin has a Kd ~ 1 µm (Sauter, Bednarski et al. 1989) as does sialic acid binding 

domain of rhesus rotavirus (Dormitzer et al., 2002). Tandem-repeat polypeptides have been 

engineered to achieve stronger avidity to their receptor when interacting with a multivalent 

surface. Using this idea, engineered polypeptides containing multiple repeats of CBM40 from 

V. cholerae sialidase with three and four repeats of the domains (Vc3CBM and Vc4CBM) 

were successfully developed. Flexible linkers containing glycine and serine residues were 

introduced to allow the connecting domains to freely twist and rotate through space to recruit 

their binding partners. These linkers act to promote communication between domains and 

functional modules of a protein (Gokhale and Khosla, 2000). Several studies were done on 

linker selection and suggested that flexibility and hydrophilicity of the linkers were important 

to prevent disturbance of the domain functions, thereby promote stability to the whole 

domains (Arai et al., 2004; Argos, 1990; Robinson and Sauer, 1998b; Wriggers et al., 2005). 
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Other multivalent CBM constructs containing an oligomerization domain from P. aeruginosa 

pseudaminidase (PaTD) were also engineered and fused either to a CBM40 domain from V. 

cholerae sialidase or from Streptococcus pneumoniae NanA sialidase. Through protein 

engineering, the TD domain was artificially linked to CBM40 domain in order to form a trimer 

(Xu et al., 2009a). Examples of a trimer-oligomerizing domain include a C-propeptide of 

procollagens, a C-terminal portion of Fas ligand, a coiled-coil neck domain of the collectin 

family of proteins and a bacteriophage T4 fibritin foldon domain (Frank et al., 2001; Holler et 

al., 2003; Hoppe et al., 1994). Many examples illustrate that oligomerization domains play 

important role in protein function as well as induced multivalency cause by increasing 

interactions between domains.  

 

A number of studies on oligomerization systems were observed to have a large increase in 

thermal stability, for example, a chimera molecule consist of collagen-like peptides attached 

to the N-terminus of the foldon domain (Engel and Kammerer, 2000). Other effects would 

involve multivalency and increment in intrinsic concentration by an oligomerization effect 

(Engel and Kammerer, 2000). This physiological feature is seen in proteins such as 

collagen, whereby oligomerization of C-type lectin domains are generated by triple helices 

that help trimerize these domains (Kishore et al., 1997; Weis et al., 1998). Besides using 

PaTD as an oligomerization domain, α-helical coiled coil is the most widespread subunit 

oligomerization motif found in proteins. The members of this family are important 

components found in rigid structures such as hair scales and feathers (keratin), cytoskeleton 

and also in vesicle/ viral membrane fusion (Engel and Kammerer, 2000; Skehel and Wiley, 

1998). 

 

The mutant form of Vc-CBMTD underwent site-specific mutations to introduce a disulphide 

bridge at S164C and T83C. The idea for this was to create a trimer with its binding domains 

facing the cell surface and increase its affinity towards sialic acid. This introduction of a 

disulphide bond, however, depends on its location in the protein structure in order to prevent 



[CHAPTER 2: DEVELOPMENT, EXPRESSION AND PURIFICATION OF CBM40s] 69 

 

 
 

or restrict the movement of folded protein domains. It is widely known that disulphide bonds 

are covalent bonds which are stronger that non-covalent bonds (hydrogen bonds, 

hydrophobic interaction and Van der Waals interaction), and can thus help to stabilize 

protein structure through cross-linkage action (Betz, 1993; Matsumura and Matthews, 1991; 

Wedemeyer et al., 2000).  

 
Purification and expression of these modified multivalent proteins were not as straight-

forward as the production of other recombinant proteins that were expressed in E. coli. All 

multivalent proteins were required to go through an additional stage of heat-shock at 42 °C 

for 30 minutes before induction with IPTG, in order to express soluble protein. By introducing 

this method, protein solubility was significantly increased whilst induction levels were not 

affected. During the 42 °C of heat shock stage, E. coli heat-shock proteins are generally 

expressed and triggered to act as molecular chaperones. These molecular chaperones 

assist protein folding and disassemble protein aggregates (Oganesyan et al., 2007). 

Moreover, when this stage is performed under carefully controlled conditions, heat shock 

treatment was found to actually rescue some proteins from inclusion body formation (Chen 

et al., 2002). For protein expression, high temperature is always unfavourable and can 

cause protein aggregation, therefore, a temperature of 18 - 20 °C was chosen as the most 

suitable temperature to express these proteins.  

 

In protein purification, method choice is very important especially for good protein separation 

and purity. Due to this, two stages of nickel affinity and a gel filtration chromatography with a 

HiPrep 16/60 Sephacryl S-100HR column were used. This method separates protein 

molecules according to size as they pass through the column. For our work, the column 

used in the later stages of purification, exhibited excellent protein separation for all six 

multivalent proteins with high reproducibility results due to its highly stable matrix. In 

addition, the hydrophilic nature of the matrix helps to minimize nonspecific binding and 

maximizes protein recovery. For some of our proteins such as Vc3CBM and Vc4CBM, an 
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additional step using anion-exchange chromatography was carried out with HiTrap Q (FF) 

column pre-packed with Q Sepharose matrix to further remove lower molecular weight 

contaminants, which were present in the protein extracts. This step was done in order to 

further purify the protein of interest before checking protein identification by mass 

spectrometry. 



[CHAPTER 3: BIOPHYSICAL CHARACTERIZATION AND CRYSTALLIZATION] 71 

 

 
 

 

Chapter 3 

 

Biophysical characterization and crystallization of multivalent 

CBMs 

 

 

3.1 Overview 

 

Protein characterization has never been more important especially for a newly emerged and 

engineered protein. Characterization profile of a protein is a broad term, which is related to 

both protein separation and purification also its physical, chemical and biological properties. 

It is far more challenging to characterize a protein than a small molecule as proteins simply 

have more properties to investigate, as they are large molecules with complex and varied 

structures. Most proteins are sensitive to conditions like temperature and pH change as they 

tend to lose their higher order structure when these conditions are suboptimal. 

 

When it comes to developing a strategy and selecting techniques for protein 

characterizations, several things need to be considered and this includes protein stability 

and purity. Therefore, careful sample preparation is very important in protein characterization 

studies. In this chapter, we will be studying protein conformation and aggregation, 

thermodynamics as well as structure determination of multivalent CBM40 constructs from 

Vibrio cholerae and Streptococcus pneumoniae sialidases.  

 

A range of biophysical techniques are available to evaluate direct binding between a ligand 

and a target protein, these include direct fluorescence-based methods, such as thermal shift 
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assays. In this assay, different sialosides were used in order to look at its selectivity and 

specificity of binding to multivalent CBM40 proteins. The importance of buffers to formulate 

proteins to exhibits optimal stability was also studied using the same approach; this includes 

screening for different buffers and pH conditions. Moreover, protein thermodynamics were 

also studied with a combination of both isothermal titration chromatography (ITC) and 

surface plasmon resonance (SPR). Lastly for protein crystallization trials, Vc-CBMTD (WT) 

and Sp-CBMTD were chosen for the study. For this, protein with high purity and 

homogeneity are crucial for crystallization to be successful.  Hence, it is essential to perform 

an extensive quality assessment and evaluation of the protein prior to this structural study. 

This includes a protein pre-crystallization test and its optimization process. 

 

3.2 Study of protein conformation and aggregates 

 

Many proteins are usually stable in solution, undergoing conformational changes due to 

various stresses during purification, processing and storage. The most common physical 

instability is protein aggregation, which can be affected by a variety of factors and chemical 

transformations. There are a few methods available to study protein aggregation such as 

size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), dynamic light 

scattering (DLS). Here in this section, we discussed a method using native gel 

electrophoresis to study protein aggregation.  

 

We were using NativePAGETM Bis-Tris Gel system (Invitrogen) that used Coomassie G-250 

as a charge-shift molecule without denaturing action. BlueNative-PAGE (BN-PAGE) was 

carried out using Novex Bis-Tris gel system according to the manufacturer’s specifica. Pre-

cast NativePAGETM Novex 4-16% (v/v) Bis-Tris gels were run with near neutral pH at 150 V 

at room temperature. Protein samples (10 µl) were mixed with the sample buffer provided 

(2.5 µl) and 5% Coomassie Blue G-250 (0.3 µl). Samples were run without a heating stage. 
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Gels were stained using Coomassie R-250 staining protocol for NativePAGE™ Gels as 

described in the protocol (Appendix A-3). 

 

In this technique, sodium dodecyl sulphate (SDS) and reducing agent (DTT) are absent to 

allow the protein to remain in a nondenatured and associated state. Protein mobility is 

dependent on its charge, shape and its hydrodynamic size (higher mobility for more compact 

conformations, lower for larger structures like oligomers).  The patterns of Vc-CBMTD (WT) 

and Vc-CBMTD (mutant) generated by BN-PAGE in the presence and absence of 

detergents (DDM and Triton-X100) are shown in Figure 3.1. As mentioned before, protein 

denaturing is not desired for native gel thus solubilisation of the protein is necessary and 

very important. The used of mild and non-ionic detergents (5% Digitonin, 10% of n-dodecyl-

β-D-maltoside (DDM), Triton X-100) are very important to ensure complete solubility.  

 

Proteins which normally have positive net charges will be converted to a negative charge by 

G-250 dye, so that they can migrate to the anode. As expected in the presence of 

Coomassie Blue G-250 in the protein sample, all proteins migrated toward the anode. 

Bovine serum albumin and Vc1CBM were used as positive controls for the experiment and 

migrate as single bands toward the anode. It was shown that, both proteins are present as 

monomers on the gel. For Vc-CBMTD (WT), the proteins were shown to migrate as single 

bands with approximately the same mobility as shown in Lane 3 and Lane 5. Some severe 

laddering of the protein was also witnessed, which might be an artefact of the protein caused 

by protein degradation. Furthermore, neither the addition of Coomassie Blue G-250 nor 

detergents could resolve the laddering issue. 
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Figure 3.1 Migration of proteins by BlueNative gel electrophoresis. M, NativeMarkTM 

Unstained protein standard, Lane 1, Bovine serum albumin (66 kDa); Lane 2, Vc1CBM (21 

kDa); Lane 3, Vc- CBMTD (WT)- without detergent; Lane 4, Vc-CBMTD (mutant)- without 

detergent; Lane 5, Vc-CBMTD (WT) + 1% (w/v) DDM; Lane 6, Vc-CBMTD (Mutant) + 1% 

(w/v) DDM; Lane 7, Vc-CBMTD (Mutant) + 0.5% (v/v) Triton X-100. Expected size of Vc-

CBMTD (WT) and Vc-CBMTD (Mutant) were 99 kDa. This experiment used pre-cast 4-16% 

Native-PAGE Bis-tris gel. Proteins size was shown bigger than the expected size due to 

protein migrate in their native conformation. Asterisk represents protein of interest. 
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In contrast, the mutant version of Vc-CBMTD with or without detergents, was shown to 

migrate as multiple bands. Different conformational folded states of protein, plus the 

presence of disulphide bonds affects the hydrodynamic size and mobility on the gel and lead 

to the above condition. A different detergent was later used, which was Triton X-100, but the 

same pattern of protein migration was also observed (Lane 7). One important issue to be 

aware of when using native gel for protein size estimation is an expected error of ~ 15%, as 

the size of most proteins will be larger than their expected size due to the protein migration 

in their native conformation. Both Vc-CBMTD (WT) and Vc-CBMTD (Mutant) showed a 

larger size than the expected 99 kDa as shown in native gel (Figure 3.1).  

 

As electrophoretic mobility of proteins in the native gel depends on both the electric charge 

and the hydrodynamic size, it can therefore provide information on protein aggregation. 

From Figure 3.1, both proteins (Vc-CBMTD (WT) and Vc-CBMTD (Mutant)) presented high 

molecular weight bands, which correspond to protein aggregates. Usually, aggregation is 

driven by the presence of a small amount of contaminant such as damaged form of the 

protein itself, host cell proteins or non-protein materials (silica particles) (Patel et al., 2012). 

For therapeutic proteins, protein aggregates are known as a potential risk in the generation 

of immune responses in humans. Minimization of immunogenicity in the product must be 

accomplished by ensuring stability of the native protein conformation and minimizing 

formation of high MW species (Rosenberg, 2006). 

 

3.3 Interaction profile of multivalent CBMs  

 

3.3.1 Thermal shift assay: screening for the best buffer  

 

Thermal stability of the protein can be measured through the midpoint or Tm of the protein 

curve. This is because, proteins usually unfold at certain temperatures and during this 
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process, temperature at which 50% of protein molecules are unfolded is defined as the 

melting temperature (Tm). The higher the Tm, the greater the thermal resistance of a protein 

(Niesen et al., 2007).  

 

During a typical assay, a two-state transition is shown, which are folding and unfolding states 

of proteins. The fluorescent intensity increases during protein unfolding which exposes the 

buried hydrophobic core of the protein followed by the binding of the Sypro Orange dye 

(Figure 3.2) (Lo et al., 2004). However, after reaching the plateau, the fluorescence intensity 

starts to decrease gradually probably due to aggregation of denatured protein and dye 

complexes.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2 Protein thermal stabilization measured by fluorescence readout in 

thermal shift assay. Figure was adapted from (Pantoliano et al., 2001). 
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Thermal stability of multivalent CBM proteins was monitored using a thermal shift assay. In 

this study, we demonstrate the use of this screening tool to find the best buffer conditions for 

our proteins. The assay was conducted in Applied Biosystems Real-Time PCR Machine 

using MxPro software. Solutions of 42.5 µl of test buffers with 50 mM NaCl (or 100 mM 

sodium citrate pH 5.5; 100 mM sodium citrate pH 6.2; 100 mM sodium phosphate pH 6.5; 

100 mM sodium phosphate pH 7.5; 100 mM potassium phosphate pH 6.5; 100 mM 

potassium phosphate pH 7.5; 100 mM HEPES pH 6.5, 100 mM HEPES pH 7.5, 20 mM Tris, 

pH 6.5 and 20 mM Tris, pH 7.5), 2.5 µl of 50 X SYPRO Orange dye and 5 µl of 2.5 mg/ml 

proteins were added to the each PCR tubes. The tubes were incubated using the following 

parameters; 1 cycle at 25 °C for 30 seconds followed with 140 cycles at 25 °C to 100 °C for 

1 minute and a final cycle at 25 °C for 1 minute. The fluorescence intensity was measured 

with Ex/Em: 492/610 nm. 

 

From all buffers used, 100 mM sodium citrate, pH 5.5 + 50 mM NaCl give the highest Tm 

value for both Vc3CBM and Vc4CBM which were 51°C and 50°C respectively (Figure 3.3 

and Figure 3.4). While Vc-CBMTD (Mutant) gave Tm value of 52 °C in 20 mM Tris, pH 6.5 + 

50 mM NaCl and Vc-CBMTD (WT) was more stable in 20 mM Tris, pH 7.5 + 50 mM NaCl 

with the highest Tm value of 69°C, respectively (Figure 3.5 and Figure 3.6). For Sp-CBMTD, 

the protein showed quite a low melting temperature in all buffers used (33 to 34 °C). This 

finding was odd as the protein belongs to Streptococcus pneumoniae, a common pathogen 

find in human body. Later, as to confirm, the protein was tested against siallylactose 

substrates to see how stable the protein when bound to the substrate. Among all buffers, the 

highest Tm was found at 36.8 °C for Sp-CBMTD in 100 mM sodium phosphate, pH 6.5 + 50 

mM NaCl (Figure 3.7). Comparisons of the resulting Tm values can be used to select the 

best buffer relative to protein stability for the crystallization work later on. Although some of 

the proteins were found to be more stable in phosphate buffer, this buffer is generally 

avoided as this would typically form salt crystals (magnesium or calcium phosphate) that 

may interfere in protein crystal formation. 
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The presence of two peaks in Figure 3.7 showed two unfolding states that likely represented 

the two domains of the constructs. This feature was only shown with constructs containing 

the trimerization domain (Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD). The first 

peak was proposed to be the CBM40 domain while the second was TD domain (Figure 3.6 

and Figure 3.7). This has been proved when adding 3’-siallylactose (3’SL) in the assay, only 

the first sigmoid curve was shifted in temperature showing the binding of 3’SL to the domain, 

while no temperature shift was observed with the second peak (Figure 3.16). 

 

Moreover, the pH of buffers will affect protein stability, which may alter the electrostatic 

interactions between charged amino acids (Schein, 1990). Using the screening approach, 

the consequent changing of Tm of the protein in solution can be used as a measure of the 

relative stability across the tested pH range. In this assay, range of the pHs tested were 5.5 

to 7.5 depending on the buffer used.  Addition of salt in the buffer (50 mM NaCl) can also 

affect protein conformation and stability as the cations and anions of the salt could be 

potential buffer components.  
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Figure 3.3 Dissociation curve of Vc3CBM in 8 different buffers. ( ) 100 mM sodium 

citrate, pH 6.2 + 50 mM NaCl; ( )100 mM sodium citrate, pH 5.5 + 50 mM NaCl; ( ) 100 

mM HEPES, pH 6.5 + 50 mM NaCl; ( ) 100 mM HEPES, pH 7.5 + 50 mM NaCl; (*)100 mM 

potassium phosphate, pH 6.5 + 50 mM NaCl; ( ) 100 mM potassium phosphate, pH 7.5 + 

50 mM NaCl; ( ) 100 mM sodium phosphate, pH 6.5 + 50 mM NaCl; ( )100 mM sodium 

phosphate, pH 7.5 + 50 mM NaCl.  
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Figure 3.4 Dissociation curve of Vc4CBM in 8 different buffers. ( ) 100 mM sodium 

citrate, pH 6.2 + 50 mM NaCl; ( ) 100 mM sodium citrate, pH 5.5 + 50 mM NaCl; ( ) 100 

mM HEPES, pH 6.5 + 50 mM NaCl; ( ) 100 mM HEPES, pH 7.5 + 50 mM NaCl; (*)100 mM 

potassium phosphate, pH 6.5 + 50 mM NaCl; ( ) 100 mM potassium phosphate, pH 7.5 + 

50 mM NaCl; ( )100 mM sodium phosphate, pH 6.5 + 50 mM NaCl; ( )100 mM sodium 

phosphate, pH 7.5 + 50 mM NaCl.  
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Figure 3.5 Dissociation curve of Vc-CBMTD (WT) in 10 different buffers.                    

(   ) 100 mM sodium citrate, pH 5.5 + 50 mM NaCl; (   ) 100 mM sodium citrate, pH 6.2 + 50 

mM NaCl; (   ) 100 mM sodium phosphate, pH 6.5 + 50 mM NaCl; (   ) 100 mM sodium 

phosphate, pH 7.5 + 50 mM NaCl; (   ) 100 mM potassium phosphate, pH 6.5 + 50 mM 

NaCl; (   ) 100 mM potassium phosphate, pH 7.5 + 50 mM NaCl; (    ) 100 mM HEPES, pH 

6.5 + 50 mM NaCl; (    ) 100 mM HEPES, pH 7.5 + 50 mM NaCl;  (    ) 20 mM Tris, pH 6.5 + 

50 mM NaCl; (    ) 20 mM Tris, pH 7.5 + 50 mM NaCl. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



[CHAPTER 3: BIOPHYSICAL CHARACTERIZATION AND CRYSTALLIZATION] 82 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Dissociation curve of Vc-CBMTD (Mutant) in 10 different buffers.               

(   ) 100 mM potassium phosphate, pH 6.5 + 50 mM NaCl; (  ) 100 mM potassium 

phosphate, pH 7.5 + 50 mM NaCl ; (   ) 100 mM sodium citrate, pH 5.5 + 50 mM NaCl ; (    ) 

100 mM sodium citrate, pH 6.2 + 50 mM NaCl ; (   ) 100 mM sodium phosphate, pH 6.5 + 50 

mM NaCl ; (   ) 100 mM sodium phosphate, pH 7.5 + 50 mM NaCl ; (    ) 100 mM HEPES, 

pH 6.5 + 50 mM NaCl : (    ) 100 mM HEPES, pH 7.5 + 50 mM NaCl ;  (   ) 100 mM Tris, pH 

6.5 + 50 mM NaCl;    (    ) 100 mM Tris, pH 7.5 + 50 mM NaCl. 
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Figure 3.7 Dissociation curve of Sp-CBMTD in 10 different buffers.  

(   ) 100 mM sodium citrate, pH 5.5 + 50 mM NaCl ;(   ) 100 mM sodium citrate, pH 6.2 + 50 

mM NaCl, (  ) 100 mM sodium phosphate, pH 6.5 + 50 mM NaCl; (  ) 100 mM sodium 

phophate, pH 7.5 + 50 mM NaCl; (   ) 100 mM pottasium phosphate, pH 6.5 + 50 mM NaCl;  

(   ) 100 mM pottasium phosphate, pH 7.5 + 50 mM NaCl; (   ) 100 mM HEPES, pH 6.5 + 50 

mM NaCl; (   ) 100 mM HEPES, pH 7.5 + 50 mM NaCl; (   ) 20 mM Tris, pH 6.5 + 50 mM 

NaCl; (    ) 20 mM Tris, pH 7.5 + 50 mM NaCl. 
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3.3.2 Thermal shift assay: screening for the best ligands/ sialosides 

 

Thermal-shift assays were also performed in order to identify the best ligand for the 

multivalent CBM40 constructs. When a ligand binds to a protein native state, it will stabilize 

the complex, and this can be observed experimentally as an increase in melting temperature 

(Tm) of the protein in the presence of ligand (Figure 3.8) (Waldron and Murphy, 2003). 

 

The assay was performed using a conventional real-time PCR machine where ligands are 

added to the solution (protein + dye) and the fluorescence intensity was measured as the 

temperature was gradually raised. The protocol was as described earlier in Section 3.3.1.  

As reported by Connaris et al. (2009), in order to characterize sialic acid for substrate 

specificity, Vc3CBM was fused with GFP tag and tested against a glycan array and screen 

for 377 glycans. As expected, Vc3CBM-GFP was found to bind glycans with broad linkage 

specificity and high affinity to α(2,3)- and α(2,6)-linked sialosides, but to a lesser extent to 

α(2,8)-linked sialosides (Connaris et al., 2009).  
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Figure 3.8 Comparison of Tm when reaction presence with protein alone and 

protein with ligand. A complex of ligand and protein can stabilize the protein structure and 

increase its melting temperature. This figure was adapted from (Pantoliano et al., 2001). 
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For all multivalent constructs, five different concentrations of 3’-sialyllactose (3’-SL) and 6’-

sialyllactose (6’-SL) (Figure 3.9) were used, which were 0.2, 0.4, 0.6, 0.8 and 1.0 M. In the 

absence of ligand, the Tm was smaller compared to when the ligand was present (Figure 

3.10). In the presence of ligand, five different response curves were measured 

corresponding to stoichiometric amount of ligand and protein. The increase shift in Tm was 

identified with an increment of ligand concentrations. From the graph, the best 

concentrations of ligands were between 0.8 to 1.0 mM for 3’-SL and 6’-SL which was shown 

to have the highest Tm value from all protein constructs (Figure 3.10- Figure 3.19). While, in 

terms of buffer used, 100 mM sodium citrate pH 6.2 + 50 mM NaCl and 20 mM Tris, pH 7.5 

+ 50 mM NaCl were suitable to use without having too much different in Tm values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Chemical structures and abbreviations of ligands used in this study.        

(A): 3’-Sialyllactose (3’-SL); (B): 6’-Sialyllactose (6’-SL). 

 

(A) 

(B) 
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It can be clearly seen from Figure 3.11, that at suboptimal ligand concentrations, little 

detectable change in Tm was observed compared to the control where ligand was absent. 

Furthermore, when ligand concentrations were increased, higher melting temperature profile 

were observed. This pattern was shown on all figures when using both buffers (100 mM 

sodium citrate pH 6.2 + 50 mM NaCl and 20 mM Tris, pH 7.5 + 50 mM NaCl). As reported by 

Matulis et al. (2005), Tm value of a protein was expected to increase due to tighter binding 

between ligands and protein when other variables remain the same (Matulis et al., 2005).  

 

Most of the multivalent constructs showed relevant profile of melting temperatures in 

different range of buffers and ligands tested. But an interesting finding was shown for Sp-

CBMTD which showed quite a low melting temperature (< 37°C) in the tested buffers. This 

was odd as the protein belongs to Streptococcus pneumoniae (a common pathogen in the 

human body), which should not start to dissociate below 37°C. Later, it was interesting to 

find out after addition of ligands (3’-SL and 6’-SL), the melting temperature was shifted and 

stabilized around 37 °C (Figure 3.18 and Figure 3.19). The finding was also in conjunction 

with data from SPR analysis which showed binding activity occurred starting at lower 

temperature of 15, 25 and 37 °C. In our case, this assay results will be promising in 

identifying potential or the best ligand candidates for multivalent constructs. The result 

derived from this test, will give preliminary data for protein crystallographic trials. 
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Figure 3.10 Fluorescent readout of Vc3CBM interaction with 3’-Sialyllactose (3’SL) 

in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 20 mM 

Tris, pH 7.5 + 50 mM NaCl with the presence of 3’-SL. 

 

 

(A) 

(B) 
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Figure 3.11 Fluorescent readout of Vc3CBM interaction with 6’-Sialyllactose (6’SL) 

in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 20 mM 

Tris-, pH 7.5 + 50 mM NaCl with the presence of 6’SL. 

 

 

(A) 

(B) 
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Figure 3.12 Fluorescent readout of Vc4CBM interaction with 3’-Sialyllactose (3’SL) 

in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 20 mM 

Tris, pH 7.5 + 50 mM NaCl with the presence of 3’SL. 
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Figure 3.13 Fluorescent readout of Vc4CBM interaction with 6’-Sialyllactose (6’SL) 

in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 20 mM 

Tris, pH 7.5 + 50 mM NaCl with the presence of 6’SL. 

 

 

 

(B) 
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Figure 3.14 Fluorescent readout of Vc-CBMTD (WT) interaction with 3’-Sialyllactose 

(3’SL) in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 

20 mM Tris, pH 7.5 + 50 mM NaCl with the presence of 3’SL. 
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Figure 3.15 Fluorescent readout of Vc-CBMTD (WT) interaction with 6’-Sialyllactose 

(6’SL) in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 

20 mM Tris, pH 7.5 + 50 mM NaCl with the presence of 6’SL. 

.  

(A) 

(B) 
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Figure 3.16 Fluorescent readout of Vc-CBMTD (Mutant) interaction with 3’-

Sialyllactose (3’SL) in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM 

NaCl and (B) 20 mM Tris, pH 7.5 + 50 mM NaCl with the presence of 3’SL. 
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Figure 3.17 Fluorescent readout of Vc-CBMTD (Mutant) interaction with 6’-

Sialyllactose (6’SL) in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM 

NaCl and (B) 20 mM Tris, pH7.5 + 50 mM NaCl with the presence of 6’SL. 

 

(A) 

(B) 
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Figure 3.18 Fluorescent readout of Sp-CBMTD interaction with 3’-Sialyllactose 

(3’SL) in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 

20 mM Tris, pH 7.5 + 50 mM NaCl with the presence of 3’SL. 
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Figure 3.19 Fluorescent readout of Sp-CBMTD interaction with 6’-Sialyllactose 

(6’SL) in two different buffers. (A) 100 mM sodium citrate, pH 6.2 + 50 mM NaCl and (B) 

20 mM Tris, pH 7.5 + 50 mM NaCL with the presence of 6’SL. 
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3.4 Thermodynamic study of multivalent CBMs  

 

3.4.1 Isothermal titration calorimetry 

 

Isothermal titration calorimetry (ITC) is a quantitative technique that can directly measure 

thermodynamic parameters of protein-protein interaction. When protein binds to ligand, heat 

is either generated or absorbed during a biomolecular event. Measurement of this heat 

allows accurate determination of binding constants (Ka), reaction stoichiometry (n), enthalpy 

(∆H) and entropy (ΔS) (Freire et al., 1990). With regards to protein thermodynamics, protein 

stability depends on two opposing forces, which are enthalpy and entropy. Both are 

temperature dependent.  

 

ITC measurements were done using a VP-ITC microcalorimeter from MicroCal Inc. 

(Northampton, MA) with a working cell volume of 1.4 mL at 25°C unless stated otherwise. 

Proteins were dialyzed extensively in 10 mM HEPES, pH 7.4 containing 0.15 M NaCl and 

ligands were dissolved in the degassed, filtered dialysis buffer.  3’-Sialyllactose (3’SL) and 

6’-Sialyllactose (6’SL) were used as ligands and purchased from Dextra Labs (Reading, UK). 

Protein concentrations were determined from A280 using calculated molar extinction 

coefficients for Vc3CBM (113790 M-1cm-1), Vc4CBM (151720 M-1cm-1), Vc-CBMTD (WT) 

(67380 M-1cm-1), Vc-CBMTD (Mutant) (67505 M-1cm-1) and Sp-CBMTD (50880 M-1cm-1) 

respectively. The working protein concentration used were 0.06 mM for Vc1CBM, 0.02 mM 

for Vc3CBM, 0.005 mM for Vc4CBM, 0.03 mM for Vc-CBMTD (WT) and Vc-CBMTD 

(Mutant) and 0.06 mM for Sp-CBMTD constructs. 
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During titration, the protein and ligand mixture was stirred at 307 rpm in 1.4 mL reaction 

volume. A higher mixing speed was used to ensure rapid mixing of the titrant upon injection. 

26 cell injections were used with 10 µL aliquots of ligands at 60 seconds intervals. Raw 

binding data were corrected for both protein and ligand. The heats of dilution were 

subtracted from binding isotherm data before data were fitted by nonlinear regression using 

a single-site binding model from MicroCal Origin software. 

 

Research done by Connaris et al. (2009) to determine Vc1CBM specificity towards 

monovalent and divalent sialosides such as disialyllacto-N-tetraose (DSNT) and 

disialyllactose (DSL) revealed that Vc1CBM exhibits broad binding specificity towards 

different linked-α-sialic acids; these being α(2,3)-, α(2,6)- and α(2,8)-linked sialosides.  From 

all sialosides tested, 3’SL and 6’SL promotes similar Kd value of 18 and 19 µM (Connaris et 

al., 2009). Using this information, ITC was performed using 3’-sialyllactose as a ligand with 

multivalent polypeptides to study their binding isotherms. Outputs of raw microcalorimetry 

data, binding isotherms and best curve fitting are as shown in Figure 3.20. From the data, 

the study demonstrated the exothermic nature of binding between multivalent CBM40 

proteins and 3’SL. It was shown that the binding of 3’SL to the multivalent CBM40 

polypeptides were enthalpy driven with ∆H values range from -5.4 to -16.2 kcal/mole at 25°C 

with entropy contributing unfavourably to the interaction (Table 3.1).  This reflects the 

strength of the protein interaction to the ligand due to hydrogen bond formation and van der 

Waals interaction. 

 

Figure 3.21 shows a summary of different thermodynamic features that were observed for 

six multivalent proteins with the same target, 3’SL. These results support the previous 

research from Connaris et al. (2009) which found that all six constructs have favourable ∆H 

that correspond to formation of direct and water-mediated hydrogen bonds and van der 

Waals interactions with their ligand. Therefore, a favourable enthalpy is a good indication 
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that the protein established a net strong interaction to its ligand that avoided any 

unfavourable entropy (Freire, 2004). 

 

Ligand interaction with protein usually involves changes in the intermolecular or 

intramolecular interactions and dynamics of the whole system, and this includes the protein, 

ligand, water molecules and other components that may be present (Salemme et al., 1997).  

In this study, the ∆G was shown to be negative corresponding to a spontaneous reaction. 

This was also observed to be similar across all constructs, which related to binding affinity, 

suggesting that the more negative the value the more tighter the ligand binding to its protein. 

The n values demonstrated the appropriate number of binding sites for each multivalent 

constructs interacting with 3’SL based on single-side binding model. 
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Figure 3.20 ITC Interaction profile of multivalent constructs. (A) Vc1CBM; (B) 

Vc3CBM; (C) Vc4CBM; (D) Vc-CBMTD (WT); (E) Vc-CBMTD (Mutant); (F) Sp-CBMTD. 

Upper panel: shows enthalpy changes upon injection of 3’-sialyllactose into the 

measurement cell containing polypeptides. Bottom panel: shows integrated power peaks 

fitted with a single-site binding model.  
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Table 3.1 ITC data on the binding of multivalent proteins to 3’-Sialyllactose.  

Peptide n ∆H T∆S ∆G Ka Kd 

  kcal/mol kcal/mol kcal/mol 10
-4

 M
-1

 µM 

Vc1CBM 1.08 ± 0.008 -12.93 ± 0.11 -6.5 -6.43 5.19 ± 0.06 19.23 

Vc3CBM 2.93 ± 0.362 -16.17 ± 2.25 -9.96 -6.21 3.56 ±0.24 28.09 

Vc4CBM 4.26 ± 0.22 -13.79 ± 1.30 -7.60 -6.19 3.13 ± 0.5 31.90 

Vc-CBMTD (WT) 2.81 ± 0.041 -10.01 ± 0.19 -4.03 -5.99 2.41 ± 0.07 41.50 

Vc-CBMTD(Mutant) 2.78 ± 0.024 -9.46 ± 0.104 -3.46 -6.00 2.46 ± 0.044 40.65 

Sp-CBMTD 2.93 ± 0.033 - 5.4 ± 1.17 -0.17 -5.57 1.21 ± 0.005 82.60 

*Note: Results from at least three repeat experiments. 

 

 

 

Figure 3.21 Summary of thermodynamic features for six different multivalents 

constructs with 3’SL. Details of each value were as summarized in Table 3.1. 

 

 

 

Vc1CBM Vc3CBM Vc4CBM 
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Binding enthalpy of Vc3CBM compared to Vc1CBM increased by 3.24 kcal/mole, balanced 

by the increase in entropy, whereas the binding affinity of other multivalent constructs 

seemed to reduce slightly compared to Vc1CBM, corresponding to the reduction in Gibbs 

energy of binding.  Interestingly, the binding enthalpy of Vc3CBM compared to the 

constructs containing the trimerization domain (Vc-CBMTD (WT) and Vc-CBMTD (Mutant)) 

were about 6.16 and 6.71 kcal/mole more favourable than the trimers. Both trimers were 

also shown to have reduced binding affinity compared to Vc3CBM corresponding to a loss in 

Gibbs energy. From Figure 3.21, it is shown that binding interaction between Vc3CBM and 

Vc4CBM with 3’SL has both favourable enthalpy (∆H) and entropy (∆S), which indicates that 

binding was driven by hydrogen bond formation as well as hydrophobic interaction. The fact 

that there was no obvious increase in affinity seen as the number of linked modules 

increase, suggests that the interaction between multivalent polypeptides to the sialic acid is 

similar to a multivalent-monomeric interaction. This indicates a very simple bimolecular 

association among multivalent CBM40 constructs. 

 

All constructs containing PaTD domain, which is covalently linked to the CBM40 domain (Vc-

CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD, were found to have the smallest ka. 

This might be due to the stereochemical restrictions resulting from domain arrangement. Vc-

CBMTD (WT) and Vc-CBMTD (Mutant) have quite similar thermodynamic profile with each 

other, which indicates that mutation in the construct has a small effect on the binding affinity 

of the protein. Sp-CBMTD containing the CBM40 domain from Streptococcus pneumoniae 

NanA sialidase, were shown to have the lowest Ka of 1.2 x 10-4 M-1. This suggests that its 

binding affinity to 3’SL is slightly weaker than any other constructs having V. cholerae 

CBM40 domain. For this protein, the binding enthalpy contributes -5.4 kcal/mol to the binding 

energy and the free Gibbs energy was about -5.57 kcal/mol.  

 

From all the constructs, Vc1CBM was found to has the highest binding affinity with 3’SL with 

Ka of 5.19 X 10-4 M-1 followed by Vc3CBM (Ka: 3.56 X 10-4 M-1) and Vc4CBM (Ka: 3.13 X 10-4 
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M-1) construct. This is in conjunction with the slowest dissociation rate showing stronger 

interaction to 3’SL.  In overall, binding interaction of all the constructs with 3’SL were proved 

enthalpically driven like many other CBM-carbohydrate interactions previously reported 

(Boraston et al., 2004b). 

 

3.4.2 Surface plasmon resonance (SPR) 

 

Surface Plasmon Resonance has been established as a powerful method to monitor label-

free macromolecular interactions in liquids. It provides high sensitivity and real-time 

monitoring of the recognition, binding and separation of two interacting molecules. With the 

goal to evaluate how well SPR measurements match the ITC data performed in solution, we 

compared the binding equilibrium constants, thermodynamics and kinetics of all multivalent 

CBM40 polypeptides. Moreover, in this section, we were also interested to study whether the 

avidity effect for sialic acid can be achieved through multivalency approach.  

 

Binding kinetics of all multivalent constructs were determined using Biacore T-200 

biosensor. In the SPR analysis, measuring binding reactions using SPR biosensors requires 

one of the binding partners be immobilized onto a surface (streptavidin-coated chip). Prior to 

use, this chip was pre-conditioned with three consecutive 1 min injections of 1 M NaCl in 50 

mM NaOH. Biotinylated 3’SL-Polyacrylamide (PAA) was diluted to 1 mg/ml in PBS buffer 

containing 0.01% v/v surfactant P20 before injected over the flow cells in the chip. A 

reference surface was done to substract bulk effects and nonspecific interactions with 

streptavidin using PBS as running buffer at 30 µl/min flow rate.  

 

For this binding analysis, each multivalent polypeptide interaction with immobilized 3’SL was 

tested in running buffer (PBS buffer containing 0.01% v/v surfactant P20) at three different 

temperatures (15, 25 and 37°C). All polypeptides were diluted in running buffer before being 
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injected over the flow cell surface at 100 µl/min with a contact time for each injection of 120 

seconds. Purified protein constructs were diluted in running buffer to give a series of 

concentrations, for Vc3CBM, which were 1 nM, 5 nM, 20 nM, 62.5 nM and 125 nM. For other 

proteins (Vc4CBM, Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD), proteins were 

tested at 18.0, 6.0, 2.0, 0.67 and 0.22 nM respectively.  

 

For the dissociation test of analyte, the running buffer was used to flow over the cell surface 

at the same flow rate for 240 seconds. Surface was regenerated with two consecutive 

injections of 10 mM glycine-HCl, pH 3 containing 0.05% w/v SDS for 30 seconds at 30 

µl/min. The response data for the binding affinity, as described by the equilibrium 

dissociation constant (KD) were fit simultaneously to kd/ka model with a simple (1:1) Langmuir 

binding interaction model by using BIAevaluation T200 software (BIAcore). An example of 

the SPR binding response curves were as illustrated in Figure 3.22. Original SPR 

sensorgrams showing the binding of the CBM40 modules to immobilized 3’SL receptors are 

as shown in Appendix B. 
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Figure 3.22  Interpretation of binding response curve by SPR. The result analysis was 

interpreted in three different response stages (association, dissociation and regeneration). 

This figure was adapted from (Roos et al., 1998). 

 

The mean kinetic rate constants describing Vc3CBM and Vc4CBM were calculated to be ka: 

5.6 x 105 M-1s-1; 3.56 x 106 M-1s-1 and kd: 2.3 x 10-3 s-1; 1.6 x 10-3 s-1 respectively, which 

yielded equilibrium dissociation affinity of KD: 4.0 x 10-9 and 4.5 x 10-10 M correspond to 8.9 

fold increase in affinity at 25°C. A work done by Connaris et al. (2009) on Vc1CBM,  has 

revealed the ka values of 4.3 x 103 M-1s-1 with the equilibrium dissociation affiinity (KD) of 1.8 

x 10-6 M, thus provide an increment of 450 to 4000 fold from single-CBM40 module to three- 

and four-CBM40 modules linked together at 25°C. The disparity found in data between ITC 

and SPR were due to the different physical properties when the two assays were done to 

measure each protein binding.   

 

Furthermore, the mutant version of Vc-CBMTD was found to display higher binding affinity, 

which was 6.3 X 10-11 M compared to 1.71 X 10-9 M for its corresponding WT. This finding 
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might be due to the domain arrangment cause by the mutation at S164C and T83C, which 

introduce a disulphide bond and thus alter the orientation of the binding sites on the protein 

for efficient substrate binding.  As for trimers, the binding affinity of Sp-CBMTD was found to 

be better than Vc-CBMTD (WT) but lower than Vc-CBMTD (Mutant). Surprisingly, at 25°C, 

binding affinity of Sp-CBMTD to 3’SL was also stronger than Vc3CBM and Vc4CBM in SPR 

analysis which was different to the ITC data of binding.  There are various reasons that could 

contribute to this result.  One possibility could be due to differences in mode of interaction 

between a liquid-liquid state as in ITC to a semi-liquid/solid state as seen in SPR data.  

 

Different temperatures were used (15°C to 37°C) to monitor temperature-dependent binding 

constants on the biosensor. In the current analysis, proteins and ligand interaction gave 

acceptable affinity readings throughout the temperatures tested.  The highest affinity to 3’SL 

was found at 15°C reaction, which displayed the highest KD of 6.4 X 10-11 M for Sp-CBMTD 

followed by Vc4CBM at 9.4 X 10-10 M. By using SPR, a 64- to 134-fold increase in affinity 

can be achieved through a multivalent approach, depending on temperature used during 

interaction. In order to obtain true thermodynamic parameters describing multivalency, a 

system must be in equilibrium and not kinetically-trapped in non-equilibrium state.  
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Table 3.2  Biacore kinetic parameters of multivalent CBMs interaction with 3’-

sialyllactose.  

 

 

 

 

 

 

Multivalent construct T 

(°C) 

ka 

(M-1s-1) 

kd 

(s-1) 

KD 

(nM) 

Vc3CBM 15 (3.0 ± 0.3) x 105 (1.1 ± 0.04) x 10-3 3.7 

 25 (5.6 ± 0.15) x 105 (2.3 ± 0.08) x 10-3 4.0 

 37 (5.2 ± 0.35) x 105 (4.4 ± 0.2) x 10-3 8.44 

Vc4CBM 15 (0.54 ± 0.005) x 106 (0.51 ±0.006) x 10-3 0.94  

 25 (3.56 ± 0.016) x 106 (1.60 ± 0.006) x 10-3 0.45  

 37 (2.98 ± 0.024) x 106 (5.41 ± 0.037) x 10-3 1.82  

Vc-CBMTD (WT) 15 (2.55 ± 0.016) x 106 (4.20 ± 0.019) x 10-3 1.65  

 25 (7.24 ± 0.059) x 106 (12.4 ± 0.096) x 10-3 1.71  

 37 (20.7 ± 0.54) x 106 (107 ± 2.8) x 10-3 5.15  

Vc-CBMTD (Mutant) 15 (2.9 ± 0.006) x 106 (0.31 ± 0.001) x 10-3 0.106  

 25 (2.6 ± 0.004) x 106 (0.17 ± 0.063) x 10-3 0.063 

 37 (1.8 ± 0.002) x 106 (0.21 ± 0.001) x 10-3 0.114 

Sp-CBMTD 15 (16.9 ± 0.01) x 106 (1.1 ± 0.004) x 10-3 0.064  

 25 (7.8 ± 0.035) x 106 (1.2 ± 0.004) x 10-3 0.154  

 37 (21.5 ± 0.04) x 106 (5.2 ± 0.006) x 10-3 0.243  



[CHAPTER 3: BIOPHYSICAL CHARACTERIZATION AND CRYSTALLIZATION] 110 

 

 
 

The equilibrium constants determined from the temperature-dependent analysis were used 

to determine van’t Hoff enthalpies by plotting lnKD versus 1/T which yielded values for ∆H°/R 

from the slope and -∆S°/R from the y intercept, where R is the universal gas constant, 1.987 

cal mol-1 K-1 (McNaught, 1997). Detailed kinetic and thermodynamic information will help in 

characterizing how these multivalent polypeptides interact with their macromolecular targets.  

 

Figure 3.23 shows the van’t Hoff plots for all multivalent constructs at three different 

temperatures measured (15, 25 and 37°C). The plot data were found to be linear and also 

consistent to the ITC binding parameters that were run at 25°C (Table 3.1).  Data derived 

from van’t Hoff plots for each multivalent constructs showed slight increases in ∆G with the 

addition of CBM40 domain as shown for Vc3CBM (-11.46 kcal/mol) and Vc4CBM (-12.75 

kcal/mol). Other constructs containing the trimerization domain (Vc-CBMTD (WT), Vc-

CBMTD (Mutant) and Sp-CBMTD) also displayed some increment in Gibbs free energy with 

values of -11.96, -13.92 and -13.38 kcal/mol respectively. All the data showed a large 

favourable entropic contribution upon complexation as shown in Table 3.3. These large 

changes in entropy could be due to the release of structurally ordered water molecules from 

the hydration shells influenced by tight-protein packing.  It is very likely that the valency of 

the engineered tandem-linked proteins may play an important role in stabilization of protein 

oligomers and their interaction. Still, the Gibbs free energy was found strongly negative, 

which suggest spontaneous interaction.  
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Figure 3.23 van’t Hoff plot from SPR data at three different temperatures (15, 25 and 

37°C) for all multivalent constructs. 
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Table 3.3 Thermodynamic parameters of the interaction between multivalent proteins 

with 3’SL-PAA Biotin. 

Multivalent 

construct 

∆G 

(kcal/mol) 

∆H 

(kcal/mol) 

∆S 

(cal K-1mol-1) 

T∆S 

(kcal/mol) 

Vc3CBM -11.46 -6.59 15.94 4.87 

Vc4CBM -12.75 -5.55 22.78 7.2 

Vc-CBMTD (WT) -11.96 -9.17 8.71 2.79 

Vc-CBMTD 

(Mutant) 

-13.92 -0.75 43.41 13.17 

Sp-CBMTD -13.38 -10.52 9.97 2.86 

 
* Parameters were derived from van’t Hoff plot using kinetic rate constant determined by SPR. The 

Gibbs free energy of activation at 25°C (298 K) was derived from the relationship ∆G = ∆H - T∆S. 

 

Moreover, significant changes in enthalpy and entropy contributions can be seen from all the 

constructs. Out of all the proteins tested, Sp-CBMTD gave the largest enthalpic change with 

∆H value of -10.52 kcal/mol followed by Vc-CBMTD (WT) with -9.17 kcal/mol. Meanwhile, 

Vc3CBM and Vc4CBM only showed a slight different in enthalpy at -6.59 and -5.55 kcal/mol 

and entropy contribution of 15.94 and 22.78 kcal/mol respectively. This small decrease in 

binding enthalpy provided a 10-fold enhancement in affinity probably due to formation of 

stable aggregated on SPR chip surface (Poon, 2007).   

 

In contrast, Vc-CBMTD (Mutant) showed the lowest favourable enthalpy change of    -0.75 

kcal/mol but with the highest entropy gains of 43.41 cal K-1mol-1. The large differences in 

equilibrium dissociation energy were also obviously seen between these two constructs 

(Table 3.2). Through mutation it showed that, even a single amino acid change in the 

sequence can significantly alter the thermodynamics/ kinetics of the protein. This finding 
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could be based on various factors such as protein conformational arrangement, ligand 

accessibility to the binding sites, mode of binding including intra- or intermolecular binding 

and structural packaging of the protein (Connaris et al., 2009). 

  

3.5 Structural study of Vc-CBMTD  

 

3.5.1 Protein crystallization and X-ray data collection 

 

A pre-crystallization test (PCT) was performed (Appendix A-12), which estimate a starting 

protein concentration of 10 mg/ml for Vc-CBMTD (WT) construct in 20 mM Tris, pH 7.5 + 50 

mM NaCl. Seven commercialized crystal screens kits such as JCSG+ (Molecular 

Dimension), Wizard I + II (Emerald Bioscience), Crystal screen (Hampton Research), PACT 

(Molecular Dimension), Index (Hampton Research), PEGs (Qiagen) and Cryo I + II (Emerald 

Bioscience) were used for initial crystallization trials. Crystal plates were initially setup using 

Honeybee crystallization robot with 150 nl of buffer and 150 nl of protein. This experiment 

was carried out using the sitting drop method.  All of the plates were stored at room 

temperature of 20°C. Two different protein concentrations were used in the initial screens; 

higher concentration was 18 mg/ml and lower concentration was 10 mg/ml.  

 

Fortunately, after six months, a few beautiful crystals were found in PACT-H5 screening 

plate when using 18 mg/ml of Vc-CBMTD (WT).  The plate condition was 0.2 M sodium 

nitrate, 20 % PEG3350 and 0.1 M Bis-tris propane, pH 8.5 with equal amounts of protein and 

reservoir solution (2 µl each). This Vc-CBMTD (WT) crystal that grew in this condition 

crystallize with a bubble-like shape (Figure 3.24). Wells, with crystalline materials growing in 

them, were marked for further examination. The initial crystal was found to be very soft and 

jelly-like when picked out from the drops. In order to distinguish the protein crystals from salt 

crystals, 0.1 µl Izit Crystal dye (Hampton Research) was mixed with the drops contain tiny 
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crystals for 30 minutes before observed under a light microscope. Protein crystal should be 

stained as a dark blue crystal and the corresponding crystallization conditions were selected 

as the optimization starting points. For further confirmation of proteins crystals, a few crystals 

were exposed to the X-rays at 100K from an in-house Rigaku/MSC MicroMax-007HF 

rotating anode equipped with a Saturn 944+ CCD detector at wavelength 1.54178 Å. The 

crystal-to-detector distance, rotation angle and other parameters were initially set but very 

poor diffraction data was produced and obtained measurement at 10 Å resolution. For a 

further comprehensive study, optimization of the protein positive hit condition was performed 

and discussed in the next subsection.  

 

3.5.2 Crystal optimization 

 

From the initial hit, the crystal condition was optimized by varying the concentration of salt, 

precipitant and protein. The best quality crystals were obtained in an optimization condition 

of 0.18 M sodium nitrate, 22% PEG3350 and 0.1 M Bis-tris propane, pH 8.5 with 18 mg/ml of 

protein used. The crystal displayed a hexagonal shape about the size of 150 μm x 150 μm x 

150 μm, which took about 4 to 5 months to form crystals (Figure 3.25). Additive Screen HT 

(Hampton Research) that contains a library of 96 unique reagents, was also used to improve 

and manipulate the condition for crystal optimization and alter sample solubility. However 

this approach did not work at all for the protein. For further data collection, crystal-to-detector 

distance, rotation angle and other parameters were initially set to measure resolution data 

based on the diffraction quality of the crystal. The first crystal of Vc-CBMTD (WT) diffracted 

at 3.2 Å in-house after the optimization stages. 
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Figure 3.24 Diffraction pattern of Vc-CBMTD (WT) crystals formed before 

optimization conditions. The initial condition was 0.2 M sodium nitrate, 20% PEG3350 and 

0.1 M Bis-tris propane, pH 8.5. 

 

Diffraction:   10 Å 
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For comprehensive analysis, Vc-CBMTD crystals were sent to the Diamond Light Source 

facility in Oxford. Prior to that, crystals were picked out from the drops with a crystal loop 

(1.0-0.5 mm size) and transferred to 5 µl of cryo protectant drop containing 20% glycerol. 

The crystals were then re-looped and transfer to a storage container containing liquid 

nitrogen prior to delivery to Diamond Light Source facility. Diffraction data were collected 

using the I03 macromolecular beamline equipped with Pilatus 6M-F detector. The x-rays 

from this beamline deflect and scatter atoms in equivalent positions in the crystal lattice as 

concentrated and sharp intense spots known as crystal diffraction pattern.  

 

3.5.3 X-ray data collection, data processing, molecular replacement and structure 

refinement. 

 

The first dataset was collected at Diamond Light Source facility in Oxford using I03 

macromolecular beamline equipped with Pilatus 6M-F detector. The crystallization data were 

indexed and integrated using the program MOSFLM (Leslie 1992). The integrated data were 

merged and scaled using the programs called CCP4 suite (CCP4. 1994). From the analysis, 

the crystal belongs to the group primitive cubic (P 4132) with the unit cell parameters a= 

115.17 Å, b= 115.17 Å and c= 115.17 Å.  Matthew’s coefficient calculation suggested that 

only one molecule of Vc-CBMTD (WT) was present in the asymmetric unit with solvent 

content of 36%. The apo form of Vc-CBMTD (WT) dataset was collected with a crystal that 

diffracted to 3.0 Å at Diamond Light Source facility. Data collection and processing statistics 

are listed in Table 3.4. 

 

 

 

 

 

http://smb.slac.stanford.edu/images/pattern.png
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Figure 3.25 Vc-CBMTD (WT) crystals formed after optimization condition with its x-

ray diffraction image. The buffer condition was 0.18 M sodium nitrate, 22% PEG3350 and 

0.1 M Bis-tris propane, pH 8.5. The crystal size was about 0.15 x 0.15 × 0.15 mm. 

 

 

 

Diffraction: 3.21 Å  
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Table 3.4 X-ray data collection and refinement statistics. 
 

Data collection  

Space group P 4132 

Unit cell edges           a, b, c (Å) 

                                  α, β, γ (°) 

115.17/ 115.17/ 115.17 

α = β= γ= 90° 

X-ray source Diamond Light Source 

Resolution range (Å) 51.51- 3.0 (3.08-3.00) 

No. of unique observations 285223 

Completeness (%) 99.7 (98.5) 

Redundancy 7.4 (5.4) 

R merge 0.144 (0.413) 
I/δI 11.0 (3.5) 

Data refinement  

No. of reflections work/ test 37254 / 5618 

No. of protein atoms 828 

No. of residues 108 

No. of chain 1 

Average B-factors (Å2) 36.19 

R cryst
b 0.218 

R free 0.256 

Root mean square deviation bond distance (Å) 0.0170 

Root mean square deviation bond angle (°) 1.9088 

aRmerge = Σhkl Σi|hkl,i - 〈Ihkl > |/Σhkl〈Ihkl >,  
bRcryst and Rfree = (Σ||Fo| - |Fc||) / (Σ|Fo|). 

Numbers in parentheses correspond to the highest resolution shell. 

 

 



[CHAPTER 3: BIOPHYSICAL CHARACTERIZATION AND CRYSTALLIZATION] 119 

 

 
 

Molecular replacement (MR) was selected to solve the structure using the Vibrio cholerae 

sialidase CBM structure (PDB code: 2w68) and the Pseudomonas aeruginosa 

pseudaminidase trimerisation domain (PDB code: 2w38) as the search model. Unfortunately, 

from automated MR with Phaser program (McCoy, 2007) in Collaborative Computational 

Project Number 4 (CCP4) program (CCP4, 1994) it was suggested that the molecule was 

only the trimerization domain (TD) from Pseudomonas aeruginosa pseudaminidase, which 

crystallised without the presence of the CBM40 domain from Vibrio cholerae sialidase. It is 

believed that this CBM40 domain had degraded during the long crystallization periods (4-5 

months) and only part of trimerization domain, had successfully crystallized. However, the 

trimerization domain was built and refined, with an R factor and R free of 0.22 and 0.26 

respectively using Coot (Emsley and Cowtan, 2004) and REFMAC5 program (Murshudov et 

al., 1997). One molecule was present in the asymmetric unit which formed a trimer with two 

symmetry-related molecules. 

 

Similar to that, described by Xu et al. (2009b), the pseudaminidase from Pseudomonas 

aeruginosa (PaNA) in the present structure consists of an additional domain with an 

immunoglobulin-like (Ig-like) fold. This domain contains residues from 335-438, which is 

linked to the C-terminal of the catalytic domain via a 7-residue loop. This Ig-like domain is 

known as a trimerization domain, which folds into 11 β strands. These strands form two anti-

parallel β sheets packing, which form against each other, as shown in Figure 3.26.  Such a 

trimeric association is also similar to the fibronectin type III domain found in certain tumor 

necrosis factor (TNF)-like cytokines for example the mouse TNF (Baeyens et al., 1999). 

Moreover, the pseudaminidase oligomerisation domain is also an essential part that 

trimerizes PaNA monomers to the trimer architecture (Figure 3.27). All figures and protein 

structures in this section were prepared using Pymol (DeLano, 2007). As shown in Figure 

3.28, the surface charge potential of the trimerization domain from P. aeruginosa was 

showed in two orientations of electrostatic distribution.  
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Figure 3.26  Schematic drawing of trimerization domain (TD) of P. aeruginosa 

pseudaminidase from the crystallography data. This domain consists of two anti-parallel 

-sheets packed against each other, which stands for an Ig-like -sandwich fold. The 

monomer is drawn in rainbow colours from blue at the N-terminus to red at the C-terminus. 
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Figure 3.27 Trimerization domain (TD) of P. aeruginosa pseudaminidase (PaNA) as a 

trimer. One molecule (blue) was present in the asymmetric unit and formed a trimer with 

symmetry-related molecules (green and magenta). (A) Views from the side of the TD; (B) 

views from the three-fold symmetric axis.  
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Figure 3.28 The electrostatic potential of molecular surface of TD domain calculated 

by PyMol. Colours were according to the electrostatic potential.  
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3.5.4  Analysis of the natively disordered region in full-length Vc-CBMTD 

 

The full-length 308 amino acid sequence of Vc-CBMTD (WT) was submitted to the 

bioinformatics server, Regional Order Neural Network (RONN) for protein analysis (Yang et 

al., 2005). As shown in Figure 3.29, 99 residues above the baseline of “Probability of 

Disorder” (0.5 at y axis) are thought to be disordered. Regions that are involved include 

residues 1-33, 62-70 and 75-77 at the N-terminus and residues 215-267 located at the C-

terminus.  

 

From the amino acid analysis using ProtParam software (Expasy), this protein is very rich in 

proline/glycine (P/G) and threonine/serine (T/S) residues, which constitute 15.5% and 18.2% 

in 308 amino acid residues, respectively. The glycine residues would give this domain higher 

conformational flexibility while proline residues reduce flexibility and forms rigid peptide 

bonds (Whitford, 2005). Both C-and N-terminal parts of the amino acid from this protein was 

found to be disordered. This raises the concern that these disordered regions may decrease 

the possibility of the protein to crystallize. In fact, this full length of Vc-CBMTD (WT) failed to 

crystallize after screening against more than 670 conditions.  

 

However, despite all that, both domains (CBM40 and PaTD domains) are found to be well 

ordered on their own.  It is in contrast with the RONN analysis where disordered regions 

were predicted on both domains. This showed some weakness and limitation in the analysis 

software. Due to this problem, an accurate recognition of proteins disordered regions is very 

important. But until now, no single disorder prediction techniques are so accurate which can 

be entirely trusted (Yang et al., 2005). Furthermore, classification of disordered regions in 

PDB are still incomplete (Berman et al., 2000) due to many protein structures were solved 

based on truncated polypeptides with some parts (disordered and flexible regions) were 
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being removed (Linding et al., 2003; Yang et al., 2005). This has clearly led to some 

limitation in prediction software like the RONN analysis. 

 

 

Figure 3.29 Prediction of natively disordered region of full-length Vc-CBMTD (WT) 

by RONN bioinformatics server. The horizontal lines mark the threshold for disorder 

prediction and region above the lines correspond to disorder protein sequences. 
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3.6 Structural study of Sp-CBMTD 

 

3.6.1  Protein crystallization 

 

Analysis by Prot-Param has revealed Sp-CBMTD consist of 302 amino acids with molecular 

weight of 33252 Da. Its estimated iso-electric point (pI) is found to be 9.32. From a pre-

crystallization test, 9 mg/ml of protein concentration was suggested as a starting 

concentration for crystallization screening of Sp-CBMTD. Seven crystal screens, namely 

Hampton crystallization screen and Index (Hampton Research), the PEGs (Qiagen), CRYO 

and Wizard I+II (Emerald Biosciences), PACT and JCSG+ (Molecular Dimensions) were 

used. All crystal plates were initially setup using Honeybee crystallization robot using a 

sitting drop method. The lower concentration of 9 mg/ml and the higher concentration of 27 

mg/ml of the protein were used for crystal plate set up, but unfortunately no crystals were 

found to date.  

 

Due to this finding, RONN analysis (Yang et al., 2005) was performed to predict disordered 

protein regions. From the analysis, there were three disordered regions found, which were 

amino acid residues 1-34 at the N-terminal and the C-terminal residues of 178-201 and 203-

258 of the Sp-CBMTD domain (Figure 3.30). In this Sp-CBMTD construct, the linker region 

between CBM40 domain and trimerization domain was designed consist of ‘GGGGS’ 

sequences which were flexible amino acids. This region was also predicted to be disordered 

by the RONN analysis. Besides that, parts of the N-terminal and C-terminal sequences were 

also in disordered regions which also promote to the difficulty in crystallization process. 

Future work plan on this protein is described in Chapter-7. 
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Figure 3.30 Disorder prediction region of Sp-CBMTD protein predicted by RONN 

analysis. Disordered region of 1-34 were found at the Sp-CBM domain while region of 178-

201 and 203-258 were at the TD domain of the construct. 
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3.7 Discussion 

 

Multiple, simultaneous interactions are often used in biology to enhance protein affinity and 

binding specificity. This form of approach is known as multivalency.  Using native gel 

electrophoresis, the native state of an engineered multivalent protein can be studied. Protein 

migration under native conditions is dependent on molecular mass, pI, buffer pH, and type 

and percentage of gel matrix (Braz and Howard, 2009). The results from the above study 

have shown that both proteins (Vc-CBMTD (WT) and Vc-CBMTD (Mutant) are presented as 

high molecular weights species, which correspond to protein aggregates as compared to 

Vc1CBM. In this assay, other proteins (Vc3CBM, Vc4CBM and Sp-CBMTD) have not been 

tested because this was a preliminary study to show the presence of high molecular weight 

protein through multivalency technique that could lead to protein aggregation.  It has been 

reported that structurally altered proteins have a strong tendency to aggregate, which lead to 

precipitation (Chen et al., 1994).  

 

Systematic identification of ligand and buffer conditions which optimally stabilize protein 

would significantly improve the success rate of crystallization trials. Due to this, a thermal 

shift assay was chosen as the technique to identify these conditions. In the assay, ten 

different buffers were tested to provide suitable condition for protein stability. A good buffer 

system usually will have maximum buffer capacity at a pH where the protein exhibit optimal 

stability (Ugwu and Apte, 2004). For the construct containing the P. aeruginosa 

pseudaminiase trimerization domain (Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-

CBMTD), two peaks were present, as shown in the Figure 3.17, which correspond to the 

CBM40 and trimerization domains. Usually this multimeric, or modular proteins often have 

more than one Tm value due to the presence of additional domains in the protein structure. 

One such example is the native human factor XIII, which consists of three thermolabile 

domains and two thermostable domains in each subunit. The intact protein was found to 

have distinct Tm values which were 69°C and 90°C for both domains respectively (Kurochkin 
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et al., 1995).  Another example is the chimeric protein toxin sCD4 consisting of two domains 

(HIV binding domains and cytotoxic domain of Pseudomonas exotoxin), which is also known 

to has two transition temperatures from both domains (Davio et al., 1995).  

 

According to Connaris et al. (2009), Vc3CBM showed broad linkage specificity to α(2,3)-, 

α(2,6)-sialyllactose (3’-SL and 6’-SL) respectively, and di-sialyllactose (α2,8 linked) after 

undergoing a glycan array screen. The best ligand concentrations of 0.8-1.0 mM were found 

for all the proteins when using 3’SL and 6’SL as the substrates in the thermal shift assay. 

Protein interaction with specific ligand would increase the protein thermal stability. This can 

be measured through increment of melting temperature due to the stabilization of the protein 

complex. The difference in temperature of the midpoint in the presence and absence of 

ligands are related to the binding affinity of the substrate molecule. These molecules can be 

low-molecular-weight compounds, peptides or nucleic acids. 

 

Data from our comparative study revealed that most of the thermodynamic parameters 

determined from the SPR Biosensor were not equivalent to the parameters determined by 

solution-based method, isothermal titration calorimetry (ITC).  All multivalent CBM40 proteins 

interaction with 3’SL were found to be exothermic, releasing heat during complex formation. 

For ITC and SPR assay, the experiments were replicated at least three times at a constant 

temperature of 25 °C. ITC data measured the interaction of the multivalent polypeptides to 

the 3’SL shown to be enthalpy driven with entropy contributing unfavourably to the 

interaction. This favourable enthalpy interaction is a good indication that the protein 

established a strong binding to its ligand and avoid any unfavourable entropy (Freire, 2004). 

In SPR study, a mixed balance of entropy and enthalpy contributions were found on 

multivalent constructs where Vc-CBMTD (Mutant) was predominantly driven by entropy, 

while Vc-CBMTD (WT) and Sp-CBMTD showed increase in enthalpy. For Vc3CBM and 

Vc4CBM, their thermodynamic profiles provide equal balance of both enthalpy and entropy 

contributions. These findings showed that binding does not occur through a simple protein-
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protein interaction (ions of opposite charge) but also through the hydrophobic and/or ionic 

hydration that provide the driving force to the process.  

 

This kind of entropy-driven interaction has been seen in other multivalent protein-

carbohydrate interactions due to formation of aggregates by intermolecular binding (Ambrosi 

et al., 2005; Lundquist and Toone, 2002). Interestingly, increasing the number of linked 

modules from three to four demonstrated an increase in entropy contribution. The free 

energy of binding for Vc4CBM was slightly greater than Vc3CBM corresponding to a slight 

increase in affinity. From this finding, the valency of multiple linked polypeptides was thought 

to play an important part in the protein stabilization. As described by Poon (2007), when all 

domains in an oligomer are tethered together (covalent linkage) in a single tandem, 

oligomerization of the protein becomes a unimolecular folding transition. This conformation 

would reduce the entropy of dilution to minimize dissociation and produce stable multivalent 

molecules.  

 

For constructs containing the trimerization domain (Vc-CBMTD (WT), Vc-CBMTD (Mutant) 

and Sp-CBMTD), results from the study were comparatively different to our findings in ITC. 

The introduction of a mutation at S164C and T83C in Vc-CBMTD (WT) resulted in an 

increase in affinity along with an increase in Gibbs free energy, despite having a large 

increment in entropy contribution. The use of a cysteine mutant will strategically cross-link 

the adjacent subunits with disulphide bridges and thus promote better orientation of the 

binding site for easier access of sialic acids.  On the other hand, this approach also 

contributes to a common side effect called irreversible aggregation due to non-specific cross 

linking which can cause increase in entropy (Poon, 2007). 

 

Even though both results from ITC and SPR were comparable and acceptable, further 

optimization steps should be done. This includes optimising parameters such as flow rate, 

types of buffers, number of injections, protein and substrate concentration, temperature and 
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experimental design (different binding models). In some cases, a number of experimental 

artefacts (mass transport, nonspecific binding, aggregation, avidity, matrix effects and 

instrumental drift) can complicate binding responses (Morton and Myszka, 1998; Myszka, 

1997). Through this effort, hopefully both data quality and data analysis will be optimized to 

ensure results are interpreted correctly.  

 

For crystallization trials, two proteins (Vc-CBMTD (WT) and Sp-CBMTD) were initially set up 

in the optimization buffer (20 mM Tris, pH 7.5 + 50 mM NaCl). These constructs contain an 

additional domain known as trimerization domain (TD) from P. aeruginosa pseudaminidase, 

which was exploited to generate trimeric CBM40 molecules. Only the TD part was 

successfully crystallized from Vc-CBMTD (WT) protein in 0.18 M sodium nitrate, 22% 

PEG3350 and 0.1 M Bis-tris propane, pH 8.5 and took about 5 months to form crystals. 

Besides that, the presence of glycine at high percentage in the amino acid sequence can 

promote domain flexibility that might inhibit orderly packing of macromolecules in a 

crystalline array which complicate the crystallization process (Jin and Babine, 2004; 

Whitford, 2005).  

 

Multi-domain proteins are hard to crystallize due to the flexibility of the linkers that connect 

the distinct domain. Due to that, the linker region plays a very important part in any 

engineered multivalent protein molecule. An ideal linker should be ‘inert’ yet rigid so that the 

position and orientation of tandem repeats is constrained in its oligomeric state (Mammen et 

al., 1998a). It is often attempted when synthesizing multivalent ligands to design peptide 

linkers, which would not interact and perturb the core structure of the oligomer (Kiessling et 

al., 2000). Due to that, the choice of suitable sequence should consist of hydrophilic residues 

(glycine and serine) that are not likely to interact with the structural surface charges on the 

other subunits. In addition, it should avoid any sequence that may contains proteolytic 

cleavage sites (Poon, 2007).  
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To date, no crystal of Sp-CBMTD was found on any screening plates. From RONN analysis, 

three disordered regions were found, which comprised of >100 residues, including regions 

from both domains that are known to be ordered. This was only a prediction analysis and 

shows some limitations in the ability of such software to predict the disordered regions. The 

failure to obtain crystals of full length Vc-CBMTD and Sp-CBMTD, is most likely due to the 

flexible linker region that was introduced during the engineering of the proteins.  
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Chapter 4 

 

In vitro study of influenza virus infection 

 

4.1 Overview 

Nowadays, influenza continues to be a present danger to human and animal health. The 

ability of the virus to develop rapid mutation can cause antigenic variants to constantly arise 

with potential to cause pandemics. The 2009 H1N1 swine flu pandemic, which occurred in 

Mexico rapidly spread around the world causing major public health costing billions of US 

dollars to control. The appearance of pandemic influenza is countered by regular seasonal 

flu epidemics. Although it is less dramatic than pandemics, seasonal influenza has caused 

more than 200,000 hospitalizations (Thompson et al., 2004) and annual average of >30,000 

influenza-associated causing deaths. These estimated also highlight the increased morbidity 

and mortality in older age groups and variability in disease between seasons (Thompson et 

al., 2006). 

 

The main strategy to fight influenza is through vaccination. But due to time constraints and 

other limitations, antiviral drugs are a second choice of defence after vaccination, which may 

help reduce severity of symptoms and shorten the time course of the disease. It is well 

documented that there is increasing resistance to current influenza antivirals, such as in the 

case of adamantine derivatives (Symmetrel® and Flumadine®), which stated by CDC are 

resistant to most of the influenza A H3N2 (2008/2009) and pandemic strains of H1N1 (2009). 

While, about 99.6% of seasonal influenza A H1N1 was found resistant towards oseltamivir. 

This has led to the need of alternative methods to combat influenza.  
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The ubiquitous distribution and terminal location of sialic acids have become interesting 

targets for various pathogenic organism and toxins to bind (Ilver et al., 2003). The presence 

of cell surface sialic acids in the airway epithelium, serve as a binding site for influenza 

viruses and is the first step in the virus infection process (Suzuki, 2005). In this study, we 

report on the antiviral properties of CBM40 multivalent proteins to block attachment of 

several influenza A virus strains in vitro. The level of viral inhibition is determined by virus 

plaque inhibition assays and expresses as EC50 values. Cytotoxicity tests, in absence of 

virus, were also performed to see direct effect of proteins at higher concentration on 

mammalian cell monolayers. For data comparison, quantification of viral replication proteins 

after treatment with multivalent proteins was also carried out in addition to the plaque 

inhibition assay mentioned previously.  

 
 
4.2 Effect of multivalent CBMs protein in inhibiting influenza virus infections 

 

4.2.1 Influenza virus plaque assay protocol 

 

Confluent monolayer cultures of Madin-Darby canine kidney (MDCK) cells were incubated 

with different concentrations of proteins for 2 hours at 37°C, 5% CO2 on a rocking platform 

with gentle shaking. Monolayers were washed once with Dulbecco’s modified minimum 

essential medium (DMEM) before infected with influenza A virus strains at 200 pfu/well per 

virus for 1 hour with gentle shake.  

 

Later, virus was removed and 13 ml of 2% molten agarose and 13 ml of 2X overlay medium 

(DMEM/ 90 mM NaHCO3/ 10 mM HEPES, pH 7.4) supplemented with 52 µg of N-acetyl 

trypsin (NAT) (Sigma) was added to each well. Plates were left at room temperature for 15-

20 minutes to solidify. Plates were inverted and incubated at 37°C, 5% CO2 for 3 days or 

until plaques formed. For staining, 1 ml of 10% formaldehyde in PBS was added to each 
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wells and left for 1-2 hours to fix the monolayers. Plaques formed were counted by direct 

staining using 0.1% crystal violet. The plaques were counted by visual examination and 

percentage of plaque inhibition was calculated as relative to control plate (contain virus 

only).  

 

4.2.2 Assessment of protein anti-influenza activity  

 

The ability of various proteins to inhibit influenza virus infection was determined using a 

plaque inhibition assay on MDCK cells. Figure 4.1 and Figure 4.2 shows a representative 

assay of Vc4CBM protein. Assays were done with virus in the absence of protein as a mock 

control and with increasing protein concentrations. From Table 4.1, Vc4CBM is highly 

efficient at inhibiting the laboratory-adapted A/Udorn/72 H3N2 subtype with an EC50 of 0.59 

µM. Modification of the Vc3CBM construct with additional CBM40 domain resulted in 

improved antiviral activity against the same virus from 0.94 µM for Vc3CBM to 0.59 µM for 

Vc4CBM. Vc4CBM maintained to be the best inhibitor for other influenza A virus strains, 

A/PR8/34 and A/WSN/33 H1N1 with EC50 of 1.8 µM and 1.06 µM as compared to Vc3CBM 

with 4.7 µM and 1.09 µM respectively.  

 

The CBM40 proteins contained the trimerization domain from P. aeruginosa displayed a 

good inhibition effect with EC50 of 1.4 µM for Vc-CBMTD (WT) and 2.1 µM for Vc-CBMTD 

(Mutant) after infection with A/Udorn/72 H3N2 subtype. Moreover, these proteins also 

maintained a good level of protection against A/PR8/34 H1N1 virus with EC50 values of 3.01 

µM for Vc-CBMTD (WT) and 5.01 µM for Vc-CBMTD (Mutant). While for A/WSN/33 H1N1 

subtypes, the EC50 values are 1.5 µM for Vc-CBMTD (WT) and 2.0 µM for Vc-CBMTD 

(Mutant) respectively. These two proteins are closely related differing only in the position of 

mutations in CBM40 domain which are at S164C and T83C. While, for Sp-CBMTD contains 

a CBM40 domain from S. pneumoniae sialidase, are still able to maintain substantial antiviral 

activity against the influenza A virus strains, resulting in EC50 value of 2.2 µM against 
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A/Udorn/72, 2.03 µM against A/PR8/34 and 3.04 µM against the A/WSN/34 H1N1 subtype. 

The result, as summarized in Table 4.1, shows proteins containing the CBM40 domain from 

V. cholerae sialidase being the most effective protein in inhibiting influenza A virus 

replication. Supplementary data and detail graphs related to EC50 value of the multivalent 

protein tested can be referred to Figure 4.5 - Figure 4.7. 

 

 

 

 

 

 

 

 

Figure 4.1 Anti-influenza activity of protein tested in plaque inhibition assays. The 

ability of Vc4CBM to inhibit replication of A/Udorn/72 H3N2 virus (200 pfu) was determined 

using plaque inhibition assays on MDCK cells. Assays were carried out with the presence of 

only virus and virus in the presence of increasing concentrations of protein (0.03 mg/ml to 

1.0 mg/ml). 
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Figure 4.2 Plate representation of plaque inhibition assay on MDCK cells after 

infection with A/Udorn/72 H3N2 virus. Monolayers were treated with Vc4CBM protein at 

different concentrations ranging from 0.03 mg/ml to 1.0 mg/ml. 
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Table 4.1 Summary of EC50 values of influenza A viruses treated with different 

multivalent CBM40 proteins.  

 

Virus 

strains 

Multivalent proteins (µM)* 

Vc3CBM Vc4CBM Vc-CBMTD 

(WT) 

Vc-CBMTD 

(Mutant) 

Sp-CBMTD 

A/Udorn/72 

H3N2 

0.94 ± 0.06 0.59 ± 1.71 1.4 ± 0.86 2.1 ± 1.55 2.2 ± 2.45 

A/PR8/34 

H1N1 

4.7 ± 1.63 1.80 ± 0.40 3.01 ± 1.04 5.01 ± 0.56 2.03 ± 2.41 

A/WSN/33 

H1N1 

1.09 ± 0.29 1.06 ± 0.64 1.5 ± 0.53 2.0 ± 1.07 3.04 ± 2.31 

*Note: Results were based on at least three replicate assays for each protein tested. 
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Figure 4.3 Comparison of EC50 values of different multivalent proteins constructs 

against influenza A strains. Details for each EC50 with standard error value can be referred 

to Table 4.1. 
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Figure 4.4 Comparison of different influenza A strains against EC50 of multivalent 

protein constructs. Details for each EC50 with standard error can be referred to Table 4.1. 

 

Figure 4.3 and Figure 4.4 shows a summary of cell protection by multivalent proteins 

(Vc3CBM, Vc4CBM, Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD) against 

influenza A strains (A/Udorn/72, A/PR8/34 and A/WSN/33) infections. As shown in the 

figure, most of the multivalent proteins are found to be least effective against A/PR8/34 

H1N1 subtype as this virus is more virulent compared to the other influenza A strains. This 

subtype is currently endemic in both human and pig populations. H1N1 variant once was 

responsible for the Spanish flu pandemic which killed around 50-100 million people 
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worldwide during 1918-1919 (Patterson and Pyle, 1991). Meanwhile, levels of inhibition were 

greatest against A/Udorn/72 strains H3N2 subtypes. This strain was descended from H2N2 

subtype which caused the Hong Kong flu pandemic. The evolution was due to antigenic shift 

which cause genes from multiple subtypes reassorted to form a new virus (Dumar, 2009). 

  

Inhibition of virus replication were resulting from blocking viral attachment to cell surface 

sialic acids which will further avoid the re-attachment and infection of neighbouring cells. 

From the data presented, Vc3CBM, Vc4CBM and Vc-CBMTD (WT) are considered to be the 

best antiviral agent against all three influenza A strains. Another construct, Sp-CBMTD 

which is from S. pneumoniae CBM40 sialidase was also found to have a strong effect on cell 

protection with this being most effective against A/Udorn/72 H3N2 virus strain. Overall, these 

multivalent proteins tested proved to be good candidates for the development of influenza 

antivirals.  
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Figure 4.5 Detail of EC50 graphs on multivalent protein constructs infected with 

A/Udorn/72 H3N2. 
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Figure 4.6 Detail of EC50 graphs of multivalent protein constructs infected with 

A/PR8/34 H1N1. 
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Figure 4.7 Detail of EC50 graphs of multivalent protein constructs infected with 

A/WSN/33 H1N1. 

 



[CHAPTER 4: IN VITRO STUDY OF INFLUENZA VIRUS INFECTION] 144 

 

 
 

 

4.3 Effect of high concentration multivalent CBMs on cell monolayer 

 

4.3.1 Evaluation of cytotoxic effects of Vc-CBMTD (WT) and Sp-CBMTD proteins 

 

A cytotoxicity assay is used to predict toxicity level of drugs or protein on cultured 

mammalian cells.  This investigation often required testing several different concentrations 

and drug exposure times using cells in culture. Therefore, we are using cell viability test to 

evaluate the effect of multivalent proteins on an established mammalian cell line. This 

protocol provides a simple and fast methodology to analyse viability of MDCK cells against 

different concentrations of the tested proteins and to test putative cytotoxicity effects 

associated with exposure to the substances. 

 

MDCK cells were grown in 96-well plates at 7 x 104 cells/ well for overnight. Spent media 

was aspirated out and monolayer was washed with phosphate buffer saline (PBS). CBMs 

proteins were incubated at different concentrations on the monolayers for 6 hours and 24 

hours at 37°C, 5% CO2 in PBS supplemented with 10% fetal calf serum (FCS). Cell survival 

in samples was measured using 10 ml of PrestoBlueTM cell viability reagent (Invitrogen, 

USA) according to the manufacturer’s protocol and incubated for 1 hour at 37 °C. Data 

values were measured at OD readings of 570 nm with reference wavelength at 620 nm 

using an ELISA reader. Cell viability was calculated using the following formula: 100 x 

[(OD570 of treated sample) / (OD570 of untreated sample)].   
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Figure 4.8 Viability test on Vc-CBMTD (WT). Two incubation times were tested which 

were (   ) 6 hours and (   ) 24 hours. 

 

 

 

 

 

 

 

Figure 4.9 Viability test on Sp-CBMTD. Two incubation times were tested which were   

(   ) 6 hours and (   ) 24 hours. 
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The experimental data in Figure 4.8 and Figure 4.9 indicates dose- and time-dependent 

responses from MDCK cell monolayer treated with Vc-CBMTD (WT) and Sp-CBMTD. Other 

multivalent proteins (Vc3CBM, Vc4CBM, Vc-CBMTD (Mutant)) were less toxic to the cell 

after the same treatments were done. For the assay control, cell monolayer without any 

protein treatment was used besides using a negative control of cell monolayer treated with 

20% sodium azide. Two post-treatment periods were used, which were 6 hours and 24 

hours.  

 

For both proteins tested (Vc-CBMTD (WT) and Sp-CBMTD), there are obvious differences in 

cell viability seen after 6 hours of post-treatment as compared to 24 hours. There are small 

reductions on cell viability percentage from 92.6 % to 85% for Sp-CBMTD and around 92% 

to 97% of the cell monolayers for Vc-CBMTD (WT) were still intact after 6 hours of treatment. 

After 24 hours of post treatment, the percentage of cell viability of Sp-CBMTD was reduced 

from 78.2% at 0.05 to 60 % at 5.0 mg/ml. While for Vc-CBMTD (WT), the monolayer showed 

reduction from 86.3 % to 65.2% of cell viability. Meanwhile, the same proteins gave about 

24.4% increase in cell death for Vc-CBMTD (WT) and about 23.3 % of cell death for Sp-

CBMTD at the highest protein concentration tested after 24 hours. When the protein 

concentration decreased to 0.5 mg/ml, cell death figures reduced to 7.8% for Vc-CBMTD 

(WT) and 10.2% for Sp-CBMTD, which show less toxic effect at the lower concentration 

tested. At 0.05 mg/ml, the cell death was seen to increase after 24 hours treatment as 

compared to 6 hours data at about 6% and 15.5% increment for Vc-CBMTD (WT) and Sp-

CBMTD protein respectively. 
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4.4 Inhibition study of viral replication protein 

 

4.4.1 Viral inhibition assay 

 
This assay was done in order to measure the rate of inhibition of viral replication and viral 

protein synthesis by different CBMs constructs. The results can be used as comparison to 

data obtained from plaque inhibition assays. The assay was initiated with replicates (n=3) of 

MDCK monolayers in 96-well plates were treated with various dilutions of multivalent 

proteins (1.0, 0.5 and 0.1 mg/ml) in serum-free DMEM for 2 hours at 37°C, 5% CO2. Both 

treated and untreated control cells (only virus in plain DMEM) were infected with virus 

dilution of MOI 0.01. After one hour, the monolayers were washed twice with PBS prior to 

being incubated with serum-free DMEM supplemented with 2.5 µg/ml N-acetylated Trypsin 

(NAT, Sigma Alderich) for 8 or 16 hours, 37°C, 5% CO2.  

 

The monolayers were then fixed with 4% formaldehyde in PBS before adding a 

permeabilisation solution (0.5 % Triton-X, 20 mM Glycine in PBS) with plates gently shaken 

for 10-15 minutes (ie if using a non-H3N2 virus). At this point, cell monolayers were blocked 

with 1% BSA + 0.02 % sodium azide in PBS (Blocking buffer) for one hour on the rocker. 

Cells were washed twice with PBS before adding 50 µl of X31 as primary antibody 

(generously given by Prof Richard Elliot’s group members) at 1:500 dilution in blocking buffer 

for 1 hour at 37°C. Excess primary antibody was removed with three washes of PBS. All 

wells were then incubated with 50 µl of 1:1000 dilution of anti-IgG HRP anti-donkey (Santa-

Cruz, USA) diluted in blocking buffer for one hour on a rocker. Excess secondary antibody 

was removed by washing three times with PBS. Plates were developed by incubating each 

well with 50 µl of TMB substrate for 30 minutes and stirred slowly. For stop reaction, 50 µl of 

1 M H2SO4 was added to each well and absorbance was measured at 450 nm (reference 
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wavelength 620 nm) using spectrometer. Wells containing uninfected cells were used as the 

background control for the assay.  

 
Having established that a variety of proteins were active against a few influenza A subtypes, 

we next examined their inhibition potential through replication of viral proteins. We analysed 

the activity against the same influenza A virus strains using an antibody, X31. This antibody 

recognized viral proteins (M1, NP and HA) replication after treatment with multivalent 

peptides. Figure 4.10 showed percentage of viral protein replications after treatment with 1 

mg/ml of multivalent proteins for 1 hour. From the data, Vc3CBM and Vc4CBM gave the best 

inhibition profile for all influenza A strains tested (A/Udorn/72, A/WSN/33 and A/PR8/34). 

Vc3CBM against A/Udorn/72 H3N2 gave the highest percentage of inhibition of 25.1% as 

compared to 18% for A/PR8/34 H1N1 and 15% for A/WSN/33 H1N1. Moreover, effect of 

additional CBM40 domain in Vc4CBM construct, revealed more potent inhibition activity 

against all the strains with 29.9% inhibition for A/Udorn/72 H3N2, 24.4% inhibition for 

A/PR8/34 H1N1 and 22.4% for A/WSN/33 H1N1. For Vc-CBMTD (WT), A/Udorn/72 H3N2 

showed the highest value in viral replication of 77.6 % followed by A/PR8/34 H1N1 of 92.9% 

and 85.9% for A/WSN/33 H1N1. However, for Vc-CBMTD (Mutant) and Sp-CBMTD their 

effect in inhibiting viral replication were acceptable with inhibition percentage of 18.2% 

(A/Udorn/72 H3N2), 15.1% (A/PR8/34 H1N1) and 3.2% (A/WSN/33 H1N1) for Vc-CBMTD 

(Mutant) and 15.7% (A/Udorn/72 H3N2), 16.3% (A/PR8/34 H1N1)  and 10% (A/WSN/33 

H1N1) for Sp-CBMTD respectively. This data were further confirmed with the EC50 data from 

cell protection assay as showed in Table 4.1, with the lowest EC50 contributed by Vc4CBM 

and Vc3CBM at 0.59 µM and 0.94 µM for A/Udorn/72 H3N2 followed by 1.06 µM and 1.09 

µM for A/WSN/33 respectively.  

 

Figure 4.11 and Figure 4.12 display a summary of all CBM40 proteins tested, demonstrating 

two proteins (Vc3CBM and Vc4CBM), being the most effective in preventing influenza A 

virus replication. A big reduction in viral replication of A/Udorn/72 H3N2 was observed, from 
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97.5% at 0.1 mg/ml to 74.9 % at 1.0 mg/ml after treatment with Vc3CBM. Whereas for other 

viruses (A/WSN/33 H1N1 and A/PR8/34 H1N1), small differences in inhibition effect were 

observed with 94.7 % to 82 % and 96.9 % to 85 % respectively at 0.1 mg/ml to 1.0 mg/ml of 

protein concentration. Figure 4.12 showed that Vc4CBM is among the best multivalent 

protein to fight against influenza A infection especially with A/Udorn/72 H3N2 virus strain. 

The data percentage reduced from 90.7 % to 70.1 % from 0.1 to 1.0 mg/ml, followed by 

A/WSN/33 H1N1 (92.8 % to 77.8 %) and A/PR8/34 H1N1 (94.2 % to 75.6 %) respectively.    

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Percentage of viral replication proteins after treatment with 1 mg/ml of 

different multivalent proteins.  (C) Control; (1) Vc3CBM; (2) Vc4CBM; (3) Vc-CBMTD 

(WT); (4) Vc-CBMTD (Mutant); (5) Sp-CBMTD.   
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Figure 4.11 Effect of anti-influenza activity of Vc3CBM at different concentrations 

tested on MDCK cells. Percentage of viral replication is based on the replication of viral 

proteins (M1, NP and HA). Control represent virus in plain DMEM. 

 

 

 

 

 

 

 

Figure 4.12 Effect of anti-influenza activity of Vc4CBM at different concentrations 

tested on MDCK cells. Percentage of viral replication is based on the replication of viral 

proteins (M1, NP and HA). Control represent virus in plain DMEM. 
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4.5 Discussion 

 

Levels of inhibition were greatest against A/Udorn/72 H3N2 virus, but most of the multivalent 

proteins (Vc3CBM, Vc4CBM, Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD) tested 

were also effective against A/WSN/33 H1N1 and A/PR8/34 H1N1 subtypes. Peptide 

inhibition of virus replication resulted from masking protein interactions with sialic acid 

receptor on the cell surface, which block viral attachment to cells thus inhibit the infections 

and re-attachment of virus to neighbouring cells. 

 

The initial stages of cell infection by influenza viruses involve the haemagglutinin (HA) 

binding to sialylglycoconjugates followed by endocytosis, and then protease cleavage of HA 

in order to provide fusion of the endosomal and viral membranes to allow delivery of the viral 

contents into the cytoplasm. Therefore, the mechanisms whereby our proteins mediate their 

antiviral activity are through blocking the binding of virus HA to sialic acid receptors, acting 

as an entry blocker. The ability of these multivalent CBM40 constructs to bind to cell surface 

sialic acids has been studied by (Connaris et al., 2009) who demonstrated through FACS 

that a GFP-fused Vc3CBM, when incubated with human leukocytes can bind to cell 

surfaces. Result from the flow cytometry revealed that the probe (Vc3CBM-GFP) bound to 

sialic acids on the surfaces of granulocytes, monocytes and lymphocytes at concentration 

lower than 20 µg/ml, thus proving its high affinity towards its receptor.  

 

This finding is interesting as it can have an important role in the prevention of influenza 

infection. Influenza A viruses constantly evolve by mechanisms known as antigenic drift and 

shift (Webster et al., 1992). The importance to predict the emergence of new virus strains 

are very important for the development of new antiviral drugs and these cannot be 

overestimated. In particular, treatments and prophylactics against a spectrum of influenza 

strains, which are not subject to drug resistance, are much needed. History has shown 
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pandemic influenza viruses have emerged three times which were in 1918 (Spanish 

Influenza, H1N1), in 1957 (Asian influenza, H2N2) and 1968 (Hong Kong influenza, H3N2) 

(Cox and Subbarao, 2005; Webby and Webster, 2003). Moreover, from 1997-2004 there 

was reported a circulation of highly pathogenic avian H5N1 viruses in Asia, which have 

caused a small number of human deaths (Claas et al., 1998; Peiris et al., 2004; Subbarao et 

al., 1998).  

 

Results of in vitro studies here have demonstrated the ability of multivalent proteins, 

especially Vc3CBM and Vc4CBM, to significantly inhibit the replication of influenza A 

viruses, prevent or significantly reduce its infections. By targeting the host cells rather than 

the virus, CBM constructs demonstrated distinct anti-influenza properties from the virus 

targeting sialic acid. These findings were further supported by the lowest EC50 values from 

both proteins, 0.59 µM for Vc4CBM and 0.94 µM for Vc3CBM against A/Udorn/72 H3N2. For 

other viruses, A/WSN/33 and A/PR8/34, Vc4CBM was also found to be the best antiviral 

candidate among other multivalent proteins tested, with the EC50 values of 1.06 µM and 1.8 

µM respectively. Other multivalent proteins are also acceptable in inhibiting influenza A 

infection to certain extent. The sharp increase in antiviral activity of Vc3CBM to Vc4CBM 

(EC50 4.7 µM to 1.8 µM) against A/PR8/34 H1N1 suggests that the additional CBM40 

domain in the protein construct help to improve its efficiency by providing an additional 

binding site to cell surface sialic acids. However, there are issues of binding energetics, 

affinity and conformational steric hindrances that need to be considered if working with 

multivalent proteins.  

 

Increment in EC50 value between Vc-CBMTD (WT) and Vc-CBMTD (Mutant) suggest that 

there may be cooperative binding between CBM40 domain and trimerization domain (TD) in 

the constructs to sialic acids that account for differing EC50 values among the viruses tested 

in this study. Also, the initial binding between the protein and host sialic acid could lead to a 

conformational changes thus decreasing viral affinity towards sialic acids on the cell surface. 
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Another possibility is that, proteins interact at or near the receptor binding pocket, in this 

case multivalent proteins may block or cause steric hindrance during receptor docking. 

 

Cytotoxicity data is very important as a predictor of acute systemic toxicity and its application 

in the in vitro study provides useful insight for CBM40s as potential drugs.  Through this test, 

we are able to distinguish that at high concentration, 5 mg/ml can cause morphological 

changes to the cell monolayers due to the long term incubation with the protein alone. This 

study was also demonstrated that those proteins did not induce significant cytotoxicity in 

MDCK cells with the minimum concentration of 2 mg/ml. These has demonstrated that 

multivalent proteins tested are able to inhibit influenza virus attachment leading to decreased 

in viral replication as shown in viral inhibition assay. 

 

In future, these multivalent CBM40 constructs could be developed as a successful inhibitor 

against variety of influenza virus strains. This drug is not a substitute for vaccine, but can be 

used during the period of vaccine development when novel strains have been identified, 

when resistance to commercially available antivirals occur, or as an alternative option, as 

vaccines are only effective with certain populations of society.  
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Chapter 5 

 

In vitro study of parainfluenza virus infection 

 

 

5.1 Overview 

 

hPIVs are dangerous respiratory pathogens with the ability to spread infection past ethnic, 

socioeconomic, gender, age and geographic boundaries. They are able to cause upper 

respiratory infections in infants, children and adults while lower respiratory tract infections in 

elderly people and immunocompromised patients with chronic diseases (heart, lung disease 

and asthma). These viruses can cause annual epidemics and since re-infection occurs 

throughout life, there is a need for the development of novel and effective antiviral agents. 

 

Antiviral therapy for parainfluenza viruses could be an optional treatment due to the 

complexities involved in vaccination. This could be a principal weapon against those 

diseases. hPIVs enter target cells through binding to a host cell receptor molecule and fusing 

their viral envelope with the cell membrane to gain entry to the host cytoplasm. Binding, 

fusion and entry are the main stages of the virus life cycle at which could be interfered with 

to prevent disease.  

 

The surface of most mammalian cells is covered with a complex array of glycoconjugates, 

which are mostly attached to proteins and lipids. Moreover, the location of sialic acid at the 

termini of various carbohydrate complexes is often exploited by microbial pathogens to bind/ 

adhere and/or gain entry to the host cell (Ilver et al., 2003; Varki, 2007). Many of these 
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pathogens have also acquired sialidases that recognize sialic acids that aid in their 

pathogenesis.  

 

Our group has discovered that by engineering multivalent CBM40s with high affinity towards 

its substrate, this will provide a useful method for the treatment of diseases caused by 

respiratory pathogens that target sialic acid. The main function of CBMs is to target or direct 

glycosyl hydrolase enzymes (such as sialidases or neuraminidases) to their substrates for 

efficient hydrolysis. Due to its affinity towards cell surface carbohydrates (e.g. sialic acid, 

galactose, blood group antigen, N-acetylglucosamine), this high affinity CBM may be used to 

block the binding of pathogens that recognize those carbohydrates. This action may prevent 

pathogens from entering or infecting the cell. 

 

Here, we provide data to support the above hypothesis using a rapid and reliable assay 

(plaque inhibition assay) for determining the susceptibility of parainfluenza viruses to the 

multivalent CBMs constructs and to compare anti-parainfluenza (anti-hPIVs) activity of these 

compounds against a few virus isolates. For data comparison, a study on inhibition of viral 

replication protein was also done in conjunction with the plaque inhibition assays. Lastly, a 

cytotoxicity assay was performed in vitro, to evaluate the toxicity level of the tested CBMs in 

mammalian cells. The uses of these in vitro assays are very important in order to extrapolate 

the in vivo effect in humans. 
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5.2 Effect of multivalent CBMs in inhibiting parainfluenza virus Infections 

 

5.2.1 Protocol of plaque inhibition assay 

 

This assay was done in order to evaluate efficiency of multivalent proteins against viral 

infections. Confluent monolayers of African green monkey kidney epithelial (Vero) cells were 

grown in a Dulbecco’s modified Eagle’s medium (DMEM) containing 10% of Fetal Calf 

Serum (FCS) in 6-well tissue culture plates with approximately 4 x 105 cells per well. On the 

following day, different concentrations of proteins (Vc3CBM, Vc4CBM, Vc-CBMTD (WT), Vc-

CBMTD (Mutant) and Sp-CBMTD) were prepared in serum-free DMEM and kept on ice. 

Each well of cells were inoculated with 1 ml of tested protein and incubated for 2 hours and 

30 minutes at 37°C in a 5% CO2 on a rocking platform.  

 

Next, virus dilution was prepared with approximately 200 pfu/ml of virus (hPIV2, hPIV3 and 

hPIV5), which was previously determined by virus titration. The virus dilution was made in 

serum-free DMEM and kept on ice prior to use. Previous media were removed from the 6-

wells plates and cells were washed once with PBS before adding 1 ml per well of each virus 

dilution.  The virus was allowed to adsorb for 1 hour 30 minutes at 37°C, 5% CO2 on a 

rocking platform. Later, 10 ml of overlay medium (DMEM/ 2% FCS and 0.6 % Methocel) was 

added to each well. The plates were incubated for 5 to 10 days or until plaques formed at 

37°C, 5% CO2 depending on virus used. The monolayers were fixed with 5% formaldehyde 

in PBS for at least 30 minutes before stained with 0.1% crystal violet. The plaques were 

counted by visual examination and percentage of plaque inhibition was calculated as relative 

to control plate (contain virus only).  
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5.3 Study of different pre-incubation periods on Vc3CBM and Vc4CBM against 

hPIV3 

 

Blocking viral binding to host cell receptors is an interesting antiviral approach. It is well 

established both for influenza virus (IFV) and human parainfluenza virus (hPIV) which utilize 

cell surface sialic acid for binding and entry to initiate viral infection (Maisner et al., 1994; 

Schauer, 1985). By targeting the host cell rather than the virus, this approach has become 

an alternative route to combat virus infection and halts the spread of further infection. 

 

For initial screening of inhibitory effects by multivalent CBMs, protein extracts were tested on 

African green monkey kidney cell line (Vero cells) by plaque assay. As shown in Figure 5.1, 

Vc3CBM and Vc4CBM proteins were shown to be highly effective in preventing viral 

attachment, as tested in Vero cells against hPIV3. Vero cells have been identified primarily 

to display α(2,3)-linked sialic acid on their cell surface (Govorkova et al., 1996) which 

corresponds to inner human respiratory epithelium, which expresses both forms of α(2,6)-, 

and α(2,3)-linked sialic acids (Hassid et al., 1999; Matrosovich et al., 2004a).  

 

 

 

 

 

 

 

 

 

 

 



[CHAPTER 5: IN VITRO STUDY OF PARAINFLUENZA VIRUS INFECTION] 158 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Plaque assay of Vc3CBM on Vero cells after 3 days of hPIV3 infections. 

Cells were pre-incubated with Vc3CBM for 4 hours prior to infection with virus. (1) Control 

(no hPIV3 infection); (2) Mock with hPIV3 alone (1X10-6 dilution); (3) with 5 mg/ml of 

Vc3CBM; (4) with 0.5 mg/ml of Vc3CBM; (5) with 0.05 mg/ml of Vc3CBM. 

Vc3CBM concentration (mg/ml) 

Figure 5.1 Percentage number of plaque compared to mock on Vero cell 

after hPIV3 infection. Cells were pre-incubated with Vc3CBM for 1.5 hours and 4 

hours prior to virus infection.  

1 2 3 
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To investigate viral inhibition effect of Vc3CBM and Vc4CBM, Vero cells were treated with 

different concentrations of each protein prior to hPIV3 infection. Briefly, Vero cells were 

mock inoculated (virus alone) or inoculated with CBMs at two different incubation times (1 

hour 30 minutes, and 4 hours). The virus was then allowed to bind to the cells for 1 hour 30 

minutes at 37°C, 5% CO2 to synchronize infection.  

 

In the absence of CBMs, viral infections of cell occurred rapidly in just 3 days as seen in 

plaque assays (Figure 5.2). As shown in Figure 5.1, pre-treatment with Vc3CBM at 5 mg/ml 

was highly effective for cell protection from virus, producing 100% viral inhibition. While at 

0.5 mg/ml and 0.05 mg/ml, viral inhibitory effects were seen at 69% and 56% respectively, 

compared to mock cells (Figure 5.1). As for Vc4CBM, 98% inhibitory effect was detected at 2 

mg/ml (Figure 5.3 and Figure 5.4). Even at 0.2 mg/ml and 0.02 mg/ml, the percentage of 

viral inhibition was 72% and 61% respectively (Figure 5.3 and Figure 5.4). Prolongation of 

the pre-incubation time to 4 hours for both Vc3CBM and Vc4CBM completely protected the 

cells from hPIV3 infection. This must be due to longer time required for the protein to 

properly attach to the cell surface for effective inhibition. 
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Figure 5.3 Percentage number of plaque compared to mock on Vero cell after 

hPIV3 infection. Cells were pre-incubated with Vc4CBM for 1.5 hours and 4 hours prior to 

virus infection. 

 

 

 

 

 

 

 

 

 

Figure 5.4 Plaque assay of Vc4CBM on Vero cells after 3 days of hPIV3 infections. 

Cells were pre-incubated with Vc4CBM for 4 hours prior to infection with virus.  (1) Control 

(no hPIV3 infection); (2) Mock with hPIV3 alone (1X10-6 dilution); (3) with 2.0 mg/ml of 

Vc4CBM; (4) with 0.2 mg/ml of Vc4CBM; (5) with 0.02 mg/ml of Vc4CBM. 
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From the cell binding study of GFP-Vc3CBM, the protein was shown to attach to the surface 

of Vero cells evenly at concentration of 0.05 mg/ml and 0.5 mg/ml after incubation with the 

GFP fused CBM for 1 hour 30 minutes. This has suggested that the CBM binds to the cell 

surface even at lower concentrations (Figure 5.5).  But at this pre-incubation time, it did not 

sufficiently inhibit hPIV3 infection completely, as seen in plaque assays (Figure 5.2). This 

initial study determined that virus plaque reduction depended on the duration of protein 

incubation on the monolayers. It proved that with 4 hours pre-incubation time, for both 

proteins, number of plaques have reduced to ≥ 50% as compared to the data at 1 hour 30 

minutes.  

 

The strong inhibitory effect on Vero cells of both Vc3CBM and Vc4CBM observed throughout 

the growth phase raises the possibility that the antiviral effect is exerted not only on the 

initially infecting viruses, but also on subsequent steps in the infectious cycle as the 

experiments have been prolonged for 5 days after viral infections. It may be that the CBMs 

are still attached to sialic acid, preventing further viral attachment from newly emerged viral 

particles.  
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Figure 5.5 Vc3CBM-GFP attached to the surface of Vero cells after incubation for 1 

hour 30 minutes. All pictures were taken at 20X magnification. (A) Vero cell monolayer; (B) 

Control without Vc3CBM-GFP; (C) with 0.5 mg/ml of Vc3CBM-GFP; (D) with 0.05 mg/ml of 

Vc3CBM-GFP. 

 

 

 

 

 

 

 

A 

D C 

B 

20X 20X 

20X 20X 



[CHAPTER 5: IN VITRO STUDY OF PARAINFLUENZA VIRUS INFECTION] 163 

 

 
 

 

5.4 Inhibitory effects of Vc3CBM and Vc4CBM on A549 cells by hPIV3 

 

Since hPIV3 infects the epithelial cells of lung as the primary target, we used A549 cells 

which is human lung carcinoma as a model of airway epithelial (Bose et al., 2001; Gao et al., 

2001). To test the antiviral activity of Vc3CBM and Vc4CBM, A549 monolayers were infected 

with hPIV3 (200 pfu) and both Vc3CBM and Vc4CBM were pre-incubated on the cell for 4 

hours prior to viral infection. As mentioned before, both constructs are highly efficient in 

recognizing sialic acid on the cell surface as described by Connaris et al., (2009). Initially, for 

the plaque assay, three different concentrations of Vc4CBM were used (2.0 mg/ml, 0.2 

mg/ml and 0.02 mg/ml). As seen in Figure 5.6, 2 mg/ml of Vc4CBM was found to inhibit 78% 

of hPIV infection, while at 0.2 mg/ml and 0.02 mg/ml the percentage were 70% and 46% 

respectively. The experiment was repeated again but with higher concentration of Vc4CBM 

in order to knock out the infection. Surprisingly, even at 5.0 mg/ml of Vc4CBM did not totally 

inhibit the infection as seen on Figure 5.7 compared with Vero cells.  

 

This finding had been supported by Bose and Banerjee (2002), who found that A549 cell line 

interaction with hPIV3 only accounted for ~50% of the infection due to the present of another 

alternative cell surface moiety, heparan sulfate (HS). But in this case, the presence of 

Vc4CBM on the cell surface does give good protection against the infection but not sufficient 

to knock out the infection completely, possibly due to the presence of the alternative 

receptor. It was demonstrated that hPIV3 binds to HS and the virus interaction with the cell 

surface HS is important for its efficient entry into the cells (Bose and Banerjee, 2002). Cell 

surface HS is known to be present as proteoglycan and widely utilize by some viruses to 

gain entry into the host cells including respiratory syncytial virus (RSV) (Feldman et al., 

2000) herpes simplex virus (HSV) (WuDunn and Spear, 1989), foot and mouth disease virus 

(Jackson et al., 1996), HIV-1 (Roderiquez et al., 1995) and adenovirus type 2 and 5 

(Dechecchi et al., 2000). It may be possible that 50% inhibition would be sufficient to reduce 
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disease symptoms. Furthermore, combination therapy can possibly be used through 

simultaneous use of CBM and a specific inhibitor of HS to eliminate or inhibit viral infection 

on this cell line. 

 

In another study where A549 cells were treated with neuraminidase, it was revealed that 

despite the absence of cell surface sialic acids, hPIV3 was still capable of infecting cells with 

reduced efficiency to 55% inhibition. This suggests that hPIV3 need both cell surface HS and 

sialic acid molecule for optimal and efficient cellular entry (Bose and Banerjee, 2002). 

Because of A549 cell line do not support efficient hPIV3 infection, we plan to use another 

alternative cell lines, which is Vero cell line, to compare the result.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Percentage number of plaque compared to mock on A549 cell line after 

hPIV3 infection. Cells were pre-incubated with Vc4CBM for 4 hours prior to virus infection. 
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Figure 5.7 Effect of various concentrations of Vc4CBM on A549 cell line infected 

with hPIV3 after 5 days. The monolayers were stained with 0.05% crystal violet. (A) Control 

without hPIV3 infection. (B) 5.0 mg/ml of Vc4CBM; (C) 0.5 mg/ml of Vc4CBM; (D) 0.05 

mg/ml of Vc4CBM. 
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5.5 Anti-hPIV activity 

 

The relative antiviral activities of multivalent CBMs against contemporary strains of 

parainfluenza viruses were determined in African green monkey kidney epithelial (Vero) cell 

monolayers with a plaque inhibition assay. The concentration required to inhibit virus 

replication to 50% of the level of control (without the compound) (EC50) were determined and 

calculated by regression analysis of the dose-response curves generated by data. This 

assay proved to be a reliable and rapid method in determining 50% inhibitory concentrations 

which correlated well with clinically achievable drug levels and clinical trials results.  

 

For the screening of antiviral activity, each protein compounds were tested by plaque 

inhibition assay at a different range of concentrations. Firstly, confluent monolayer cultures 

of Vero cells were treated with multivalent CBM constructs (Vc3CBM, Vc4CBM, Vc-CBMTD 

(WT), Vc-CBMTD (Mutant) and Sp-CBMTD) for 2 hours and 30 minutes according to the 

protocol in Section 5.2.1.  At this stage, plates must be gently shaken as to avoid 

monolayers from drying out and to allow even distribution of the tested protein on 

monolayers. Later, monolayers were infected with parainfluenza virus strains at 200 pfu 

(hPIV2, hPIV3 and hPIV5) for 1 hour and 30 minutes before adding an overlay medium as 

described previously (Section 5.2.1).  Addition of 2% fetal calf serum was not needed in the 

overlay medium for hPIV3 and hPIV2 unlike hPIV5 to aid infection. Plates were incubated at 

37°C, 5% CO2 for approximately 3-7 days depending on virus used.  The plaques formed 

were calculated by visual examination and compare with the control plate.  

 

Data represented by a dose-response curve of viruses (hPIV2, hPIV3 and hPIV5) inhibited 

by multivalent proteins were shown in Figure 5.8, Figure 5.9 and Figure 5.10 respectively.  

These data represented as the mean of at least three independent experiments, as 

summarized in Table 1.  From the EC50 value, all multivalent constructs were able to block 



[CHAPTER 5: IN VITRO STUDY OF PARAINFLUENZA VIRUS INFECTION] 167 

 

 
 

parainfluenza virus infections but at different levels of efficiency. The lowest EC50 was found 

at 1.17 µM with Vc4CBM after hPIV3 infection followed by hPIV2 treatment with EC50 of 1.94 

µM. Vc4CBM gave the lowest EC50 value compared to Vc3CBM after infection with both 

hPIV2 and hPIV3 viruses. From the data, it appears that an increase in number of CBM40 

modules could be important in effectively blocking viral binding to sialic acid on the cell 

surface. These results indicate that Vc4CBM is more potent than Vc3CBM and their activity 

is manifested in a dose-dependent manner. 

 

In contrast, for hPIV5, the lowest EC50 was found with Vc3CBM at 2.43 µM instead of 

Vc4CBM which has EC50 value at 3.50 µM. There is clearly an increment in potency of CBM 

inhibition against hPIV2 and hPIV3 strains as the number of linked CBM40 modules increase 

from 3 to 4 of CBM40. Also, incubation of Vero cells with oligomers from Vc-CBMTD (WT) 

showed effective inhibition and gave relatively low EC50 values as compared to Vc-CBMTD 

(Mutant) and Sp-CBMTD. The lowest EC50 was given by Vc-CBMTD (WT) in protection 

against hPIV2 (0.2 µM) followed by hPIV5 (1.8 µM) and hPIV3 at 17.5 µM. Other constructs, 

such as the Vc-CBMTD (Mutant) effectively inhibited hPIV5 infection with EC50 at 1.78 µM 

followed by 2.31 µM for hPIV2 and 80.18 µM for hPIV3 infections. Meanwhile, Sp-CBMTD 

showed a weak effect in cell protection from all viruses tested with EC50 of 37.59 µM 

followed by 90 µM and 91.47 µM, which correspond to hPIV5, hPIV2 and hPIV3 infections, 

respectively.  
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Table 5.1 Summary of EC50 values (µM) of multivalent CBMs infected with different 

strains of hPIVs 

 

Virus strains 

Multivalent CBMs (µM) 

Vc3CBM Vc4CBM Vc-CBMTD 

(WT) 

Vc-CBMTD 

(Mutant) 

Sp-CBMTD 

hPIV2 2.77 ± 0.42 1.94 ± 0.19 0.2 ± 0.85 2.31 ± 1.51 90 ± 6.78 

hPIV3 2.6 ± 0.37 1.17 ± 0.88  17.5 ± 3.16 80.18 ± 8.65 91.47 ± 10.01 

hPIV5 2.43 ± 0.66 3.50 ± 1.86 1.8 ± 0.45 1.78 ± 0.74 37.59 ± 6.85 

*Note: Results were based on at least three replicate assays for each protein tested. 
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Figure 5.8 Detail of EC50 graphs on multivalent constructs infected with hPIV2. 
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Figure 5.9 Detail of EC50 graphs on multivalent constructs infected with hPIV3. 
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Figure 5.10  Detail of EC50 graphs on multivalent constructs infected with hPIV5. 
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The data presented in Figure 5.11 and Figure 5.12 clearly showed a summary of cell 

protection of all multivalent polypeptides (Vc3CBM, Vc4CBM, Vc-CBMTD (WT), Vc-CBMTD 

(Mutant) and Sp-CBMTD) against parainfluenza viruses (hPIV2, hPIV3 and hPIV5) infection.  

All constructs containing V. cholerae sialidase CBM40 domain (Vc3CBM, Vc4CBM, Vc-

CBMTD (WT) and Vc-CBMTD (Mutant) showed to have a great effect in inhibiting viruses 

infection and this includes hPIV2, hPIV3 and hPIV5. Only a construct Sp-CBMTD, which is 

from S. pneumoniae sialidase CBM40, was found to have a little effect on cell protection. 

Vc3CBM and Vc4CBM are the best multivalent proteins which have the strongest effect in 

inhibiting parainfluenza virus infection and its spreading. These data demonstrate that the V. 

cholerae sialidase CBM40, whether in tandem-linked 3 or 4 domain repeats or as a self-

assembled oligomer containing trimerization domain (PaTD), can effectively protect Vero 

cells from parainfluenza virus infections. Interestingly, a construct from S. pneumoniae 

sialidase CBM40 with PaTD domain demonstrated a weak protection against the virus 

infections. 

 

Thus, by joining and conjugating CBM40 monomers together, it is possible to create large 

polymeric molecules, which exhibit greater affinity for a particular number of substrates 

through an avidity effect. The decrease in number of cells infected by the pathogen relative 

to the control assay has indicated that CBM polymers are potentially useful in the treatment 

of disease and condition caused by the pathogen. Thus, differential binding capabilities of 

the various CBM polymers can be exploited for the screening, identifying, detecting and/ or 

labelling carbohydrates.  
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Figure 5.11 Comparison of different parainfluenza viruses against EC50 of multivalent 

constructs. Details of EC50 with standard error value can be referred to Table 5.1. 
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Figure 5.12 Comparison of EC50 values of different multivalent constructs against 

hPIVs viruses. Details of EC50 value can be referred to Table 5.1. 
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5.6   Effect of high concentration multivalent CBMs on cell monolayer 

 

5.6.1 Evaluation of cytotoxic effects of Vc-CBMTD (WT) and Vc-CBMTD (Mutant) 

peptides 

 

The results from in vitro cytotoxicity revealed that the Vc-CBMTD (WT) and Vc-CBMTD 

(Mutant) at high concentration caused noticeable cytotoxic effects (cell death) and 

morphological changed on Vero cell lines compared with the non-treated Vero cell culture 

(Figure 5.13 and Figure 5.14). The morphology of the cells was found to be different, where 

some cells appeared to have shrunk from their normal cell size. Longer incubation periods of 

18 hours with both proteins induced stronger cytotoxic effects (cell death and detachment) 

than shorter incubation (6 hours), when treated with the similar concentration (0.5 mg/ml) 

(Figure 5.13 (B) and Figure 5.14 (B)). The cytotoxicity of both proteins was assessed in a 

parallel blue staining assay with no significant difference to the non-treated control. 

 

The micrographs indicated cellular detachment of the confluent layer when the cell cultures 

were incubated with series of protein concentration of 0.5 mg/ml respectively of Vc-CBMTD 

(WT) and Vc-CBMTD (Mutant) for 18 hours. In addition, when the Vero cell culture was 

incubated with 10 times higher concentration (5.0 mg/ml) of both proteins for a fix of 18 

hours, cellular detachment and cytotoxicity were more significant in wells treated with the 

higher concentrations. In contrast, no apparent cytotoxic effect was observed when the cell 

line was treated and incubated with concentration less than 0.1 mg/ml of Vc-CBMTD (WT) 

and Vc-CBMTD (Mutant) for 6 or 18 hours of post treatment (data not shown). No detailed 

studies of the compounds toxicity on Vero cells were undertaken as this was a preliminary 

observation during the experiment course. As compared to Vc-CBMTD (WT), more obvious 

cytotoxicity (cellular detachment and cell death) was observed on cell monolayers treated 

with Vc-CBMTD (Mutant) after a long incubation of 18 hours (Figure 5.13 (B) and Figure 

5.14 (B)). 
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Figure 5.13 Effect of high concentration of Vc-CBMTD (WT) on Vero cells after 18 

hours post treatment. Pictures were taken at 20X magnification. Cells were stained with 

0.1% crystal violet. (A) Control without protein; (B) protein at 0.5 mg/ml; (C) protein at 2.0 

mg/ml. 

 

 

 

 

 

 

 

Figure 5.14 Effect of high concentration of Vc-CBMTD (Mutant) on Vero cells after 

18 hours post treatment. Pictures were taken at 20X magnification.  Cells were stained 

with 0.1% crystal violet. (A) Control without protein; (B) protein at 0.5 mg/ml; (C) protein at 

5.0 mg/ml. 
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5.6.2 Cell viability assay  

 
 

The measurement of cell viability plays a fundamental role in cell culture especially for 

toxicity assays. This assay also can be used to correlate cell behaviour to cell number, 

providing more accurate picture of anabolic cell activity (Stoddart, 2011). In this subsection, 

to further investigated the effect of cell toxicity, a cell viability test was performed with 

multivalent peptides. MDCK cells were grown in 96-well plates at 7 x 104 cells/ well for 

overnight. Previous media was aspirated out and monolayer was washed with phosphate 

buffer saline (PBS). CBM proteins were incubated at different concentrations on the 

monolayers for 6 hours and 18 hours at 37 °C, 5% CO2 in PBS supplemented with 10% fetal 

calf serum (FCS). Cell survival in samples was measured using 10 ml of PrestoBlueTM cell 

viability reagent (Invitrogen, USA) according to the manufacturer’s protocol and incubated for 

1 hour at 37 °C. This dye provides a shorter incubation step compared to other resazurin-

based type assay. Data values were measured at OD readings of 570 nm with reference 

wavelength at 620 nm using an ELISA reader. Cell viability was calculated using the 

following formula: 100 x [(OD570 of treated sample) / (OD570 of untreated sample)].   

 

The assay used PrestoBlue® reagent that function as a cell viability indicator which used the 

reducing environment on the living cells to quantitatively measure cells proliferation. 

Basically, the dye will turn from blue to red in a reducing environment and become highly 

fluorescent, thus providing easier detection using fluorescence/ absorbance measurements. 

This dye is proven to obtain accurate results with great consistency to monitor living cells 

over time. 

 

 

 



[CHAPTER 5: IN VITRO STUDY OF PARAINFLUENZA VIRUS INFECTION] 178 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Viability test on Vc-CBMTD (WT). The protein was tested against two 

incubation times; (A) 6 hours; (B) 18 hours. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Viability test on Vc-CBMTD (Mutant). The protein was tested against two 

incubation times; (A) 6 hours; (B) 18 hours. 
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The experimental data presented in Figure 5.15 and Figure 5.16 indicates dose- and time-

dependent effects of the Vc-CBMTD (WT) and Vc-CBMTD (Mutant) and the absence of 

cytotoxic effect after treatment with the negative control (Vero monolayers incubated with 

20% sodium azide). This acutely toxic chemical would promote cell death and inhibit cell 

proliferation, which acts as a negative control of the assay. For the assay, two different post 

treatment times were used which were 6 hours and 18 hours to complement the previous 

assay (on-plate assay).  Comparison between both proteins (Vc-CBMTD (WT) and Vc-

CBMTD (Mutant) showed no obvious changes/ differences in the first two concentrations 

tested (0.02 and 0.2 mg/ml). An increment of Vc-CBMTD (WT) to 2.0 mg/ml had caused a 

drop in viable cell count to 29.4% when incubation was prolonged to 18 hours. Meanwhile for 

Vc-CBMTD (Mutant), the reading was dropped to 56.3 % from 83.0 %, which gave around 

32.2 % increment in cell death. Interestingly, when the concentration of Vc-CBMTD (WT) 

was increased to 4.0 mg/ml, cell viability percentage was dropped drastically to 42.5 % from 

79.7 % after 18 hours of incubation. As compared to Vc-CBMTD (Mutant), increment of cell 

death was indicated to be 44.8 % at 4.0 mg/ml of protein concentration.  

 

Basal cytotoxicity test is considered as a starting point in assessment of potential in vivo 

toxicity of medicated compounds. Due to that, in vitro cytotoxicity tests are useful and 

necessary to define basal cytotoxicity of a compound. Intrinsic ability of a compound to 

cause cell death can be shown through a consequence damage of basic cellular functions 

(Eisenbrand et al., 2002).   
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5.7 Inhibition study of viral replication protein 

 

5.7.1 Viral inhibition assay 

 

Three replicates of Vero monolayers in 96-well plates were treated with various dilutions of 

multivalent proteins in serum-free DMEM for 2 hours at 37°C, 5% CO2. Both treated and 

untreated control cells (only virus in plain DMEM) were infected with virus dilution of 10-3 

MOI. After 30 minutes, the monolayers were washed two times with PBS and incubated with 

serum-free DMEM supplemented with 2.5 µg/ml N-acetylated Trypsin (NAT, Sigma Aldrich) 

for 8 or 16 hours, 37°C, 5% CO2. The monolayers were then fixed with 4% formaldehyde in 

PBS before being blocked with 3% BSA in PBS for 30 minutes. Cells were washed once with 

PBST (PBS supplemented with 0.02% Tween 20). Each well was incubated with 50 µl of 

primary antibody as shown in Table 5.2 (generously given by Prof Richard Elliot’s group 

members) at 1:1000 dilution for 2 hours at 37°C. Excess primary antibody was removed with 

four washes of PBST. All wells were then incubated with 50 µl of 1:5000 dilution of IgG HRP 

anti-mouse (Santa-Cruz, USA). Excess secondary antibody was removed by washing five 

times with PBST. Plates were developed by incubating each well with 50 µl of TMB 

substrate for 30 minutes and stirred slowly. For stop reaction, 50 µl of 1 M H2SO4 was added 

to each well and absorbance was measured at 450 nm using spectrometer. Wells containing 

uninfected cells were used as the background control for the assay.  
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Table 5.2 List of primary antibody used in viral inhibition assay 

Type of virus Type of Primary Antibody 

(Anti-mouse antibody)* 

Recognition of Viral Protein  

hPIV2 49 Nucleoprotein (NP) 

hPIV3 4481, 4812, 4721 Nucleoprotein (NP) 

hPIV5 214 Nucleoprotein (NP) 

 

 

The in vitro study was performed to measure rate of inhibition of viral reproduction and viral 

protein synthesis by different types of CBMs. Also, this test can evaluate anti-hPIV activity of 

multivalent proteins and compared them with the result from plaque inhibition assays. A few 

of the proteins demonstrated potent efficacy against a panel of laboratory strains of 

parainfluenza viruses (hPIV2, hPIV3 and hPIV5). Figure 5.17 showed percentage of viral 

protein replications after treatment with 2 mg/ml of multivalent proteins for 2 hours. From the 

data, proteins Vc-CBMTD (WT), Vc3CBM and Vc4CBM strongly inhibited hPIV2 and hPIV5 

infection. Vc-CBMTD (WT) gave a percentage inhibition of 61.8% and 67.7%, whereas 

values of 65.9% and 72 % were obtained for Vc4CBM. Moreover, the best inhibition profile 

for hPIV3 was given by Vc3CBM at 78% and Vc-CBMTD (WT) at 72.5% as compared to 

other proteins. Vc-CBMTD (Mutant) and Sp-CBMTD both gave low effect in cell protection 

as shown in the same figure (Figure 5.17). This data was further confirmed with cell 

protection EC50 data as seen in Table 5.1, which showed the lowest EC50 attributed by Vc-

CBMTD (WT) at 0.2 for hPIV2 followed by Vc4CBM at 1.17 for hPIV3.  

 

From Figure 5.18, about 16% of reduction in viral replication of hPIV3 was observed, from 

88.5% at 0.5 mg/ml to 72.5% at 2.0 mg/ml after treatment with Vc-CBMTD (WT), whereas 

with other viruses, hPIV2 and hPIV5, a small difference in anti-hPIVs effect was observed. 
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From Figure 5.19, Vc4CBM was showed to be among the best multivalent protein to 

promote anti-hPIV activity especially with hPIV3 infections. The data percentage reduced 

from 89% to 75% from 0.5 to 2.0 mg/ml, followed by hPIV5 (85% to 73%) and hPIV2 (68% to 

61%) respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Percentage of viral replication proteins after treatment with 2 mg/ml of 

different multivalent proteins.  (C) Control; (1) Vc3CBM; (2) Vc4CBM; (3) Vc-CBMTD 

(WT); (4) Vc-CBMTD (Mutant); (5) Sp-CBMTD.   
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Figure 5.18 Effect of anti-hPIVs activity of Vc-CBMTD (WT) at different 

concentrations on Vero cells. Percentage of virus bound is based on the replication of viral 

protein (NP). Control represents virus in plain DMEM.  

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Effect of anti-hPIVs activity of Vc4CBM at different concentrations on 

Vero cells. Percentage of viruses bound is based on the replication of viral proteins 

presence. Control represent virus in plain DMEM.  
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5.8 Discussion 

 

hPIVs are known for their threat to human respiratory disease to infants, children and elderly 

people. Unfortunately, effective vaccines or antivirals to combat hPIVs are not yet 

unavailable. Therefore, the development and use of antiviral drugs capable of preventing 

viral infection becomes a strong alternative approach. Recently, antiviral discovery programs 

have been initiated to target many pathogenic viruses using various mechanism-based 

screening approaches (Hwang et al., 2003; Mason et al., 2004). Many chemicals and natural 

product mixtures are being tested for their ability to knock out various viral infections. 

 

In vitro systems are used for screening purposes and for generating more comprehensive 

toxicological profiles. Also, in vitro assays provide very important tools to enhance the 

extrapolation of data from in vitro to in vivo in humans. Results of in vitro studies have 

demonstrated the ability of multivalent proteins (Vc3CBM, Vc4CBM and Vc-CBMTD (WT)) to 

significantly inhibit the replication of hPIVs, prevent or significantly reduce its infections. By 

targeting the host cells rather than the virus, the CBM constructs demonstrated distinct anti-

hPIV properties from the virus targeting sialic acid. These findings were not limited to hPIVs 

virus but also inhibited influenza viruses as reported by Connaris et al., (data not shown), 

indicated that these polypeptides could be a promising candidate as a broad-spectrum 

inhibitor for influenza and parainfluenza as a prophylaxis treatment. 

 

Although cell surface sialic acid is known as the primary entry of hPIV3, additional cell 

surface molecules, such as heparan sulphate, may also act as secondary receptors for the 

virus as speculated by Moscona and Peluso (1996). However, hPIV3-HN does not contain a 

consensus heparin sulphate (HS) binding motif like the hPIV3-Fusion (F) protein (Bose and 

Banerjee, 2002). At this time, whether hPIV3 binds to HS through F or HN or both is not yet 

recognized. This would require further studies to investigate the interactions of hPIV3 
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envelope proteins with HS. It is also important to note that apart from HN, the other envelope 

protein, Fusion protein (F) also plays an important role in cell surface entry by forming a 

complex with HN during the attachment stage (Yao et al., 1997). Due to that, cell surface 

specificity for the paramyxovirus envelope proteins may vary depending on its specific 

function during the virus life cycle. 

 

The use of cytotoxicity data as a predictor of acute systemic toxicity has been considered 

over the last two decades, which uses basal cytotoxicity data to predict the acute effects of 

compound in vivo (Clemedson et al., 2000). If the compound was found acutely toxic, it is 

anticipated the same reaction also occurs in humans. The most frequently used outcome in 

cellular toxicity are changes in cell morphology (Borenfreund and Puerner, 1985), 

breakdown of cellular permeability barrier, reduced mitochondrial function (Borenfreund and 

Puerner, 1985; Werner et al., 1999) and changes in cell replication (North-Root et al., 1982). 

Careful consideration to the choice of an in vitro model is important to study the cellular 

response to toxic chemicals. This includes information about the background levels and the 

metabolic competence of the models as compared to normal cells in vivo that need to be 

ascertained to interpret the results with confidence.  Besides, different responses will be 

obtained, depending on model, whether a static cell system or proliferation cells system is 

used. 

 
 
At the moment there is no specific treatment for parainfluenza infection other than soothing 

the symptoms until the illness faded away. Antibacteria only are used if secondary bacterial 

infection has developed. Although CBMs construct are derived from human pathogens that 

bind to terminal carbohydrate residues (sialic acid), they might not elicit an immune 

response, but still, immunogenicity remains an important issue to be evaluated by animal 

studies and clinical trials. After all, based on the evidence found, these compounds could be 

promising candidates for antiviral therapy as well as useful research tools to study hPIVs 

infection.
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Chapter 6 

 

In vivo study of Vc4CBM against hPIV3 and Streptococcus 

pneumoniae 

 

 

6.1 Overview 

 

 

Animal testing and clinical trials are two forms of in vivo research tools. The use of animal 

models to determine compound or protein toxicity of potential therapeutic agents is one of 

the important parts to validate product safety in humans. The efficacy of data will provide 

important information about the adverse effect before any clinical trials are conducted.  

 

The rapid evolution of viruses and pathogens and their efficiency against available antivirals 

and vaccines remains an ongoing public health concern. In the case of respiratory disease, 

pathogens such as influenza virus, would usually initiate infection through binding to terminal 

sialic acid receptors on glycoconjugates on the surface of host cells. Therefore, any 

therapeutic agents or drug with the ability to block the pathogens from binding to those 

receptors on the human airway epithelium has the potential to prevent infections. One of the 

multivalent proteins, Vc4CBM has found to have the ability to exhibit potent antiviral activity 

against both influenza A and parainfluenza virus in vitro and has help reduced virus 

replication. However, the in vivo activity of the drug remains unknown and needs to be 

explored. Here, we demonstrate the effectiveness of Vc4CBM to protect cotton rats and 

mice from hPIV3 and Streptococcus pneumoniae infections, respectively. In this study, for 
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the hPIV3 experiments, in vivo data was obtained through collaboration with Professor Julia 

Hurwitz from St Jude’s Children Research Hospital in Memphis, United State while for the S. 

pneumoniae study, the work was a collaboration with Professor Peter Andrew in University 

of Leicester, UK. The data contained in this chapter were obtained by these collaborators, 

and are included here in order to provide a complete story for the thesis. 

 

6.2 Inhibition of hPIV3 infection in cotton rats 

 

The experiment was conducted according to the protocol approved by the Animal Care and 

Use Committee at the St Jude’s Children Research Hospital in Memphis, US. A group of 4 

cotton rats were given 1 mg of Vc4CBM intranasalIy (I.N) in a volume of 100 µl diluted in 

PBS. After 1 hour, ~1.5 X 105 TCID50 hPIV3 was given I.N. in 100 µl of volume. Lungs were 

harvested after 3 days and homogenized in 3.0 ml of PBS. Serial dilutions of 10-1 to 10-6 

were made from the homogenates and about 200 µl/well (6 wells) was placed on MK-2 

monolayers and incubated at 33°C for 4 days. Later, 50 µl supernatant was removed and 

mixed with 50 µl Turkey RBC (1:200 dil.) and incubated at 4°C for 45 minutes. Wells were 

scored for positive reaction. The tissue culture infectious doses (TCID50) in the presence or 

absence of Vc4CBM protein was calculated that was induced by hPIV3 virus on MK-2 cells. 

The activity values, TCID50 shown in Figure 6.1 indicate the differences between the TCID50 

of the test protein-treated and the untreated groups.  
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Figure 6.1 Comparison of TCID50 of cotton rats treated with Vc4CBM and with the 

control (PBS only) group after infection with hPIV3 virus.  

 
 
 
This model of hPIV3 infection in cotton rats has revealed that the respiratory tract is not only 

the site of infection but also the site of defence by the host.  The Figure 6.1 showed TCID50 

value of each group tested, which represents median effective dose that will promote 

pathological change in 50% of the cell cultures inoculated. Interestingly, in the presence of 

Vc4CBM protein, the magnitude of TCID50 reduced more than 9 times as compared to the 

control cotton rats with PBS treated. The lowest level of detection, as represented by the 

dotted line, was, in this case, 18 TCID50/animal. Noted that the ‘ND’ value shown in Y-axis 

appears to have at least 1 log reduction in virus load.  
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6.3 In vivo evaluation of Vc4CBM against acute pneumococcal infection 

 
 
To evaluate the therapeutic use of Vc4CBM against pneumococcal colonization, BALB/c 

mice (n=5) were lightly anesthetized by halothane inhalation and intranasally administered 

with a single dose of 500 µg of Vc4CBM in 50 µl sterile PBS at three time points:  a day 

before (-1), at the day (0), or a day after (+1) infection. The control group received PBS only. 

For infection, a lethal dose of 1x 106 pneumococci were administered intranasally in 50 µl 

PBS.  Animals were scored for clinical signs of disease over 7 days of post infection (168 

hours). After the treatment, bacteraemia was determined by sampling the blood at various 

time points; 24, 36 and 48 hours of post-infection.  

 

We used a mice model infected with Streptococcus pneumoniae D39 to assess the antiviral 

activity of Vc4CBM in vivo. Figure 6.2 demonstrated efficacy of the protein on the survival of 

the infected animals when given a 500 µg dose of Vc4CBM. To evaluate the prophylactic 

and therapeutic potential of Vc4CBM as a treatment for pneumococcal infection, the protein 

was applied at different time points relative to infection in the mouse model study. 

Treatments at all time points (-1, 0 and +1)  significantly delayed mean time to death up to 

48 hours after the infections compared with the mock-untreated group.  

 

It is clearly shown, in Figure 6.2, that treatment given a day before (-1) pneumococcal 

infection has proven to increase the survival rates to greater > 60 hours as compared to 

other mice. Interestingly, 80% of the mice were still alive until culled at 168 hours. Treatment 

on the day (0) of infection showed 80% mice survive until 80 hours of life but percentage of 

mice decreased drastically to 40% of mice surviving. Whereas, tr eatment given a day after 

(+1) infection showed 80% of mice surviving after 50 hours of life but the survival rate 
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dropped to 60% when reached 60 hours followed by 40% that survived after 70 hours of 

treatment. 

 
 

 

 

 

 

 

 

 

 

 

Figure 6.2 Percentage of mice survival rates after treatment with Vc4CBM proteins. 

Treatments were done at three different time points; (-1) a day before; (0) on the day and 

(+1) a day after bacterial infections.  

 

Some respiratory bacteria including Heamophilus influenzae, Streptococcus pneumoniae 

and Pseudomonas aeruginosa have been reported to mediate cellular adhesion by binding 

to sialic acid receptors on the host cells (Baker et al., 1990; Barthelson et al., 1998; Fakih et 

al., 1997). By targeting the host rather than the virus, Vc4CBM showed a distinctive anti-

pneumococcal infection through masking cellular receptors, which also can be applied to 

secondary pneumococcal infection due to desialylation of sialic acid receptors on the cell 

surface after primary infection by influenza viruses (Hedlund et al., 2010). This is due to the 

damage to the lining of the respiratory epithelium airways and upper respiratory system 

caused by influenza viruses which may facilitate pneumococcal entry and infections. 
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Figure 6.3 showed 4 of 5 mice were able to survive until 168 hours when treatment were 

given a day before (-1 day) bacterial infection, whereas only 2 of the animals had survived 

after treatment at (0) day and (+1) day of infection. In the control groups, all mice were only 

able to survive until 39 hours after the infections. Remarkably, 80% of the mice survived the 

lethal challenge when the treatment was given a day before the bacterial infections. Delaying 

the treatment given at (0) day and (+1) day of infection reduced overall survival to 40% 

respectively.  

 

We next determined the effect of Vc4CBM treatment on bacterial titres in mouse blood at 24, 

36 and 48 hours post-infection. Figure 6.4 demonstrates that all groups receiving a single 

dose treatment with Vc4CBM showed decreased bacterial counts and improved clinical 

signs, compared with PBS-treated control mice, which did not survive after 48 hours. 

Treatment one day before (-1 day) provided the best way to protect the mice from infection 

as shown in Figure 6.4. At 24 hours and 36 hours of incubation, bacterial counts were found 

to be very low, around 5 log lower after 24 hours and up to 7 log lower after 36 hours of 

treatment compared to mock-untreated mice.  
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(B) Median survival times (hour): 

Groups Control -1 0 1 

Median survival time (h) 39 168 68 68 

SD 1.3 51 59 62 

P value* - <0.01 <0.01 <0.01 

           *relative to the control. 

 

 

Figure 6.3 Survival times of mice infected with Streptococcus pneumoniae after 

treatment with Vc4CBM. The treatment was done for 7 days. (A) Horizontal lines represent 

median survival time. Each animal is represented with a round dot. (B) Summary of the 

median survival times of each mice groups. 

 

 

 

 

(A) 
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Figure 6.4 Bacterial counts from blood sampling at 24, 36 and 48 hours after 

treatment with Vc4CBM protein. Treatments were compared between three different time 

points; (-1) a day before; (0) on the day and (+1) a day after bacterial infections. 

 

Increament of bacterial count was further observed at 48 hours post infection (p.i) when the 

treatment was given either on the day (0) or a day after (+1) infections at about log10 5 and 

log10 4 cfu/ml respectively. As expected, delaying treatment until after bacterial challenge 

resulted in substantially more bacterial replication in mice blood, but, nevertheless, titres 

were lower than those in the control, untreated groups. These results suggests that with 

Vc4CBM treatment, even when initiated early after infection, was able to control bacterial 

replication, providing time for adaptive immune responses to come into play.  

 

Figure 6.5 has showed that Vc4CBM protein is found effective at inhibiting Streptococcus 

pneumoniae when given before or after bacterial challenge. The disease sign score was 

based on number of observation on mice which include the sign of ruffled fur, irritation, 
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lethargy and etc (Morton, 1985). Mice receiving the protein displayed fewer signs of clinical 

diseases whereas groups administered with the PBS alone exhibited the highest in clinical 

signs of illness up to a score level of 6. The test was done only until 48 hours as all the 

control mice did not survive. Importantly, when Vc4CBM was given a day before (-1) 

bacterial challenge, mice did not show any disease signs at 24 and 36 hours, retaining a 

clinical score of 0, whereas, treated mice at 48 hours p.i, were observed a very low disease 

sign score. At day 0 of challenge, the disease sign scores were shown to slowly decline 

throughout the remainder of the time courses (24 to 48 hours), with several fold decreases 

from 4.5 to 3 point. While, at Day +1 of administration, mice showed quite a low significant in 

clinical signs with the highest point of 2.3 observed after 36 hours of treatment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Disease sign scores of mice during Vc4CBM treatment at three different 

time points; (-1) a day before; (0) on the day and (+1) after the day of infections. In this 

figure, 0 score represented healthy mice while 6 score represented severe mice. 
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6.4 Discussion 

 

Vc4CBM represents a novel and potentially broad-spectrum anti-influenza, anti-

parainfluenza and anti-pneumococcal agent. Although the multivalent protein are designed 

to be non-immunogenic to humans in that they just bind to cell surface sialic acids, 

immunogenicity remains an important issue and needs to be evaluated by further animal 

studies and clinical trials. Since the proteins targets cell receptors (sialic acids) rather than a 

viral gene product, they can minimize the chance of virus evolution and subsequent drug 

resistant strain development. Nevertheless, it is still important to carefully evaluate the 

potential of this construct and other sialic acid binding CBMs on different variants. Moreover, 

since these proteins acts as entry blocker by binding to extracellular receptors, the protein 

molecules can reach the target easier than intracellular viral proteins.  

 

Cellular adhesion/ infection by some of the most dangerous respiratory bacteria, such as 

Haemophilus influenzae (Fakih et al., 1997; Kawakami et al., 1998), Streptococcus 

pneumoniae (Barthelson et al., 1998) and Pseudomonas aeruginosa (Baker et al., 1990; 

Hazlett et al., 1986) have been reported to be mediated by recognition of sialic acid 

receptors on the host cells. It has been reported by Peltola et al. (2005) that mice infected 

with recombinant influenza virus were associated with higher incidence of secondary 

pneumonia infection by Streptococcus pneumoniae. Desialylation of host cell sialic acid by 

viral neuraminidase may cause increased in Streptococcus pneumoniae cell binding as 

stated by a study done by (McCullers and Bartmess, 2003).  

 

In this chapter, we have demonstrated that novel Vc4CBM protein has good antiviral activity 

against a highly virulent hPIV3 and Streptococcus pneumoniae. When delivered before 

challenge at 500 µg, Vc4CBM not only protected the mice from the disease but also reduced 

the symptoms of infection that increase their survival rate up to 80% for 168 hours. Vc4CBM 
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was also effective when administered after bacterial challenge. Most importantly, after 36 

hours of treatment, there was no significant increase in bacterial titres. This supported the 

protective action of Vc4CBM by observing decreased bacterial titers in the bloods of infected 

mice. Although, therapeutic treatment with the protein was not as effective as prophylaxis, it 

should be noted that the protein was given only one dose per day in these studies.  

 

However, even though both hPIV3 and S. pneumoniae bind to similar receptors (sialic acid) 

on the host cells in order to mediate infections, their replication are totally different from each 

other. For example, hPIV3 usually bind to target host cell surface receptors via its 

haemagglutinin-neuraminidase (HN).  With the help of fusion protein (F protein), the hPIV 

viral envelope fuses with the host plasma membrane to release viral nucleocapsid into 

cytoplasm where they replicate (Lamb, 1993; Plemper et al., 2003). Next, virions are 

released into the respiratory tract to begin a new round of infection (Huberman et al., 1995; 

Porotto et al., 2001).  In contrast, bacteria such as S. pneumoniae use sialic acids present in 

the nasopharynx as a foci for adhesion, which lead to nasopharyngeal colonisation and 

further spread to the lungs. These bacteria eventually released into the blood stream where 

they further replicate (Trappetti et al., 2009; Xu et al., 2008).  

 

In order to obtain full treatment effects, the multivalent protein should be administered 

intranasally to cover sufficient amount of the upper and lower respiratory tract surfaces of the 

animal models. Additional studies are under way to further refine the dose and treatment 

schedules required for the optimum protection. The efficient in vivo effect against hPIV3 and 

Streptococcus pneumoniae highlights the potential of Vc4CBM as an effective antiviral 

agent.
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Chapter 7 

 

Summary and future works 

 

One of the efficient methods to prevent viral infections is to block host cell receptors such as 

sialic acids that are used by viruses to gain entry. In the current study, we have used a 

multivalent approach to successfully developed five novel sialic-acid binding multivalent 

proteins containing the CBM40 domain from V. cholerae sialidase (Vc3CBM, Vc4CBM, 

CBMTD-(WT) and CBMTD-(Mutant)) and from S. pneumoniae sialidase (NanA), Sp-

CBMTD. Vc3CBM and Vc4CBM were developed using a tandem repeat approach while Vc-

CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD contain a fusion of CBM40 domain and 

trimerization domain from P. aeruginosa pseudaminidase to generate a trimeric form of 

protein. It was well understood that by increasing the valency of multiple linked polypeptides 

would contribute to protein stabilization. This high avidity binding approach, using 

multivalency, provides simultaneous binding of multi-subunit molecules to more copies of a 

target molecule present on the cell surface.  

 

Biophysical characterization of the constructs was successfully performed using a variety of 

techniques such as ITC, SPR and thermal shift analysis to determine CBM40 interaction with 

different sialosides in order to understand binding energetics of protein-ligand in solution, 

affinity and kinetics of CBM40 binding to immobilized multivalent surfaces, and thermal 

stability profile for each protein. From the ITC study, it was shown that the binding of 3’SL to 

the multivalent CBM40 polypeptides were enthalpy driven with ∆H values range from -9.5 to 

-16.2 kcal/mole with entropy contribute unfavourably to the interaction. While, through SPR 
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analysis about 64- to 134-fold increase in affinity can be achieved through multivalent 

approach which also depending on temperature used during interaction.  

 

Moreover, attempts to crystallize Vc-CBMTD (WT) and Sp-CBMTD were not completely 

successful. Only the trimerization domain was found to be crystallized but without its CBM40 

domain due to flexibility issue with the linker. To date, the crystallographic study of both 

proteins is still ongoing, and therefore solving the crystal structures in complex with its 

glycan can aid in the development of selective reagents for use in the field of glycomics. The 

integration of this information will be one of the main focuses in the near future to provide 

more insight into the context of protein-carbohydrate interaction.  

 

Interestingly, these multivalent proteins have been identified with the ability to prevent 

influenza A and parainfluenza infections as tested in vitro. Using a host targeted approach, 

Vc3CBM and Vc4CBM have shown to protect mammalian cells against influenza and 

parainfluenza strains significantly reducing infection symptoms such as viral titres as 

discussed in Chapter 4 and 5.  Also, for constructs containing the additional TD domain, 

these were also efficient in preventing influenza A and parainfluenza infection to a certain 

extent. Preliminary in vivo studies using Vc4CBM resulted in significant protection against 

hPIV3 and Pneumococcal infection in cotton rats and mice respectively. These results 

confirm that the multivalent CBM40 constructs act as entry blockers to inhibit viral 

attachment to sialic acid on the surface of host cell.  

 

The in vitro data obtained using mammalian cell culture should be interpreted with caution 

because the commonly used cell lines (Vero and MDCK) may not accurately represent the 

real human respiratory tract in terms of cell types and expression pattern of various sialic 

acids. In this case, HAE cell line could be used which consist of human airway 

tracheobronchial epithelial cells. Though, it is essential that these potential anti-infective drug 

candidates need to be further tested for toxicity and efficiency especially since Vc4CBM has 
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already exhibited positive effects in animal trials.  As novel multivalent recombinant fusion 

proteins, these may contribute to a new generation of potent prophylactic and therapeutic 

agent for parainfluenza and influenza induced diseases. 

 

The technology used to generate multivalent proteins here can also be applied to other 

areas where high avidity binding is desired, ie. for glycan screening and profiling. Additional 

multivalent receptor blockers may be developed to inhibit binding for not only viruses, but 

also various bioactive ligands such as growth factors, hormones, cytokines and etc. On the 

other hand, making multivalent receptor agonist can be yet another exciting application of 

the technology, as it may yield highly desirable therapeutic effects, such as killing cancer 

cells by multivalent cross-linking and activation of certain receptors that promote apoptosis.
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Appendix A 

Materials and methods 

 

A-1 pEHISTEV vector map (Liu and Naismith, 2009) 
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A-2 Polymerase chain reaction (PCR) 

 

The target genes were amplified by polymerase chain reaction (PCR) from genomic DNA of 

V. cholerae sialidase. Forward and reverse primers were designed corresponding to the 5ʹ′ 

and complementary 3ʹ′ ends of target genes with specific recognition sites (as described in 

Chapter 2). PCRs were performed in a volume of 50 μl containing 2.5 μl of forward primer 

(20 μM), 2.5 μl of reverse primer (20 μM), 5 μl PCR buffer (10X), 1.5 μl (300 ng) of DNA, 1 μl 

dNTPs (10 mM), 1 μl pfu polymerase and water up to 50 μl. The amplification conditions 

were: pre-incubation at 95 °C for 30 seconds, followed by 30 cycles of 95 °C for 30 seconds, 

53 °C (depending on the primer pair) for 1 minute, 72 °C for 30 seconds and final extension 

at 72 °C for 7 minutes before storing samples at 4 °C samples. 

 

A-3 Blue-Native PAGE staining protocol 

 

The NativePAGE™ NovexR Bis-Tris Gels are compatible with any of the standard 

Coomassie staining procedures. The NovexR Colloidal Blue Staining Kit is recommended for 

staining NativePAGE™ Gels. The protocol is as described below. Gel was place in 100 ml of 

Fix solution (40% methanol, 10% acetic acid) and microwave for 45 seconds at 950-1100 

watts. Later, the gel was shake on an orbital shaker for 15-30 minutes before decanted the 

Fix solution. Repeat the above steps once if using NativePAGETM NovexR 4-16% Bis-Tris 

gels. Another 100 ml of Coomassie R-250 stain solution (0.02% Coomassie R-250 in 30% 

methanol and 10% acetic acid) was added onto the gel and microwave at high (950-1100 

watts) for 45 seconds. The gel was shake on an orbital shaker at room temperature until the 

desired background is obtained. For a more sensitive staining method, try using the Colloidal 

Blue Staining kit which can available at Life Technologies, Invitrogen.  
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A-4 Agarose gel electrophoresis 

 

For a 0.8% w/v Agarose gel, 800 mg of agarose was dissolved in 100 ml 1X Tris-Acetate-

EDTA (TAE) buffer. Solutions were cooled slightly before addition of 5 μl of 10 mg/ml 

ethidium bromide and then poured into a mould. DNA samples were prepared with 10 μl of 

gel loading solution being added to 50 μl DNA and loaded into wells. 1 kb DNA ladder 

(Promega), 100 bp or 1 kb was used depending on the product size. Gels were run at 80 V 

for 45-55 minutes. 

 

A-5 Restriction digestion of PCR products and vector 

 

The product band of target genes were excised from the gel and purified by Gel Extraction 

Kit (Promega). DNA was eluted in a volume of 50μl. To open the specific recognition sites in 

PCR products and vector, varying amount of PCR products and vector DNA (with varying 

concentration) were digested with 1-2 μl of each of the respective Fast Digest enzyme 

(Fermentas), 2-4 μl of 10x fast digest buffer (depending on the DNA) and total volume of 20-

40 μl was incubated at 37 °C for 15 minutes followed by denaturation of the enzyme at 80 °C 

for 5 minutes. 

 

A-6 Ligation 

 

For ligation of target genes into vectors, with the ratio of 3:1 (digested PCR product: digested 

vector), ligation reactions were performed in 20 μl volume of ligation mixture containing 1 μl 

of T4 DNA ligase, 4 μl T4 ligase buffer (10X) and varying amount of DNA (depends on its 

concentration) and water. Ligations were incubated overnight at 16 °C or at 22 °C for 1 hour 

for fast ligation. 
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A-7 Transformation 
 

1 μl of ligated DNA was transformed into 20-50 μl of competent host cells such as E. coli 

BL21(DE3), by cold shock (in ice 30 minutes), followed by a heat shock (in water bath 42°C 

for 45 seconds) and cooling on ice for 2 minutes. 450 μl of pre-warmed Luria-Bertani (LB) 

Media was added to the transformation reaction, and then incubated at 37 °C for 60 minutes. 

After incubation, the cells were spun down at 4000 rpm for 4 minutes and following removal 

of excess LB; cells were re-suspended with the remaining supernatant. These transformed 

cells were plated on LB agar containing appropriate antibiotic and incubated at 37 °C 

overnight. Clone positive colonies were identified either by blue-white screening (that 

contains the lacZα gene) or colony PCR. 

 

A-8 Colony PCR 

 

Colonies containing recombinant vector DNA were identified using colony PCR screening. 

Several colonies were randomly picked by sterile toothpick and each resuspended in 10 μl 

water, then the wet toothpick was streaked on LB agar containing appropriate antibiotic and 

allowed to grow at 37 °C overnight. The remainder of each suspension was heated at 99 °C 

for 5 minutes before cell debris was removed by centrifugation. The cell free lysate was used 

in a PCR reaction containing 5 μl lysate, and 9 μl master mix which contained 0.18 μl 10 mM 

dNTPs, 1.4 μl 10X pfu DNA polymerase buffer, 0.18 μl pfu DNA polymerase, 0.18 μl of 5 μM 

vector specific forward primer and 0.18 μl of 5 μM vector specific reverse primer and 6.88 μl 

of water. PCR reactions were carried out at 94 °C for 10 minutes, followed by 30 cycles of 

94 °C for 30 seconds, 48 °C for 30 seconds, 72 °C for 1.5 minutes. Before storage at 4 °C, 

samples were incubated at 72 °C for 10 minutes. Colony PCR was analysed by agarose gel 

electrophoresis. 
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A-9 DNA sequencing 

 

The correct sequence of cloned constructs was confirmed by sequencing using T7 

forward/reverse or suitable primers. For sequencing, 500 ng of DNA in 30 µl water was sent 

to the sequencing service at the School of Life Sciences, University of Dundee, Scotland 

(www.dnaseq.co.uk). 

 

A-10 Purification of transformed plasmid DNA 

 

A transformed colony containing the recombinant vector was inoculated in 10 ml LB 

containing appropriate antibiotic followed by shaking incubation at 37 °C overnight. After 

incubation, cells were spun down at 3000 rpm for 10 minutes at 4 °C. The pellet was 

collected and plasmid DNA was purified by QIA quick spin protocol (QIAGEN), which elutes 

plasmid DNA in 50 μl of water. 

 

A-11 SDS-PAGE 

 

Pre-cast 4-12% Nupage gels were set up according to the manufacturers’ instruction 

(Invitrogen). Rigs were filled with 800 ml 1X MES buffer and 1ml of antioxidant was added to 

the upper chamber. Loading buffer, 4X LDS was added to the protein samples to dilute 

followed by denaturation at 99 °C for 4 minutes and samples were loaded into wells 

alongside an appropriate unstained marker such as Mark12TM standard (Invitrogen). 

Electrophoresis was carried out at 200 V and a current of 115-70 mA for 35 minutes. On 

completion, gels were stained with Coomassie Blue to allow protein detection. 

 

 

 



[APPENDIX A: MATERIALS AND METHODS] 205 

 

 
 

 

A-12 Pre crystallisation test 

 

The PCT™ (Pre-Crystallization Test) is used to determine the appropriate protein 

concentration for crystallization screening. The protein samples were concentrated to about 

5-15 mg/ml (depending on the protein) by using appropriate MWCO centrifugal concentrator 

(Millipore) which diluted in a sample buffer which promotes sample stability and 

homogeneity. Small aliquots of 50 μl of the sample were made and stored at -80 °C. 

Procedures as described below are according to the manufacture’s protocol. 

 

About 1.0 ml of PCT reagent A1 and PCT reagent A2 were pipetted into reservoir A1 and 

reservoir A2 on the VDX plate with sealant. Add about 0.05 to 1.0 µl of protein sample onto 

the center of a single glass cover slide. Equal volume of Reagent A1 was then pipetted onto 

the protein sample on the siliconized cover slide. Do not mix the drop. The cover slide with 

the drop was inverted and sealed. The same steps were repeated for the reagent and 

reservoir A2. Leave for about 30 minutes before view the drops under a light microscope 

with magnification between 20 and 100X. The drops were compared to each other.  

 

The ideal drop should have a microcrystalline or light granular precipitate throughout the 

drop. Further reference can be found in the manufacturer’s manual. Samples too 

concentrated can result in amorphous precipitate, while too dilute samples can result in clear 

drops. Precipitate and clear drops are typical crystallization screen results for reagent 

conditions, which do not promote crystallization and are part of every crystallization screen. 

However, by optimizing protein concentration for the screen, the number of clear and 

precipitated results can often be reduced, which at the same time enhancing the chances for 

crystallization. 
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The supplementary results                                                           
 
 
 
 
 

(B) SPR sensorgrams 

 

 

 

 

 

 

 

 

 

 

Figure B-1 Sensorgram of Vc3CBM binding profile with 3’SL at 25°C. Protein 

concentrations used were 1 nM, 5 nM, 20 nM, 62.5 nM and 125 nM. 
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Figure B-2 Vc4CBM sensorgrams at three different temperature tested (A) 15°C; (B) 

25; (C) 37°C. The analyte (protein) concentrations used were 18.0, 6.0, 2.0, 0.67 and 0.22 

nM. Biotinylated ligand 3’sialyllactose-PAA-biotin (1μg/ml) was immobilised on flow cells at 

three different levels; green curves: high level, red curves: medium level and blue curves: 

low level. The black curves were the fitted data. A flow cell containing buffer only was used 

as the reference surface. 

(A) (B) 

(C) 
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Figure B-3 Vc-CBMTD (WT) sensorgrams at three different temperature tested (A) 

15°C; (B) 25°C; (C) 37°C. The analyte (protein) concentrations used were 18.0, 6.0, 2.0, 

0.67 and 0.22 nM. Biotinylated ligand 3’sialyllactose-PAA-biotin (1μg/ml) was immobilised on 

flow cells at three different levels; green curves: high level, red curves: medium level and 

blue curves: low level. The black curves were the fitted data. A flow cell containing buffer 

only was used as the reference surface. 
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Figure B-4 Vc-CBMTD (Mutant) sensorgrams at three different temperature tested 

(A) 15°C; (B) 25°C; (C) 37°C. The analyte (protein) concentrations used were 18.0, 6.0, 2.0, 

0.67 and 0.22 nM. Biotinylated ligand 3’sialyllactose-PAA-biotin (1μg/ml) was immobilised on 

flow cells at three different levels; green curves: high level, red curves: medium level and 

blue curves: low level. The black curves were the fitted data. A flow cell containing buffer 

only was used as the reference surface. 

(C) 

(A) (B) 
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Figure B-5 Sp-CBMTD sensorgrams at three different temperature tested (A) 15°C; 

(B) 25°C; (C) 37°C. The analyte (protein) concentrations used were 18.0, 6.0, 2.0, 0.67 and 

0.22 nM. Biotinylated ligand 3’sialyllactose-PAA-biotin (1μg/ml) was immobilised on flow 

cells at three different levels; green curves: high level, red curves: medium level and blue 

curves: low level. The black curves were the fitted data. A flow cell containing buffer only 

was used as the reference surface. 

(C) 

(A) (B) 
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