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Abstract: In this work different methods for distinguishing between low-dimensional
dissipative dynamics and randomness in the time series are studied. Time series are generated
by solid-state voltage reference elements (VRE), which compose a group DC voltage
reference source (DCVRS).

Several tests to evaluate whether the correlation integral methods reflect the global
geometry or the local fractal structure of the trajectories are applied. Tests are evaluated on the
measured signals and on the self-affine sequences that exhibit a power law spectrum of the
formS (f)= f"“1<a<2 known as fractional Brownian motions (FBM). While the

measured series pass almost all the tests, the FBM-s fail the test of time differentiation in
which the series Ax(t;)= x(t;)—x(t,,) gave the evidence of their random nature. The

presence and the significance of deterministic features in the changing of voltage are
confirmed by singular value decomposition (SVD) analysis.
Keywords: time series, deterministic chaos, randomness

1 INTRODUCTION
Throughout scientific research, measured series are the basis for characterising an observed

system. The interpretations of the measurements of physical systems often depend on the tools

developed for processing the results of the measurements. This paper outlines the possibility
of attaching the measures of the dynamical non-linear systems to the metrological systems'
signals as a tool for interpretation of the observations of the complex systems behaviour.

The observed time series are generated by solid-state VRE-s, Zener diodes, of a group
DCVRS. The goal of their analysis is to achieve long-term stability and to lower the
measurement uncertainty of the generated voltage. The time traces of the measured voltage are
usually »irregular« or chaotic. For characterisation of the phenomenon of »irregular« changing
in time series could be used the fractal theory and the theory of dynamical non-linear systems.
The measured time series are observed as mixtures of deterministic components and random
noise. With their analyses we try to disentangle (if possible) this two components from the
view of non-linear dynamical systems. The results of the analysis could be used for the
reconstruction of the time series, prediction, control of the influence parameters etc. The
possible benefit of this work could be the use of the results of the analyses in the modelling of
the neural networks for their prediction. In the further work, by successful prediction we can
lower the uncertainty of the measurement.

Through the paper we will discuss the methods for:

e extraction of the time series from the background and estimation of the statistical
properties, which are important in the metrological meaning. In this context we explain the
reasons why we need simulations;

e construction an appropriate phase space in which the full structure of the (possible)
underlying attractor associated with the chaotic observations is unfolded;
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e evaluating invariant properties of the dynamics: correlation dimension, Lyapunov
exponents ...;

e performing tests for distinguishing between low-dimensional dissipative dynamics and
randomness in the measured time series (time and space separation, signal differentiation,
phase randomisation, structure function) that confirm the significance of the calculated
dimensions.

For purposes of comparison we generate self-affine sequences that exhibit a power law

spectrum of the form S,(f)= f~*,1<a <2 known as FBM-s. For some choices of a the

statistical properties and the correlation dimensions of the measured signals are attained. The
properties of the measured signals are compared to the properties of the signals generated by
FBM also by using the tests for distinguishing between deterministic and random systems.

2 SIGNALS
In this section, we will explain the system, which generate the signals and we will give the
reasons why we use FBM-s for simulations [5]

2.1 Measured signals of voltage

Signals are generated by group precision DCVRS which Is, in our case, built of solid state
voltage reference elements (VRE-s). DCVRS, placed in thermally stable environment,
consists of a parallel group of four VRE-s (A, B, C, D). Reference elements are ultra stable
Zener diodes LTZ 1000. The observed time series are produced by measuring the absolute
values of voltage of each VRE, which is controlled by PC-computer. The PC communicates
with DCVRS via serial port RS232. Measuring instrument is digital voltmeter HP3458A. The
measured data is transferred to the PC by using IEEE-488 bus. The measurement results are
saved in a file on the PC. The time series present 1000 hour measurements'. The length of
each data set is 4096 samples which are taken in intervals of 15 minutes.

In many natural systems as well as in semiconductors S “noise was detected as a

fluctuation of parameters or values. Therefore a simple white noise test for discrete time series
data proposed by Von Newmann et. a/ and Allan [1] should be performed on the measured
signals. A comparison of the results of white noise test to the power spectra of the measured
time series makes the estimation of deviation from white nojse behaviour feasible. The white
noise test confirms the presence of the 7~ noise in the measured signals. Signals generated by

FBM exhibit a power law spectrum of the form J°. That's why they are good candidates for
comparison with the measured signals®.

2.2 Fractional Brownian motions or 1/f noises

FBM is a random function provided by Mandelbrot and Van Ness [5]. It is an extension of
Brownian motion and it could be a good starting point for understanding of anomalous
diffusions as random changes. The most important feature of FBM is that its increments
[Bu(t+T) - By(t)] = hH [Bu(t+hT) - Bu(t)] are stationary and statistically self-similar.
Increments of FBM have Gaussian distribution with a standard deviation:

ofBH(t+T) - BH(®)] = C,T" )

1 . .
Duration of that measurement is about one and a half months.

* The deviation of the spectrum of the measured signal from the /™ form could possibly be ascribed to the

environmental influences and the inherent characteristics of the solid state diode LTZ 1000 as can be noticed in
repeated measurements.
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where Cj is constant. This is usually called T# law of FBM. The parameter H is directly

related to the fractal (Hausdorff) dimension D; for FBM one variable D = 2-H. For generation
of the FBM signals is used the method of spectral synthesis>.

3 PHASE SPACE RECONSTRUCTION AND CORRELATION DIMENSION

In this section is discussed the phase space reconstruction based on method of delays and
the use of mutual information. This follows the theory of estimation of correlation dimensions
as a lower bound of the fractal dimension.

3.1 Embedding procedure

In the analysis of a scalar data set equally spaced in time (i.e. x(n) = x(t, + n t) the standard
technique is based on the phase space reconstruction, such as time embedding procedure. The
first step is to create time embedded vectors X(n) =[x(n),x(n+ 7)., x(n+(d; —=1)7] for
various values of the embedding dimensions d; or estimating the window 7, =d;*7. The

value of 7 have to be large enough to introduce a degree of statistical independence between
the components. The time delay is typically determined by the use of average mutual
information. Mutual information answers the question: "given that x has been measured at
time 7, what is the average uncertainty in measurement of x at time n+ 7 ?"” The aim of time
series embedding analysis could be the determination of the dimensionallity of the subspace
where the whole structure of the (possible) underlying attractor associated with the chaotic
observations is unfolded. We use singular value decomposition (SVD) analysis proposed by
Broomhead & King [2] to determine the dimension of the space where the phase portrait could
be reconstructed. From the SVD-analyses of the time series VRE A is obvious that it is noisy
and we need at least 9 dimensions for reconstruction of the non-linear dynamics. Only the 6
first singular values are significantly bigger then the others or the important dynamics could be
confined to a 6-dimensional subspace of the embedding space.

3.2 Correlation integral

Effective method for estimation of correlation dimension deals with correlation integral. It
is based on counting the points of attractor which well defined distances are less then some
value. The correlation integral of N vectors (%(n),n=1,...,N), is defined in [3]:

2 N N ) .
C(r)y=——""—— O(r — |x(m) - x(n),|
()= NV =) 2 200 = [x(m) - x(m) 3)
where ©(x)is the Heaviside step function and i%| is any well defined vector norm®. The main

property of C(r) is that it behaves as power law of r for small r-s: C (r) = r® . The correlation
dimension D,, is then formally defined as the following limit:

1 42
B 1
> FBM-s are often characterised by spectral densities S, = %with the general form S, = I7. .

directly connected to dimension H withey =2 H +1. Time series of length N are obtained inverse Fourier
transformation (IFT) by the formula:

& a2 27k
X, =2 ICK™= (51" cos(— =+ D,) @
k=1

where C is constant and ¢, are randomly distributed in [O,Zﬂ']
4 The most appropriate choice for norm is L-infinity norm, defined as:
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“r 0 log(r)

In practice, D,,, is obtained by plotting C(r) versus r on a log-log scale and reading off the
slope from the portion of the graph.

As d, increases, the value of D) saturates to the appropriate correlation dimension of the
system. The minimum at which d, this saturation occurs is known as embedding dimension
(figure 1). The correlation function D, can be related to the theoretical fractal Hausdorff
dimension by inequality D, <D and for very large series D), almost reaches D.

4 TESTS FOR DISTINGUISHING BETWEEN LOW-DIMENSIONAL DYNAMICS AND
RANDOMNESS

Some fractal and statistical parameters, that seem to be important either for stability in
metrological or dynamical sense, of the measured series are compared to the same
characteristics of the series generated by FBM. For some choices of a the statistical
properties and even the correlation dimensions and the leading Lyapunov exponent A_,_ ° of
the measured signals are attained. The best results for VRE-s A, B, C, D are obtained with the
following spectrum functions respectively f o B il e A L Although the correlation
dimensions of FBM noises saturate, we can not make any reliable statement about their
behaviour. The upper statement is confirmed by the results of the tests for distinguishing
between dynamics and stochastics, performed on the both: measured and FBM series [6].

4.1 Signal differentiation
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Figure 1: (a) and (b) report the behaviour of the correlation exponents versus the embedding dimension of the
original (circles) and the difference (filled squares) signal for the measured and FBM signals
respectively.

For a system governed by a dynamical system, the value of correlation dimension should be
the same for the signal as well as for the first (or a higher) derivative. The first derivative of
the signal Ax(¢;) = x(#,)— x(¢,_;) has a correlation dimension which is often much larger then
the one of the original signal. No saturation of the correlation exponent of the difference signal
of the stochastic (FBM) process can be observed (figure 1). This is due to the fact that the
increments Ax(#;) behave like pure noise as in the case of FBM-s. Consequently, if the results

of correlation analysis do not change under differentiation, one has indication that the time

()~ x(R)|, = maxy,(m) - y,(n)

5 Ao is measuring the average convergence of the nearby trajectories in the phase space or it is measuring how
predictable the system is.

152




series has been generated by a dynamical process which is true in the case of the measured
signals.

4.2 Time and space separation

Through the calculation of correlation dimension, we can assume that the distance between
pairs of points could possible be due to the geometry of the reconstruction, not because the
points are dynamically correlated and their separation in space reflects their being neighbours
in time. The test is based on plotting contour maps of the fraction of points closer then
distance r at given time separation At for arbitrary . This test reflects the temporal rather then
spatial separation but still shows the different behaviour between the measured signals and the
simulated signals with FBM-s.

4.3 Phase randomisation and other tests
Comparison of the cor. integral behaviour
foremb =7, 1 =3x0.25 hour, N = 4300

between VRE A and its random phase surogate
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Figure 2. The correlation dimension of the VRE A saturates and the correlation dimension of the random
phase signal doesn't.

From given measured series x(?), thought to be chaotic, we generate surrogate signals
obtained by inverting a power spectrum exactly equal to that of the signal under study and
with random, independent and uniformly distributed Fourier phases. If the correlation
dimension is invariant under phase randomisation, that strongly implies that this estimation is
not product of low-dimensional dynamics. From the figure 2 is obvious that the correlation
dimension of the measured signal converges and the correlation dimension of the random
phase signal doesn't.

Other tests, like structure function, independent realisations [6]... confirm the presence of
low-dimensional dynamics in the measured signals and distinguish them from random signals
FBM-s.

5 CONCLUSIONS
The results of the analyses of the measures signals of VRE-s could be used for diagnostic

purposes or for correction of the generated voltage®. The results of the analyses are given in

the following statements:

o The estimated correlation dimensions of the measured signals are between 4.5 and 5.5.
SVD analyses confirm that the whole dynamics happens in 5 to 7 dimensions.

o The tests for distinguishing low-dimensional dynamics from randomness confirm that the
behaviour of VRE-s is similar to the behaviour of non-linear system, which consists of a
few subsystems.

% The current voltage could be corrected by using the predicted value.
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¢ Test proposed by Allan and Von Newmann [1,4] confirms the presence of coloured noise
in the measured signals.

e It is difficult to disentangle the components of determinism and randomness in the
observed signals and to determine the amounts of each of them. Clearly, in the low
frequency part of the spectrum are present the following periodicities: half month, week, a
few days, day, and a few hours, which play important roles in the appearance of low-
dimensional dynamics. It is not clear which are the other sources of determinism (if any)
present in the data.

e The results of the analyses could be used for construction of the model for prediction,
which corrects the voltage and by this lowers the measurement stability.

REFERENCES

[1] D. W. Allan, Should the Classical Variance Be Used As a Basic Measure in Standard Metrology?, IEEE
Transactions on Instrumentation and Measurement, Vol. IM-36, No. 2, 1987, p. 646-654.

[2] D. S. Broomhead, G. P. King, Extracting Qualitative Dynamics from Experimental Data, Physica 20D, 1986,
p. 217-236. ‘

[3] P. Grassberger, T. Schreiber, C. Schaffrath, Non-linear Time Sequence Analysis, International Journal of
Bifurcations and Chaos, Vol.1, No.3, 1991, p. 521-47.

[4] M. S. Keshner, 1/f Noise, Proceedings of IEEE, Vol. 70, No. 3, 1982, p. 212-18.

[5] B. Mandelbrot and J. W. van Ness, Fractional Brownian Noises and Applications, SIAM Rev. 10 (4), 1968,
p. 422-436.

[6] A. Provenzale, L.A. Smith, R. Vio ,G. Murante, Distinguishing between low-dimensional dynamics and
randomness in measured time series, Physica D 58, 1992, p. 31-49.

[7]1 A. A. Tsonis, Chaos - From Theory to Applications, Plenum Press, New York, 1992.

154




