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Abstract

Global demand for food increases every year, despite this increase, productive farming

land is limited. Meeting the demands of the future are dependent on improving the

productivity of the land in use and a key factor behind this is intelligent agriculture.

Fresh water remains in many situations the primary constraint on agriculture. This

paper seeks to investigate machine intelligence irrigation scheduling methods in order

to increase yield and improve crop irrigation efficiency.

For the purposes of research the model organism Arabidopsis Thaliana was selected

primarily due to its rapid life cycle and historical significance. Research began with

the development of a water balance crop model for emphArabidopsis Thaliana. Upon

completion of the model several experiments were performed to weakly verify its be-

haviour.

The final step looked at implementing an artificially intelligent control algorithm for

maximizing crop yield in water constrained environments. Several possible approaches

were identified. The winning approach utilized a Markov decision process implementing

a Radial Basis Function network as a value estimator. Performance was seen to exceed

the best hand coded algorithms by up to 10% and it successfully outperformed the

normal irrigation schedule control by a factor of 6.5x far exceeding the initial goals of

the project!

This solution was developed using a highly optimized, high performance computing

MDP solver programmed by the author. Utilizing an Amazon Cluster Compute server

possessing 32 Intel Xeon cores the author was able to outperform an initial naive, yet

straight from the textbook, MATLAB MDP solver by a factor of 104!
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Chapter 1

Introduction

Global demand for food is expected to rise by over 70years (New York Times 2009).

Over one billion individuals individuals already suffer the effects of food scarcity (New

York Times 2009). Despite this increase in demand, productive agricultural land re-

mains constrained by the limits of the earth’s biosphere. Meeting the demands of the

future are dependent on improving the productivity of the land in use and a key factor

behind achieving this is intelligent agriculture.

In many regions the primary limiting factor behind crop yield is water scarcity, Over

3 billion people live in regions affected by water scarcity, be that physical or economic

in origin (United Nations 2007). By improving the efficiency of the utilisation of water

in these regions one can directly tackle one of the key problems behind world hunger.

The stellar rise of consumer computing power over the last few decades has brought

about the age of ”big data.” Big data as a concept refers to the automated analysis of

vast sources of data. Vast sources of data beyond the scope of any humans ability to

comprehend. This paper investigates the application of these big data approaches to

optimising crop water usage in highly dynamic and demanding environmental condi-

tions.

The remainder of this document will seek to develop an ”intelligent” control alogrithm

for the task of water efficient drip irrigation. The combining of the strengths of the two

systems shall result in new opportunities and novel ideas.



Chapter 2

Literature Review

2.1 Crop Modelling

2.1.1 Crop Model History

The use of models to predict the behavior of crop growth to abiotic stressors has a

long history within the literature. The early work of CT Dewit (1965) represented

some of the first attempts at modeling plant behavior. CT Dewit’s early work concen-

trated on accurately predicting the photosynthetic rate of plant canopies. Predicting

plant photosynthetic rate is a nontrivial exercise and CT Dewits research despite its

”pioneering” (Yin & Struik 2009) nature was highly sophisticated, taking into account

complex factors such as crop leaf distribution and the effects of restricted carbon dioxide

exchange.

The latter work of CT Dewit (1978) expanded into the development of sophisticated

models for whole organism behavior. These models explored the dynamics of pro-

cesses such as transpiration and biomass accumulation. CT Dewit’s work focused on

predicting the yield of maize. Further work by DA Charles-Edwards and MJ Fisher

(1980) investigated the use of these analytical methods in conjunction with empirical

observations to successfully develop models for the legume pasture crop Stylosanthes

Humilis.

Continued development was made over the years and modern crop models are highly
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sophisticated simulators of crop behavior. Many particular models exist, one such ex-

ample being APSIM (B.A Keating et al. 2003). APSIM was developed by a joint venture

of CSIRO and Queensland state government agencies (B.A Keating et al. 2003). The

APSIM model simulates crop response to a variety of abiotic conditions and models

parameters such as soil water balance, nitrogen/phosphorous balance and crop yield.

Significant research commitment was involved in APSIMs development and it is re-

leased under a limited restrictive licensing scheme. Modules exist that allow APSIM

to simulate the behavior of a variety of legumes (M.J. Robertson et al. 2002), grasses

(B.A Keating et al. 1999, Keating & Agriculture 2001) and cotton (Hearn & Roza 1985)

crops.

Despite APSIM’s wide range of modules, the Brassicaceae family is significantly under-

represented. The only example for the Brassicaceae Family identified was developed

by MJ Robertson et al. (1999) for modelling the yield of the commercial crop canola

(Brassica Napus L).

2.1.2 Research Potential

Despite the historical use of crop models to predict commercial crop yields their po-

tential versatility cannot be understated. KJ Boote et al. (1995) present a variety

of scenarios where the versatility of crop models can be applied to bettering research

understanding.

With the utility of crop models in a research setting being established one must con-

sider an organism on which to base the model upon. As established earlier, there is a

long history of using crop models to forecast the performance of a variety of legume

(CHARLES-EDWARDS & FISHER 1980) and maize species (de Wit 1978). However

the results of MJ Fisher (1969) indicate a life cycle of roughly eleven weeks until flower-

ing for the legume species Stylosanthes Humilis and similarly the research of T Farrell

and K O’Keefee (2007) suggests an average time until maturity of roughly 15 weeks for

a collection of maize varieties.

In the context of a laboratory setting these relatively long maturation life cycles are

detrimental to an experimental design. Combined with the large physical size of these

species they prove poor candidates for most experiments.
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2.1.3 Introducing Arabidopsis Thaliana

In the literature, the organism Arabidopsis Thaliana proves to be highly utilized and

experimented upon. Arabidopsis Thaliana has a long history in the biology community

and generally it is considered a model organism (D.W. Meinke et al. 1998). Model

organisms are species that are thoroughly researched in order to understand more

generalized biological behaviors. EM Meyerowitz (2001) states that the first person

to suggest using Arabidopsis as a model organism for the Angiosperm kingdom was

Friedrich Laibach in 1943.

F. Laibach (cited in EM Meyerowitz 2001, p. 1) suggested that Arabidopsis Thaliana

be considered as a model organism on the basis of its short maturation time, as short

as six weeks in some strains (D.W. Meinke et al. 1998), ease of propagation and it’s

propensity to mutagenesis experiments.

MH Hoffmann (2002) suggests that in wild, Arabidopsis Thaliana is native to western

Eurasia, being found in primarily cool climates, with an average winter temperature of

roughly negative four degrees Celsius and a summer temperature of roughly eighteen

degrees. It grows primarily in sandy and loamy soils up to a maximum altitude of

roughly two thousand meters above sea level. However in the presence of plentiful

precipitation it has been observed to grow significantly outside of this temperature

range (Hoffmann 2002). This climatic background lends itself easily to laboratory

conditions being often propagated at a high humidity, constant twenty two degrees

Celsius (Hoffmann 2002).

2.1.4 Application To Crop Understanding

While Arabidopsis may represent an ideal laboratory species it has little to no direct

significance as a commercial crop (Meyerowitz 1987). However this lack of direct ap-

plication is not a hindrance to useful research. As the words of YH Chew and KJ

Halliday (2010 p. 1) state: ”The substantial expansion in our knowledge of abiotic

stress tolerance and avoidance strategies in Arabidopsis provides increased potential for

exploitation in crops.” By improving the understanding of stress in the Arabidopsis

Thaliana organism one can improve the understanding of crop stress as a generalized

whole.
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However a counter view is illustrated in the paper ”Abiotic Stress Tolerance in Grasses.

From Model Plants to Crop Plants” by M Tester and A Bacic (2005). Applying insights

gained through the study of Arabidopsis is often difficult to apply to many commer-

cial crops. M Tester and A Bacic explain this is often due to fundamental structural

differences between Arabidopsis physiology and that of most major crops.

Arabidopsis is an example of a dicotyledonous species (van Dodeweerd 1999), in that

it possesses two embryonic leaves at germination (cotyledons). Many major commer-

cial crops are monocotyledons, examples primarily belonging to the grass family (van

Dodeweerd 1999), rice, maize/corn, wheat, barley, etc. These monocotyledons are

generally far less succulent than their dicot counterparts (Tester & Bacic 2005). The

observations of EM Meyerowitz and CR Somerville (1994) indicate an average dry

matter ratio of approximately eight percent for the Arabidopsis Thaliana species. This

represents that roughly 92 percent of the total plant mass is compromised as water.

As an example of a monocotyledonous species, the results of OAM Lewis et al. (1988)

indicate a moisture content of roughly 87 percent for common maize species. This

represents a difference of biomass content of roughly 50 percent per unit fresh weight.

Comparing salinity tolerance between monocots and dicots is generally unsuccessful

(Tester & Bacic 2005). Due to the differences in moisture content, salt accumulates very

differently between the groupings. Dicotyledonous species generally accumulate greater

quantities of sodium ions in their shoots than their monocot counterparts (Tester &

Bacic 2005). This ability to exclude sodium from the growth shoot is an important

determinant of salinity tolerance (R. Jaarsma et al. 2013). Due to these fundamental

differences applying information learned from Arabidopsis salinity stress experiments

to grass/cereal species is non-ideal.

However not all commercial crops belong to the grass family, examples of dicotyle-

donous commercial crop families include: Legumes, Cucurbitaceae, Brassicaceae and

Solanaceae (R. Jaarsma et al. 2013). Applying an understanding of salt tolerance

gained from Arabidopsis experimentation to these significant crop families is poten-

tially a useful asset.

However the research described herein is primarily focused on the effects of water stress.

The work of K Nakashima et al. (2009) demonstrates that Arabidopsis Thaliana and the

monocot cereal crop rice (Oryza Sativa) share common genomic regulatory mechanisms
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in response to osmotic and heat stressors. This water stress regulatory mechanism

being primarily mediated by an increase Abscisic acid (ABA) concentration (D. Aimar

et al. 2011). This common mechanism is shared between dicots, monocots and cereal

crops alike (D. Aimar et al. 2011).

Abscisic acid, through a complex chemical cascade, is primarily involved in stimulating

the action of stomata guard cells on the leaf surfaces (Z.M. Pei et al. 2011, G. Jakab et

al. 2005). These guard cells act to decrease the stomatal conductivity. This decrease

in stomatal conductivity is accompanied by a corresponding decrease in photosynthetic

rate.

This reduction in photosynthetic rate was investigated in the work of WJS Downton

et al. (1987). The reduction in photosynthetic rate can be entirely explained by the

reduction in carbon dioxide exchange. On the basis of this phenomenon one can suggest

that the relationships of transpiration loss will be similar between both grass species

and the dicots (including Arabidopsis).

However Arabidopsis utilizes a C3 photosynthetic pathway (J.K. Ward et al. 2000) and

many of the grass species utilize the C4 pathway (Giussani 2001). The C4 photosyn-

thetic pathway is more efficient in limited stomatal conductivity environments (Morison

& Gifford 1983). One therefore may expect C4 plants to accumulate greater biomass

in a water stressed environment than the C3 Arabidopsis species. However most crops

utilize the C3 pathway therefore an understanding of the water stress response of Ara-

bidopsis can be well generalized.

2.1.5 Existing Arabidopsis Thaliana Modelling

A variety of the key regulatory mechanisms of Arabidopsis have been computer mod-

elled over the years, one such prominent model being developed by AM Wilczek et al.

(2009). AM Wilczek et als’ model looked at analysing the life cycle behaviour of a col-

lection of Arabidopsis Thaliana species. This life cycle analysis focused on predicting

the number of days until flowering based upon input parameters such as the genetic

variant and photothermal development units. These photothermal development units

being based upon a calculated model of day time temperature and solar insolation. AM

Wilczek et als’ model was able to successfully predict over ninety two percent of the
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overall observed variance.

Another regulatory mechanism to be modelled was the distribution of the growth hor-

mone Auxin within the Arabidopsis shoot tip (P.B. de Reuille et al. 2006). PB de Reuille

et als’ model investigated the Auxin flux within of a growing shoot apex. Through their

modelling they were able to identify several key components to the distribution which

were at the time previously undiscovered (P.B. de Reuille et al. 2006).

Further individual mechanism models being developed by, L Mendoza et al. (1998),

GD Bilsborough et al. (2010) and AN Dodd et al. (2006). L Mendoza et als’ model

looked at the genetic regulatory mechanisms behind Arabidopsis flower morphogenesis.

The differentiation of the cells that make up Arabidopsis’s flower structure depend

primarily on eleven key genes. These genes act upon each another through a feedback

network to form one of five key states. L Mendoza et als’ model successfully predicted

the existence of six differentiated states. The sixth state being one not seen in nature

but could be induced experimentally.

GD Bilsborough et al. investigated a peculiar phenomenon that occurs in the develop-

ment of Arabidopsis leaves. As the leaves of the Arabidopsis plant mature they form

regular protrusions along the leaf boundary (serrations). The mechanism behind this

change in leaf shape previously being unexplained. GD Bilsborougha et al. modelled

the interactions of the growth hormone Auxin and the CUC2 transcription factor. By

modelling the two feedback loops that operate upon the process they were able to de-

velop a model hat exhibited and explained this peculiar property of leaf maturation

(G.D. Bilsborough et al. 2011).

AN Dodd et als’ research looked at modelling Arabidopsis guard cell behaviour in the

presence of cold induced stress. By building a model of an individual cells response

and then summing together a colony of them (an analogue of the greater guard cell

structure). They were able to accurately model calcium signalling within the stomata.

Their results being confirmed experimentally (A.N. Dodd et al. 2006).

While the literature turned up a variety of previous attempts at modelling the various

subsystems of the Arabidopsis organism no previous examples of modelling at a macro

scale were identified. Also few existing crop models for the greater Brassicaceae family

were identified as a generality. Those existing models being designed primarily for
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Canola (M.J. Robertson et al. 1999) and being encumbered by restrictive licensing and

bulky legacy codebases.

2.1.6 Conclusion

At this time the literature lacks a simple crop model tailored toward investigating

Arabidopsis water stress response. By improving the understanding of Arabidopsis

water stress response one can generate generalized conclusions for many commercial

crops.
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2.2 Applying Machine Learning To Irrigation Control

2.2.1 Irrigation Control History

Up until the early 1970’s much of the developed agricultural community relied on using

static unchanging irrigation schedules based upon empirical observations and historical

results (Jensen 1972). Evaluations of irrigation practices by OW Israelsen et al. (1944)

suggested this approach had remained virtually unchanged in over twenty five years.

ME Jensen (1972) suggested a variety of reasons as to why this static inefficient ap-

proach remained highly utilized by farmers. For a long time the cost of irrigation water

had been considered rather insignificant and the indirect costs caused by nutrient run

off and yield reductions had been difficult to quantify.

Also many of the damages caused by poor water utilization are not directly apparent

to the farmers causing them. Run off from upper area irrigators’ caused soil and crop

yield damages to the farmers operating in the lower laying regions (Jensen 1972). This

lack of financial recourse combined with poor regulation lead to limited incentives to

improve crop irrigation practices.

However increases in the cost of water and land in the late 1940’s brought about an

interest in optimizing water usage and increasing crop yield (O.W. Israelsen et al. 1944).

By the late 1960’s with the introduction of cheap computing power (Jensen 1972) and

the theoretical work of HL Penman (1952) in modelling crop water usage the time had

arisen for the introduction of improved irrigation practices.

HL Penman’s (1952) pioneering work was on modelling the evapotranspiration demand

of crops. He achieved this by deriving a set of equations for the water demand of

a reference crop and then developed a coefficient based approach for generalizing the

suggested values for different species. The pioneering concept of his 1952 paper was the

introduction of the dynamic behaviour of stomatal conductivity. This work was used in

the early 1970’s to create computer generated irrigation forecasts for many large areas

of farmland (Jensen 1972).



2.2 Applying Machine Learning To Irrigation Control 10

2.2.2 Soil Water Methods

Despite the introduction of computerised irrigation forecasts, crop irrigation remained

a manual and labour intensive process. The computer forecasts were used by farmers to

supplement their existing irrigation techniques (Jensen 1972). However with the advent

of the microchip and the introduction of new sensor technologies the introduction of

automated approaches was soon to be apparent.

One such key sensor technology being developed by CJ Phene et al. (1971). Prior to

1971 measuring soil water content automatically was a difficult task (C.J. Phene et

al. 1971). At the time the leading method of observing soil moisture was through the

use of a device known as a tensiometer. The tensiometer uses a pressure differential

across a porous membrane to evaluate current soil water matric potential.

At the time of the early 1970’s the existing pressure transducer technologies exhibited

poor performance and accuracies in the range of soil matric pressures expected under

many field conditions (C.J. Phene et al. 1972). CJ Phene et al. were able to overcome

these limitations with the design of a highly novel sensor topology.

Rather than relying on properties such as soil resistivity or the pressure differential

across a membrane, CJ Phene et als’ design relied on the thermal dissipation of a

porous block buried in the soil. By using such an indirect measurement style they were

able to overcome complicating factors such as soil texture, salinity and temperature

(Phene & Howell 1982).

This novel sensor design led to the development of one of the first automated crop

irrigation approaches (C.J. Phene et al. 1972). CJ Phene et al. (1972) were able to

apply this new sensor technology in the development of an automated irrigation system

that relied on the soil matric potential and hence the soil water content. The system

was configured as a bang-bang controller with every time the soil matric potential fell

below a pre-set threshold a drip irrigation system was triggered which applied a fixed

amount of water to the field. The system was successfully tested in September 1971 on

several plots of corn (Zea Mays).

CJ Phene et al. (1982) revisited the thermal disspation sensor approach in 1982, with

the introduction of new high precision microchip temperature sensors it was possible to
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greatly improve the accuracy and response time. A field trial using this new design was

performed on the commercial tomato species (Lycopersicon Esculentum Mill, UC82B).

As a control, the trial utilized the irrigation forecast produced by HL Penman’s (1952)

equations. CJ Phene et als’ (1982) trial was able to achieve comparable results to

the control using evapotranspiration predictions, however this was achieved without

significant human interaction and considerably fewer data inputs.

More recent work by S Dabach et al. (2011) looked at comparing the results of a

computer model with the real world results of soil moisture based irrigation schedule.

Through the use of the HYDRUS soil and crop model it was suggested high efficiency

crop irrigation using water status and dynamically calculated irrigation quantities is a

distinct possibility. This application of dynamic irrigation quantity is of importance to

high efficiencies utilizing soil water matric potential threshold based approaches.

2.2.3 Evapotranspiration Methods

The requirement for variable irrigation quantities for soil matric threshold based ap-

proaches is due to the changes in crop evapotranspiration in response to growth and

meteorological conditions (R.G. Allen et al. 1998). Crop related factors include but

are not limited to: albedo, crop height and ground cover. Primary meteorological fac-

tors include solar radiation, air temperature, humidity and wind speed (R.G. Allen

et al. 1998). While the listed factors may explain the vast majority of the observed

changes in evapotranspiration they are far from complete (Jackson 1985). Most calcu-

lations of evapotranspiration continue to rely on empirical ”magic number” correction

factors (HL Penman 1952).

Though for many practical applications these empirical formulae prove sufficient. How-

ever prior to the advent of the PC and the microcontroller the concept of automating

the task of evaluating these empirical formulaes at a local scale was somewhat impracti-

cal with time share computing and manual data entry required (Jensen 1969). Despite

the issues with analytically calculating evapotranspiration responses there existed an-

other method to access the valuable information contained in this process and that was

observation (Decker & Skau 1964).

The historical method of observing transpiration was through the measurement of sap
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flow (Decker & Skau 1964). By applying a pulse of heat to the stem of a plant and

measuring how long it takes for the warm sap to reach a thermocouple sensor located

further up the stem one can determine an approximation for the rate of sap flow (Y.

Cohen et al. 1981).

One example of an application of sap flow transpiration measurements was in a study

by CHM van Bavel et al. (1996). CHM van Bavel et al. used an array of four sap flow

sensors which were placed on representative specimens from the target crop. When

combined with a rain gauge placed on the crop site and a basic soil evaporation model

it was possible to calculate an approximate soil water balance without the use of soil

moisture sensors. This approach lent itself well to data constrained environments.

Another approach to indirectly observing evapotranspiration came through the moni-

toring of leaf to air differential temperature (R.D. Jackson et al. 1981). However the

differential temperature has to look at greater meteorological conditions before it can

be considered useful (Fuchs 1990). Despite the lack of this normalization step, sev-

eral studies have successfully used a simple threshold based approach (S.R. Evett et

al. 1996, S.R. Evett et al. 2000).

This threshold approach used the concept of a thermal kinetic window, there exists

a temperature range in which the enzymes involved in photosynthesis for a particular

plant species operate optimally (S.R. Evett et al. 1996). Naturally a plant will seek to

regulate leaf temperature to within this range, however under environmental stress (eg.

soil water depletion) the plant will likely struggle to maintain temperature regulation

(Jackson 1982).

The experiments of SR Evett et al. (1996) on maize (Zea Mays) indicated through the

use of such temperature threshold approaches one could achieve yields and water usage

efficiencies comparable to the more complex analytical evapotranspiration predictions

of H. Penman’s (1952) equations.

2.2.4 Crop Model Methods

The work of HL Penman (1952) provided an excellent frame work for predicting the

evapotranspiration demand of many crops. However its basis in empirical correction
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factors and its purely reactionary approach (eg. transpiration demand could only be

predicted in the present) left much room for improvement. This improvement came in

the form of computerised ”Crop Models”. Crop models exist as prediction models for

the behaviour of plants (de Wit 1965). By supplying various input parameters such as

soil moisture and meteorological conditions a crop model can be used to predict evap-

otranspiration demand as well as investigate the effects of various irrigation schedules

upon biomass accumulation.

This ability to predict the effects of different irrigation schedules on biomass accumula-

tion has been used highly successfully to optimize irrigation techniques in several studies

(K.S. Raju et al. 1983, Alison C. McCarthy et al. 2010, J.E. Bergez et al. 2002). The

primary focus of many of these studies has been optimizing water usage over absolute

yield (J.E. Bergez et al. 2002). This is a distinct strength that is unique to crop model

based approaches when compared to traditional evapotranspiration demand modelling.

The work of K.S. Raju et al. (1983) represents some of the earliest applications of crop

models to irrigation scheduling the author could identify. K.S. Raju et al. (1983) used

a rather unusual approach in their model, rather than using the analytical grounded

approach of CT DeWit (1965) the model was based upon a purely empirical observation

of the relationship between soil moisture and crop yield in corn (Zea Mays). The model

operated in a temporally piecewise manner, with each segment of the growth phase

independently calculating and represented as a state space control system (Fahrmeir

1999).

This model was validated using independently gathered data. However due to the fact

it operated under the assumption that the limiting factor was soil moisture an empirical

normalization constant was required to be calculated for each site. By evaluating the

crop yield model over a variety of cost structures and sites it was possible to generate

a table of optimal irrigation strategies and compare their profitability and expected

yields (K.S. Raju et al. 1983).

A slightly different approach was used in a study by JE Bergez et al. (2002). Rather

than maximising absolute yield when compared to cost, JE Bergez et al. looked at

optimising water efficiency. This water efficiency being calculated by the yield per unit

volume of applied irrigation water. This approach was tested using the MODERATO

crop model. The MODERATO crop model is more complex than purely predictive,
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it also contains a decision engine (J.E. Bergez et al. 2001). By supplying irrigation

constraints this decision engine can suggest ”optimal” irrigation schedules. JE Bergez

et al. successfully tested the theoretical performance of the MODERATO decision

engine against a basic baseline strategy. The results of the experimentation suggesting

favourable outcomes for the crop model approach.

More recent research was performed by AC McCarthy et al. (2010) using the OZCOT

crop model. AC McCarthy et als research looked at the application of crop modelling

to adaptive irrigation control. Within a crop, water demand varies spatially and tem-

porally in response to a variety of factors (which will be expanded upon later in this

review). By independently applying crop modelling to spatially varied subplots AC

McCarthy et al. attempted to optimize overall crop efficiency. The results of a case

study showed great promise for the use of crop modelling and adaptive irrigation to

improve crop yield and water usage.

2.2.5 Machine Learning Methods

Machine learning is a branch of artificial intelligence that deals with computer systems

that can learn from data. The simplest example of a machine learning algorithm would

be the ever common ”line of best fit”. By analysing a set of known data the line of

best fit can be extrapolated to predict values outside of ranges already seen. It can also

be used to interpolate predicted values for gaps between known values. This line of

best fit is known as linear (straight line) regression. Regression isn’t limited to strictly

linear predictions, by scaling the input features one can generate polynomial curves

and through the introduction of further variables even hyper-planes (in greater than

two-dimensional space) (Ng 2012).

To use regression to generate non-linear fits one must first identify what to scale each

variable with. With increases in the number of features (input variables) this problem

can rapidly become very difficult. However there exist methods that allow the predic-

tion of non-linear functions without the difficult manually selected scaling functions, the

primary two of these methods being Artificial Neural Networks and the newer Support

Vector Machines. These methods will only be visited briefly in this review as they are

large topics deserving of much greater attention. However the essential basics behind

the methods are that they can select non-linear scaling factors on their own without
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first being identified by a human. Fundamentally at an external black box scale they

can be observed to operate similarly to regression.

Crop yield in response to meteorological conditions and irrigation scheduling is a great

example of a complex non-linear system (Schlenker & Roberts 2006). Therefore it’s

apt to say machine learning might possibly be well utilized in the task of irrigation

control. Several studies (Q. Zhang et al. 1996, F. Capraro et al. 2008, Karimaldini, F.

et al. 2012, P. Mart et al. 2013) have approached this premise with promising results.

Two previous approaches to applying machine learning techniques to irrigation control

have been identified in the literature these approaches being fuzzy logic and artificial

neural networks.

The earliest identified fuzzy logic approach was by Q Zhang and CH Wu (1996) in

1996. Q Zhang and CH Wu’s approach utilized three sensor inputs, air temperature,

humidity and soil electrical resistivity. Using one thousand lines of C code they were

able to develop a fuzzy logic learning system that dynamically adjusted the fuzzy

irrigation thresholds in order to maintain stable soil moisture content when confronted

with a growing plant and changing weather conditions. Interesting to note is that the

primary sensor used in the trial was a soil resistivity probe.

The best example of an artificial neural network approach is described in the paper

”Neural Network-Based Irrigation Control for Precision Agriculture” (F. Capraro et

al. 2008). F Capraro et al. developed an artificially intelligent SISO (single-input,single-

output) irrigation controller. The input to the controller being a soil capacitance sensor

located in the root zone of the crop and the output being the a solenoid activation

signal. The input features to the artificial neural network included several of the past

soil moisture observations along with the current soil moisture. By acting upon these

basic cues the controller was capable of responding rapidly and accurately to changing

soil properties and environmental conditions.

A study by F Karimaldini et al. (2010) looked at using artificial neural networks to pre-

dict daily evapotranspiration in areas with limited meteorological data. When supplied

with a daily maximum and minimum temperature and average wind speed the arti-

ficial neural network approach was able to outperform all existing evapotranspiration

estimations short of those generated by the data intense HL Penman (1952) model.
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The second study by P Marti et al. (2013) looked at estimating stem water potential in

citrus trees based upon basic environmental parameters and soil moisture observations.

Stem water potential is a great predictor of crop stress and evapotranspiration demand

(P. Mart et al. 2013). In some ways the behaviour of the artificial neural network could

be likened to that of a simple crop model. Despite the simplicity the ANN approach

was able to successfully predict stem water potential, and therefore crop stress, with a

determination coefficient of R2 = 0.926, a remarkably good fit.

2.2.6 Spatial Variability

Amongst a large field soil properties and crop properties can vary dramatically (Peck

1983). This varying in soil properties can lead to inefficient irrigation schedules if the

field is considered as one uniform entity. A study conducted on cotton (Evans 2006)

has shown water efficiency can be improved by up to 44 percent in certain cotton

crops. Work conducted by AW Warrick and SR Yates (1987) bolsters this theory.

The suggested mechanism behind this improvement is that in a water constrained

environment it is better to have patches of well watered crop rather than too little

water everywhere (Warrick & Yates 1987).

Significant work has been performed by AC McCarthy et al. (2008 and 2010) in devel-

oping spatially variant irrigation algorithms. By separating a field into many subplots

and running separate instances of the irrigation algorithm. This approach has shown

great promise in field testing (Alison C. McCarthy et al. 2010).

2.2.7 Conclusion

In conclusion the background research has presented a variety of historical approaches

to automated irrigation scheduling. The recent years have seen the introduction of

artificially intelligent approaches however they have been limited to simple sensor in-

puts and not aware of spatial variation. Given the strength of machine learning when

presented with ”big data” the author believes there is significant room for improvement

and there exists great promise in artificially intelligent adaptive approaches.
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2.3 Machine Learning

2.3.1 Reinforcement Learning

Many machine learning applications involve simple classification, taking in a collection

of input data variables and producing a single output. This single output could be

something like you ”probably” have malaria or you probably don’t. There exist two or

more independent states that can be clearly checked, it is possible to know the correct

answer. Systems involving these approaches are trained through feeding back known

correct answers and then using the system to extrapolate for cases where the answer is

unknown (Ng 2012).

The issue is for many other applications, there is no way of determining the correct

answer. A large class of these problems involves optimization problems. Optimization

is the task of producing a solution for some system that produces as close to possible

the desired response. For agricultural applications this may represent something like

the largest possible yield or the most yield per unit of irrigated water.

One may believe and rightly so it might be a better option to develop a conventional

linear control algorithm for these basic goals. However by using machine learning we can

optimize for incredibly complex and nonlinear reward functions. A non-linear reward

function may be an optimal irrigation strategy that achieves the maximum possible

yield using a fixed water supply quota. Using computer control to reach such targets

is highly novel and a very exciting prospect.

Most machine learning algorithms operate very similar to a form of complex regres-

sion (Russell & Norvig 2010). Applying regression natively to an optimization prob-

lem is non-ideal as approaches for training the system become complex (Sutton &

Barton 1998). Thankfully the solution to the problem of how to solve reinforcement

problems was first proposed by the Richard Bellman in 1957 (Bellman 1957). This ap-

proach named in honor of Russian mathematician Andrey Markov’s work on stochastic

processes came to be known as ”Markov Decision Processes”.
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2.3.2 Markov Decision Process

The Markov Decision Process exists as a mathematical framework for treating and

solving a variety of reinforcement problems. The name ”Markov Decision” refers to the

fact that the framework deals with solutions for problems that can be represented as

Markov chains (Sutton & Barton 1998).

A Markov chain is a mathematical system that exists as a set of states that transition

between one another. The next state depends only on the current state and the current

action. There exists no knowledge of historical states and so the system is referred

to as being memory less (Sutton & Barton 1998). Systems meeting these criteria are

referred to as fulfilling the Markov property (Sutton & Barton 1998).

The vast majority of reinforcement learning problems can be described as Markov

Decision Process (Sutton & Barton 1998). Once one has a Markov decision process

existing as a discrete set of states and actionable inputs it comes to the problem of

solving the system.

Bellmans equations (Bellman 1957) describe a mathematical frame work involving dy-

namic (Howard 1960) programming to solve the complex task. Belmann’s equations

seek to assign a value to each possible state. This value is a function of the current

state and all the possible future states (Sutton & Barton 1998). Rather than looking

simply at the current state and taking an action, Belmann’s equations look out into the

future and calculate the probability of all future possibilities (Sutton & Barton 1998).

This ability to look into the future represents the key strength of the Markov decision

framework.

2.3.3 Value Estimation

The traditional Markov decision process involves a discrete number of possible states. In

the real world input features are generally continuous. One could split the continuous

state space into a discrete number of states however with high dimensional feature

spaces this very quickly becomes extremely computationally intensive (Ng 2012).

On the basis of this computation complexity the problem must be reduced in complex-
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ity and therefore approximated (Ng 2012, Sutton & Barton 1998). This approach is

known as value estimation (Ng 2012). Several techniques exist in order to reduce the

complexity of the problem state space; common approaches include regression, course

coding, tile coding and radial basis networks (Sutton & Barton 1998).

Regression uses conventional line of best fit approaches, such as gradient descent to

attempt to fit some linear combination of parameters to generate an approximation of

the value function (Sutton & Barton 1998, Ng 2012). Often tuning such a system and

choosing parameters is incredibly difficult (Ng 2012).

The second approach, course/tile coding attempts to discretize the value function by

using an adaptive grid (Sutton & Barton 1998). While tile based discretization is

impractical it is sometimes possible to break the value function into a discrete set of

regions and evaluate any point on the state space using interpolation (Sutton & Barton

1998). This approach however is very noisy, in that it generates abrupt transitions in

the value function between adjacent regions (Sutton & Barton 1998). Course coding

can also be difficult and time consuming to tune.

The final approach and a personal favorite of the author involves radial basis functions.

The use of radial basis functions can be liked to a continuous variant of the course

coding approximation method (Sutton & Barton 1998). They retain the property

of being centered on regions within the state space however they generate smooth

continuous transitions.

2.3.4 Radial Basis Function Networks

Radial Basis Function networks are a special class of artificial neural networks in which

the activation function is represented by some Radial Basis Function. There exists a

great variety of possible radial basis functions, and in fact almost any function can

be used. However common functions include the Linear, Polynomial, Fourier, Gaus-

sian and Inverse Multiquadratic kernels (Recht 2005). Each of these kernel functions

possesses its own unique shape and distribution.

By summing together the outputs of a set of Radial Basis Functions one can begin to

approximate nonlinear functions. One of these kernels, the Gaussian kernel, possesses
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the special property of operating in infinite dimensional feature space (Ng 2012). This

property comes from the Taylor series expansion of the exponential function. The

presence of an infinite dimensional feature space allows for linear combinations to act

as universal function approximations (EJ Hartman et al. 1990).

The Gaussian kernel operates on two input parameters, a function centre and a kernel

variance. This variance determines how fast or slowly the function asymptotes to zero

as the distance from the centre is increased (Ng 2012). In order to approximate a fairly

complex function one would need a considerable number of Radial Basis Functions

cantered at various key regions in the state space. Each of these Radial basis functions

would possess its own variance. This leads to a large number of possible configurations.

However the problem can be simplified, the work of J Park and IW Sandberg (1991)

proved that for most cases a single layer network consisting of Gaussian Radial Ba-

sis Functions and possessing a fixed universal and uniform variance was capable of

producing accurate estimations (Park & Sandberg 1991).

2.4 Conclusion

A wide variety of agricultural control tasks can be phrased as optimization problems.

The Markov Decision Process is a mathematical framework that can be used to solve

reinforcement problems. However for a contiinuous state space, such as that of a crop

in a field, value estimation must be used. Single layer Gaussian Radial Basis Function

networks can be utilized as efficient universal value estimators.
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3.4 Model Validation (Field Testing)
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3.6 Algorithm Performance (Field Testing)

A two stage process was used to develop and investigate the performance of an artifi-

cially intelligent irrigation scheduling method. The first stage involved the development

of a crop model for the subject organism and the subsequent simulated training of sev-

eral potential scheduling algorithms.

The second stage investigated the real world performance of the trained algorithms

against a current best practices normal irrigation schedule. Performance was scored

upon the ratio of leaf area to the quantity of applied irrigation. The experimental

trial was performed in the months of July/August 2013 at a test site located on the

University Of Southern Queensland campus.

3.6.1 Design Decisions

Background research indentified several key techniques for automated irrigation schedul-

ing. There existed a significant gap in the application of machine learning to irrigation

control despite promising experimental results (Q. Zhang and C.H. Wu 1996, F. Capraro

et al. 2008, F. Karimaldini et al. 2010 and P. Marti et al. 2012). All the identified ap-

proaches employed the use of Artificial Neural Networks, this experiment investigated

the performance of several different approaches.

The algorithms were trained with an adaptive reward based learning approach, this

was chosen in order to closely respond to the dynamic conditions represented in crop

scenarios. In order to supply highly important priori information to the models a plant

behavior simulator (crop model) was developed. The use of simulators to supply priori

information to machine learning models is a common approach.

Once supplied with priori information the models were trained and tested in an ex-

perimental trial. The trial was performed at the University Of Southern Queensland

campus (-27.61, 151.93) during the months of July-August 2013. The location and time

of testing being chosen on the basis of availability rather than some predefined basis.

The experiment was performed in an open field environment with the specimens placed

within half liter pots elevated approximately 30cm above the soil surface. The experi-
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mental trial was run as an analogue for shallow rooting specimens. Water was applied

through the use of drip irrigators, a common practice in water constrained agriculture.

3.6.2 Subjects

Background research idenitified the model organism Arabidopsis Thaliana as a com-

monly used labaratory specimen. Due to its role as a model organism it has been

extensively studied in the literature. This extensive study is invaluable to the design of

the first stage crop simulation model. The background research also identified the Ara-

bidopsis Thaliana organism as a potential analogue for a variety of commercial crops

(Y.H. Chew and K.J. Halliday 2010).

On the basis of its literature presence and its applicability to future commercial crop

study, experiments will be performed using the Arabidopsis Thaliana organism. The

experimental trial employed the use of approximately 50 specimens arranged into four

trial groups. A careful statistical analysis will have to be performed on the statistical

significance of conclusions drawn from a such a small dataset.

3.6.3 Measures

Performance of the various scheduling algorithms was evaluated by comparing the quan-

tity of applied irrigation to the total leaf area. As biomass is roughly proportional to

the leaf area this measure effectively investigates the relationship between biomass pro-

duction and water usage.

Many commercial crops, such as pastures and the majority of the brassicaceae family,

have a direct relationship between biomass and yield. Therefore this measure represents

a realistic crop performance scoring mechanism, albeit somewhat limited in scope. For

more complex crops a differing score mechanism will have to be developed

3.6.4 Experimental Program



Chapter 4

Theory

4.1 Arabidopsis Thaliana Model

In order to develop the irrigation algorithm the author will require some way of testing

it. It’s never practical to try it out on plants right away. Ten years will be spent trying

to figure out where the compiler bugged out. Something faster and more interactive is

required and that is naturally a simulator, or a model.

The first part of any modelling activity is to identify the inputs of the system. By

identifying the inputs you can begin the task of finding ways to simulate those inputs

and their behaviours.

For the following right up we will consider the Arabidopsis organism. There’s two main

reasons to consider its use, it’s very fast to grow and its very well documented. Both of

those things are the key limits on a time constrained project like the one undertaken.

Arabidopsis is like any plant, it’s effected by abiotic conditions such as weather and it

is effected by biotic things such as growth phase, insect damage, pathway saturation

etc.

These biotic processes by their own nature are very commonly nonlinear and they can

prove very difficult and time consuming to model. Both of these things aren’t really

compatible with this thesis. The task is to develop an irrigation algorithm, not to build

an even larger rube-goldberg machine.
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For the rest of this project we will only consider the abiotic factors involved, the key

biotic factors can be briefly summarised as, water availability, light availability and

evaporative demand. Those three things are pretty large umbrella words for a bunch

of individual effects.

But the key part of these effects is they rely on the environment around the organism

and if we are talking about a plant out in the open that means the weather. In order

to develop a model we will need some sort of virtual ”weather environment” to test our

algorithms.

As to where to source this information, well thats an interesting question. As we plan

to grow it outside in Toowoomba it’s pretty much a straight forward deduction that we

will want to develop the algorithm in a weather environment like our own. Maybe last

years measurements?

And that’d be perfect but there is one catch and that is data availability. The Bureau

of Meteorology holds a pretty tight grip on data release and the data isn’t all that great

to begin with. Good solar observations are limited to a few key sites over the country

but none of them are toowoomba.

Luckily a hop and a skip over the ocean and you have the United States, due too

their government structure publically run organisations like NOAA and NASA have

to release all their research into the public domain. That means great weather data.

Unlike Australia, the United States runs a detailed set of solar observatories. The

data from these observatories is available as the NSRDB (National Solar Radiation

Database).

While the weather observations from NOAA can be obtained immediately, the publi-

cally available NSRDB data is delayed by approximately 2 years. So we can’t choose

last year but you know we can easily choose 2010.

Now its a case of picking a location, one thing I knew off the top of my head is that

plenty of people contrast California with parts of Australia. It’s dry, hot and yet a

food bowl. A little researching later, honestly floating google earth over the californian

state revealed an interesting patch of green, Fresno California.

Fresno is a large farming region and its hot and its ridiculously dry, a lot like most of
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australia, we’re talking 300mm of rain a year. In order to grow crops in an environment

like that you need irrigation, and that comes from the californian aqueduct system. It’s

a high tech. economy that relies on water constrained human irrigation. It’s a perfect

fit for the proposed technologies.

There’s a final advantage, right in the middle of that green patch is the Fresno Air

Terminal and it’s high accuracy meterology observation station. The data from the

Fresno location for the entire year of 2010 is trivial to obtain online.

There is issues however, the data has holes, from sensors going down, upgrades, etc.

Holey data is terrible for our model, we’re not trying to formulate some kind of plan-

t/swiss cheese hybrid. So we need a way to fill those holes from a different source.

Thankfully the author has worked with the Global Forecast System (GFS) before. The

GFS is a weather model run by NOAA that generates predicted forecast for the entired

globe. The resolution is a little poor but it is one of the very few models that allow

public access to its data.

As such, the author undertook the task of downloading the entire GFS dstaset for the

year of 2010 (All 100GB Worth). Due to dodgy peering agreements, the american

servers were horribly slow, averaging maybe 20kB/s. Luckily the author recognized

this and configured a cheap linode virtual server located in america to scrape the data

and then relay it back to australia.

After about 7 days the entire dataset was collected and collated, it weas then processed

with the opensource tool wgrib and the relevant records for sea level conditions were

extracted. These included air temperature, relative humidity and wind speed/direction.

These entries were then lineary interpolated for the latitude and longitude of the fresno

air terminal and were compiled into a set of large text files each containing roughly

9000 entries. Each entry being measured in hours since the start of the year.

Due to conflicts with timezones the author decided to start the reference year in the

simulator on january 2nd 2010. Once the text files were collected and appropriately

formatted, the author then processed the NSRDB to get a yearly solar flux.

Some experiments were then used to compare how good a fit the processed GFS data

was for the Fresno site. There was some significant variances between the fits. The au-
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thor decided then to fuse the holey actual observations with the smooth but sometimes

not 100 accurate GFS dataset and aftet some filtering the weather dataset was born.

There was two remaining parameters needed for modelling the plant and these were

plant leaf temperature and soil temperature. The soil temperature was generated from

the weather observations using a model developed by B Horton at CSIRO. The leaf tem-

perature was then calculated using the stomatal conductivity values for arabidopsis,

sourced from the three papers ”Arabidopsis homeodomain-leucine zipper IV proteins

promote stomatal development and ectopically induce stomata beyond the epidermis”,

”Phytochrome B Enhances Photosynthesis at the Expense of Water-Use Efficiency in

Arabidopsis”, ”The ERECTA gene regulates plant transpiration ef?ciency in Arabidop-

sis”.

Using the conductivity values identified and the leaf geometry for common arabidopsis

strains the author was able then to use some math from the textbook ”environmental

biophysics” to develop a leaf temperature model.

With all these inputs it was just a case of a lot of reading, which can be seen by perusing

the comments of the attached crop model code (in appendix).
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4.2 Field Experiment Block Diagrams

Figure 4.1: Block Diagram of The Model Validation Experiment

Figure 4.2: Block Diagram of The Algorithm Field Test Experiment
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Results

5.1 Arabidopsis Thaliana Model

5.1.1 Summer Weather

Figure 5.1: Temperature/Humidity Observations at Fresno Air Terminal, July 1st-8th

(2010)
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Figure 5.2: Interpolated Sea Level GFS 3h Predictions, Fresno California, July 1st-8th

(2010)

Figure 5.3: Comparison of GFS Predictions and NOAA Observations (Air Temperature),

Fresno California, July 1st-8th (2010)
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Figure 5.4: Comparison of GFS Predictions and NOAA Observations (Relative

Humidity), Fresno California, July 1st-8th (2010)

Table 5.1: GFS Summer Season Performance, Fresno California, 2010

Fit R2 P

Summer Temperature 77.9% <0.05

Summer Humidity 74.2% <0.05
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5.1.2 Winter Weather

Figure 5.5: Temperature/Humidity Observations at Fresno Air Terminal, February

1st-8th (2010)

Figure 5.6: Interpolated Sea Level GFS 3h Predictions, Fresno California, February

1st-8th (2010)
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Figure 5.7: Comparison of GFS Predictions and NOAA Observations (Air Temperature),

Fresno California, February 1st-8th (2010)

Figure 5.8: Comparison of GFS Predictions and NOAA Observations (Relative

Humidity), Fresno California, February 1st-8th (2010)
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Table 5.2: GFS Winter Season Performance, Fresno California, 2010

Fit R2 P

Winter Temperature 22.8% <0.05

Winter Humidity 2.3% <0.05
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5.1.3 Fused Data

Figure 5.9: Comparison of Fused Data (An Interpolated Combination of GFS and NOAA

Datasets) Against NOAA Observations (Air Temperature), Fresno California, July

1st-8th (2010)

Figure 5.10: Comparison of Fused Data Against NOAA Observations (Relative

Humidity), Fresno California, July 1st-8th (2010)
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Figure 5.11: Comparison of Fused Data Against NOAA Observations (Air Temperature),

Fresno California, February 1st-8th (2010)

Figure 5.12: Comparison of Fused Data Against NOAA Observations (Relative

Humidity), Fresno California, February 1st-8th (2010)
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Table 5.3: Fused Dataset Performance, Fresno California (2010)

Fit R2 P

Summer Temperature 92.3% <0.05

Winter Temperature 68.2% <0.05

Summer Humidity 92.7% <0.05

Winter Humidity 45.2% <0.05
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5.1.4 Wind Measurements

Figure 5.13: Summer Windspeed, Fresno California, July 1st-8th (2010)

Figure 5.14: Winter Windspeed, Fresno California, February 1st-8th (2010)
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5.1.5 Solar Flux Measurements

Figure 5.15: Summer Solar Insolation, METSTAT Solar Radiation Model, Fresno

California, July 1st-8th (2010)

Figure 5.16: Winter Solar Insolation, METSTAT Solar Radiation Model, Fresno

California, February 1st-8th (2010)
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5.1.6 Leaf Temperature Model

Figure 5.17: Potential Arabidopsis Leaf Temperature (Custom Physics Model), July

1st-8th (2010)
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5.1.7 CSIRO Shallow Soil Model

Figure 5.18: Predicted Shallow (5cm) Soil Temperature (Horton 2012)
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5.1.8 Photosynthetic Rate vs Solar Insolation

Figure 5.19: Relative Arabidopsis Photosynthetic Efficiency vs Solar Insolation
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5.1.9 Factors Effecting Transpiration

Figure 5.20: Arabidopsis Transpiration vs Solar Insolation

Figure 5.21: Arabidopsis Transpiration vs Relative Humidity
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Figure 5.22: Arabidopsis Transpiration vs Wind Speed

5.1.10 Complete Arabidopsis Crop Model

Figure 5.23: Predicted Leaf Area / Biomass
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Figure 5.24: Soil Volumetric Water Ratio

Figure 5.25: Modelled Transpiration Loss
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Figure 5.26: Modelled Carbon Dioxide Exchange

5.2 Machine Learning Algorithm

5.2.1 Dataset Clustering (k-means)

Figure 5.27: Graphical Representation Of Problem State-Space

Table of centroid values ....
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Figure 5.28: Identifying Cluster Boundaries In The Visual Data

Figure 5.29: Running K-Means Repeatedly In Order To Average Out Local Optima
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Figure 5.30: Final Positions of RBF Centers In The State Space

5.2.2 High Performance Computing

Figure 5.31: Serial Batch Gradient Descent, Poor Processor Utilization
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Figure 5.32: Batch Gradient Descent Code Profiling

Figure 5.33: The Performance Bottleneck is Identified

Figure 5.34: Performance Of Custom Parallel Implementation



5.2 Machine Learning Algorithm 51

5.2.3 Parallel Value Iteration Results

The following values were computated using the authors massively parallel MDP solver.

The source code of which can be found in the appendix under the name

<crazyfastMDPsolve.c>.

Table 5.4: Array of Identified RBF Centroids

TMP RH Flux Water Area Wind T24 RH24 W24 T48 RH48 W48 MJ Lt

296 40 369 0.158 6265 1.8 296 41 1.8 296 42 1.6 27 0.621

298 38 374 0.168 21144 2.1 299 36 2.5 298 35 2.5 31 1.42

296 43 290 0.164 9870 1.8 296 44 2 295 45 2.1 26 0.772

293 51 340 0.175 577 1.8 291 55 1.7 291 55 1.7 21 0.0948

292 53 284 0.171 1826 1.7 292 54 1.7 292 54 1.6 21 0.225

297 41 299 0.151 15506 2.4 297 39 2.2 298 39 2.1 29 1.18

293 50 293 0.162 3713 1.8 292 50 1.8 293 50 1.8 23 0.406

295 44 291 0.159 10501 2 295 45 2 295 45 2.2 26 0.808

Maximum Yield Per Unit Water, Reward Function:

Water =


0.01 : IrrigationL < 0.01

IrrigationL : IrrigationL >= 0.01

R(x) =
LeafAreamm2

Water

Trained MDP Parsmeters: γ = 1.1642e− 16, Error = 1.97%

θ = [315909, 315909, 315909, 315909, 315909, 315909, 315909, 315909, 315909]

Constant Soil Water Volume Regulation, Reward Function: θ = 0.2, cubic.

R(x) = (1.176 · (0.85 − abs(WaterAvailability − 0.15)))3

Trained MDP Parsmeters: γ = 6.4e− 11, Error = 0.164%

θ = [4.79966, 4.79161, 4.6989, 4.78138, 4.79161, 4.7933, 4.7496, 4.79406, 4.77877]
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5.3 Model Validation (Published Observations)

Figure 5.35: Maximal Biomass Accumulation Test

Table 5.5: Model Performance

Day Modelled Leaf Area (cm2) Expected Area (cm2) Error %

25 16.8 8.31 +102%

32 42.8 38.9 +10%

39 108.6 130 -17%

48 359.9 258 +39%
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5.4 Model Validation (Field Testing)

5.4.1 Soil Sensor Calibration

Figure 5.36: Undertaking Soil Moisture Probe Calibration

Figure 5.37: Voltage vs Soil Volumetric Water Ratio For Resistivity Sensing Device
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5.4.2 Experimental Apparatus

Figure 5.38: Assembled Test Apparatus, Semi-Shaded Test Area
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5.4.3 Biological Specimens

Figure 5.39: Arabidopsis Thaliana COL=0 Specimens From Lehle Seeds

Figure 5.40: Verifying Seed Integrity Before Viability Testing
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Figure 5.41: Preparing Arabidopsis Seeds For Planting With a Pipette

Figure 5.42: The Seeds Placed on The Surface of a Very Fine Propagation Mix



5.4 Model Validation (Field Testing) 57

Figure 5.43: Freshly Germinated Seedlings Transfered To Larger Pots

Figure 5.44: Tray of Three Week Old Arabidopsis Seedlings Ready For Experimentation
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5.4.4 Experiment Results

Figure 5.45: Arabidopsis Specimen Before and After 7-Day Experimental Test Period, If

In Grayscale Refer Below

Figure 5.46: Humidity and Temperature Observations During The Experimental Test

Period

The astute reader may recognize there was reference to a 10kg postal scale in the block

diagram for the validation experiment. It turns out despite the high resolution of the

scale it was unsuitable for the experiment as it had drift compensation. This lead to a

stable null output which was entirely unusable.

For those readers limited to a black and white palette, Fig 5.45 shows little size change

however in the after image, the leaves have lost their green lustre and are beginning to

turn gray. The author also noted a large increase in the number leaf hairs.
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Figure 5.47: Solar Insolation Observations During The Experimental Test Period

Figure 5.48: Soil Moisture Variance, 48 Hour, Normal Irrigation Schedule
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Figure 5.49: Leaf Area Observations (Healthy Leaf Mass), During The Experimental Test

Period

Figure 5.50: Simulation Run Using Observed Experimental Weather Conditions
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5.5 Algorithm Performance (Crop Model)

Location: Fresno Air Terminal, Fresno, California, USA

Simulation Timespan: April 1st-29th (2010) (Season: Spring)

Average Monthly Temperature Range: 10->27 celcius (World Weather Online 2013)

Figure 5.51: Total Accumulated Biomass, Comparison of Varying Control Strategies
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Figure 5.52: Soil Moisture Status, Comparison of Varying Control Strategies
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5.5.1 Results

MDP, Maximum Water Efficiency Configuration:

Modelled Final Values:

Dry Shoot Biomass: 0.706 grams

Leaf Area: 13265 mm2

Total Applied Irrigation: 0.245 Litres

Irrigation Approach Achieved A Score Of: 54143.7

MDP, Constant Theta Control:

Modelled Final Values:

Dry Shoot Biomass: 0.753 grams

Leaf Area: 13883 mm2

Total Applied Irrigation: 0.28 Litres

Irrigation Approach Achieved A Score Of: 49585

Normal Irrigation Schedule:

Subirrigation to θ =
θfc+θsat

2 every 48 hours or when wilting is first noticed.

Modelled Final Values:

Dry Shoot Biomass: 0.607 grams

Leaf Area: 11502 mm2

Total Applied Irrigation: 1.38545 Litres

Irrigation Approach Achieved A Score Of: 8302.1

Bang-Bang Controller on θ = θCRITICAL

Leading Manually Programmed Algorithm.

Modelled Final Values:

Dry Shoot Biomass: 0.763 grams

Leaf Area: 14060 mm2

Total Applied Irrigation: 0.289093 Litres

Irrigation Approach Achieved A Score Of: 48635.9
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5.6 Algorithm Performance (Field Testing)

5.6.1 Construction

Figure 5.53: First Phase of The Field Experiment Contruction, Showing Valve Assembly

Figure 5.54: Field Experiment Contruction, Overhead Stands and Propagation Trays
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Figure 5.55: Field Experiment Contruction, Overhead Vision/Illumination System

Figure 5.56: Field Experiment Contruction, Testing Camera Assembly
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Figure 5.57: Field Experiment Contruction, Completed Vision System

Figure 5.58: Field Experiment Contruction, Insect Proofing/Environment Protection
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Figure 5.59: Field Experiment Contruction, Drip Irrigator Array
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Figure 5.60: Completed Field Experiment Test Apparatus
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5.6.2 Field Installation

Figure 5.61: Field Experiment Installed At Test Location

Figure 5.62: Field Experiment Processing Cabinet
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5.6.3 Results

Due to time constraints and unrelenting technical issues the project was abandoned.

The components used in its construction have been packed away and the apparatus

assembly deconstructed.

The results of the model validation experiments should hopefully provide some reas-

surance in the utility of machine learning and its application to irrigation control.

Bit of a shame really but one important skill at managing something like this is recog-

nizing when an investment has gone bad. Best regards, Damian.
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Discussion

6.0.1 A Brief Overview Of The Results

GFS And Fused Data Comparisons:

The GFS model performs far bettter during the summer months.

The fused data provides excellent summer performance R2 = 92.3%

The fused data provides acceptable winter season performance R2 = 68.2%

Leaf/Soil Models:

Leaf temperature is typically 4c lower than air, not listed in the results but I did check

that temperature profile against observations and it matched.

5cm soil temperature can be nearly 7c cooler than air, profiles matched CSIRO paper.

Transpiration:

Transpiration varies exponentially with air temperature, low soil moisture blunts the

effect. Exactly as expected.

Transpiration varies linearly with relative humidity, up until a saturation point.
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The geometry of the Arabidopsis leaf makes it resistant to water loss through wind.

Very Interesting.

Clustering:

Data generated by the bang bang controller generates a nice distribution of 8 centroid

locations.

tSNE is great at compressing dimensions.

Value Iteration:

Stochastic gradient is many times faster than batch gradient descent.

The code profiler is a good warning to the phenomenon of premature optimization.

The authors algorithm converges very quickly, within roughly 100 iterations.

Value Iteration Results:

The fact every value is identical is NO BUG! It’s math that even I can’t wrap my head

around. Somehow they’ve all ”converged” to something I truly am bewildered by, the

performance is also bewilderingly incredible ... what the heck just happened?!?

A validation error under 2

Model Validation Results:

The arabidopsis model is a surprisingly good match for the saturated biomass test.

Soil Sensor Calibration:

The graph of voltage to soil moisture is highly erratic and difficult to interpret.
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Arabidopsis Samples:

They arrived in great condition from LEHLE and germanation was equally excellent.

Model Validation, Field Test:

The author didn’t think the plants were dieing until the photos were put side by side.

Totally accidental mistake not giving them enough light.

The overhead vision system was able to detect the decline in plant health very reliably.

The crop model shows an extremely blunted growth curve, the plant is stagnating and

dieing, it predicted it!

Nice work to the authors programming.

Algorithm performance:

Total biomass is very similar except for the normal irrigation control which is slightly

blunted.

The Constant theta control performs surprisingly well on the scoring.

The developed algorithm is 6.5x as efficient as the normal schedule.

The developed algorithm is 10

Algorithm performance (field trial):

Very ambitious build which was completed.

Sad to see time run out.
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Conclusion

All in all the research was a very rewarding experience! The author’s knowledge of

machine learning has definitely gone up a few notches. Despite the fact that the time

constraints on the completion of the project got in the way there was some intriguing

and promising discoveries.

This project led to the development of a primitive Arabidopsis Crop model, at this point

in time this may be the first crop model developed for the hugely popular species. While

the model is required to undergo far more stringent testing before it could be used for

more serious applications, initial trials have been great and definitely promising!

There are likely plenty of bugs and corner cases that need to be ironed out but it’s good

to see something working. The author is tempted to take the technologies he developed

for the project and apply them to other species. Namely ”Atlantic Giant Pumpkins”,

an old hobby some new technology might be able to put a spin on.

The project also led to the development of a general, highly multithreaded MDP solver.

The performance was great and it introduced the author to many aspects of high

performance computing. To be fair there is likely still a huge room for improvement in

the algorithm but it was incredible to witness just how fast reinforcement learning can

be.

The third interesting outcome came from the MDP solver itself, for some reason with

the right Basis Function width it is possible to compress a vector of weights values into
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a single scalar. Witnessing that was a huge wow moment and the author now must

figure out the secret to the math.

And one cannot forget the performance of the developed irrigation algorithm, beating

human controls by nearly 600big data can come up with!
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Appendix B

Seminar Slides

ARTIFICIALLY 

INTELLIGENT  

CROP IRRIGATION 

Damian Peckett 
 

Supervisor: Dr Alison McCarthy 

Assistant Supervisor: Dr Nigel Hancock 

ARTIFICIAL 

INTELLIGENCE? 

It’s Broad! 

Bayesian Statistics 

Machine Perception 

Natural Language Processing 

Machine Learning 
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MACHINE LEARNING 

A FIVE MINUTE 

INTRODUCTION 

MATH IS  � � �� � � �� �� �
	 
 � � 
 � � � � � � 
 � � � � � � � 
 � � � � � � � � � � � � Reinforcement 

OR CLASSIFICATION? 

Sometimes There isn’t  

Just a “RIGHT” Answer 
GROWING A PLANT? 

REINFORCEMENT! 
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MARKOV DECISION PROCESS �
Construct a Model �
Develop a Value Estimator  �
Solve Belmann’s Equations �
??? �
PROFIT 

� ��  � !� "� #� $ %� & A MODEL? 

ARABIDOPSIS THALIANA 

5 WEEKS 

5 CHROMOSOMES 

50 YEARS 

FRESNO CALIFORNIA 

Similar CONDITIONS 

Human irrigation 

GREAT DATA 
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Big DATA ' ( ) * + + + , - ( . / 0 12 MODEL PARAMETERS    �
Biological Properties (Numerous Research Papers) �
Solar Insolation (METSTAT  NSRDB Model) �
Air Temperature (NOAA Observations / NASA GFS Model) �
Leaf Temperature (Custom Physics Model) �
Soil Temperature (CSIRO Shallow Soil Model  (B. Horton 2012)) �
Relative Humidity (NOAA Observations / NASA GFS Model) �
Wind Speed (NOAA Observations / NASA Model) �
Precipitation (NOAA Observations) 

WEATHER 

Time 

Solar 

Flux 

Air 

Temp 

Relative 

Humidity 

Wind 

Speed

Transpiration 

Time 

Milliliters

Per Hour  

EVAPORATION 

Time 

Milliliters

Per Hour  

PROPAGATION 

Time 

Grams

Per Hour  
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GROWTH RESPONSE 

Time 

Soil Moisture 

Leaf Area 

REINFORCEMENT 

LEARNING 

A SIMPLIFIED MDP VALUE FUNCTION 

 

0.863 0.879 0.900 0.919 0.936 0.956 0.976 1.000 

0.843 0.863 0.879 0.900 0.919 0.936 0.956 0.976 

0.827 0.843 0.827 0.879 0.890 0.879 0.936 0.956 

0.807 0.827 0.807 0.827 0.839 0.899 0.919 0.936 

0.790 0.807 0.827 0.843 0.863 0.879 0.899 0.919 

0.774 0.790 0.807 0.827 0.843 0.879 0.823 0.899 

0.758 0.774 0.790 0.807 0.827 0.843 0.863 0.879 

0.742 0.758 0.774 0.790 0.807 0.827 0.843 0.863 

OPTIMUM POLICY 

0.863 0.879 0.900 0.919 0.936 0.956 0.976 1.000 

0.843 0.863 0.879 0.900 0.919 0.936 0.956 0.976 

0.827 0.843 0.827 0.879 0.890 0.879 0.936 0.956 

0.807 0.827 0.807 0.827 0.839 0.899 0.919 0.936 

0.790 0.807 0.827 0.843 0.863 0.879 0.899 0.919 

0.774 0.790 0.807 0.827 0.843 0.879 0.823 0.899 

0.758 0.774 0.790 0.807 0.827 0.843 0.863 0.879 

0.742 0.758 0.774 0.790 0.807 0.827 0.843 0.863 

AT EVERY ACTION 

THE VALUE FUNCTION 

IS MAXIMISED 
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BUT SOMETIMES 

YOU CAN’T USE 

TILES! 

VALUE ESTIMATION, 

USING REGRESSION 

CONTINUOUS MDP 

BUT THE CONTOUR 

MAP IS COMPLEX! 3 4 5 67 8 8 7 9 : ; < 7 9 = > 6? = @ 8 67 8 8 > 8 A ; 8 B
Introducing 

THE HERO! 

Gaussian KERNEL RBF 

X Is The Current State,  

Xk Is The RBF Centroid, C
 Is The Inverse Variance. 
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Complex Shapes 

REQUIRE COMPLEX 

FEATURE SPACES! 

FEATURE DIMENSIONS 

Taylor Series Expansion Of The Exponential Function: DE
In the Gaussian RBF x is equal to the square of the  

L2 distance from the radial basis centroid. Therefore:  

INFINITE! FEATURE DIMENSIONS! 

WITH ENOUGH RBF’s 

YOU CAN ESTIMATE 

ANY FUNCTION! 

MY ALGORITHM �
Value Estimation MDP  �
Linear Combination Of Basis Functions �
Eight Gaussian Radial Basis Functions �
Fourteen Input Features

INPUT FEATURES F
Current Air Temperature G
Current Relative Humidity F
Current Solar Insolation F
Current Soil Water Availability Ratio F
Current Leaf Area F
Current Wind Speed F
24 Hour Predicted Average Air Temperature G
24 Hour Predicted Average Relative Humidity F
24 Hour Predicted Average Wind Speed F
24-48 Hour Predicted Average Air Temperature F
24-48 Hour Predicted Average Relative Humidity F
24-48 Hour Predicted Average Wind Speed F
Total Solar Energy Last 24 Hours  F
Total Applied Irrigation H IJ K L IM L KM N M OP Q R O S N L B RBF Centers? 
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Run The Model 

With A BANG-BANG 

CONTROLLER 

K-mEANS CLUSTERING 

t-SNE 2D Representation of 14 Dimensional Model Output Data 

CENTER THE RBF’S 

ON THE CLUSTERS! 

FIXED VARIANCE 

FOUND USING 

GRID SEARCH 

REWARD FUNCTION 

What Needs To Be Optimized? 

 

For All The Following Results We Are Using: 

R(s) = (LEAF AREA) / (TOTAL APPLIED IRRIGATION) 

 

Attempting To Maximize For Water Usage Efficiency.  

 

SOLVE USING  

VALUE ITERATION! 
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TRAINING RESULTS 

Xk = [ 

297 41 356 0.162 16983 1.9 299 38 1.7 300 36  2 30 0.976 

291 53 281 0.153 9173 2.2 291 53 2.3 291 52 2.3 25 0.533 

293 48 301 0.168 2169 1.7 293 49 1.8 292 52 1.9 27 0.271 

303 34 354 0.157 22727 1.9 303 32 2.3 300 28 2.4 31 1.5 

292 49 359 0.152 12487 2.4 292 49 2.5 295 45 2.3 27 0.763 

291 47 314 0.152 6300 2.4 291 47 2.2 291 49 2.1 29 0.45 

291 49 392 0.174 609 2.5 290 52 2.5 291 52 2.5 26 0.107 

290 55 301 0.183 3974 2.3 290 55 2.4 290 52 2.5 24 0.352  ] 

 TU
[ 78519  63857  74194  76854     

        53085  70596  76115   76447  76815 ] 

 
Holdout Cross Validation Error: 3.6 Percent V W X Y Z [ \ ] \ ] ^ _ ` Z a X b c Let’s TEST IT! 

ON THE MODEL 

Time (hours) 

Leaf Area 

  (mm2) 

Artificially Intelligent Algorithm Undergoing Simulated Testing 

MODEL Results 

Normal Irrigation Schedule (Sub Irrigation): 
 

Dry Shoot Biomass: 0.684 grams 

Irrigation Approach Achieved A Score Of:  7011 
 

Bang-Bang Control, Drip Irrigation: 
 

Dry Shoot Biomass: 1.07 grams 

Irrigation Approach Achieved A Score Of:  25673 
  

Artificial Intelligence , Drip Irrigation: 
  

Dry Shoot Biomass: 1.15 grams 

Irrigation Approach Achieved A Score Of:  26335 

THE REAL WORLD PROCESSING UNIT 
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ARABIDOPSIS THALIANA 

TEST APPARATUS F
48 Test Specimens, Located in Four Propagation Trays F
11 Soil Resistivity Sensors G
2 Solar Insolation Meters F
2 Humidity/Temperature Sensors F
1 Weight Sensor F
13 Solenoids F
5 Overhead Cameras F
4 Overhead Spot Illumination Lamps F
VIA Pico-ITX Board Running CentOS 6, OpenVPN , and an entirely 

custom software stack written in C. F
Arduino Mega 2560 as an embedded controller. F
Linode Virtual Server running AI Code.  F
Weather Data From <http://meteojs.com>  

 

MODEL VALIDATION 

In the next two weeks experimental tests shall be carried out to: 

 F
Confirm The Functionality Of The Crop Model G
Confirm The Functionality Of The Test Apparatus F
Eventually Confirm The Functionality Of The Intelligent Algorithm 

 d e d f g h i j k l i m e n m o p q ir CONCLUSION s
It Works! s
Versatile Performance! t
Promising Avenue For The Future! u v w x y z { | } z { ~ v w � v w � z � ~ w x ~ { { � y v | x � � � � y � � � w { z { ~ v w �� � z w � � { v � � � y � v w � � v y { � � z { { � w { ~ v w � � { � z � z � � y � } v w xw ~ x � { � | { { ~ w x z } } { � ~ � { v x � { � � y�



Appendix C

Project Consequences

This particular project is brings about almost universal benefits to society, demand for

food is only going to increase in the coming decades and it’s the ethical responsibility

of engineers to consider the consequences of such demands.

This project brings about the potential of increased crop yield, increased safety (through

limiting runoff and excess pesticide/fertilizer usage), increased sustainability (through

reduced water usage and reduced soil damage). This particular technology through

indirect mechanisms may provide pathways to improving the safety of the agricultural

industry.

The societal impact is generally positive, while the technology may reduce labor and

food costs it may lead to reduced jobs. However through efficient water use many small

farms may become viable. This would result in a stimulus to the economy.

These performance increases are maintained with traditional crops, by increasing the

efficiency of current strains it may prove possible to limit the introduction of transgenic

species. While the author is fervent supporter of genetic engineering many individuals

in our society have moral qualms.

Generally as long as the technology remains open and universally accessible. The

general impact to society and the environment is overwhelming positive.
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Initial Proposed Timeline



Appendix E

Preliminary Resource Analysis

E.1 Faculty Time

The project experiments have been designed in such a way they are almost entirely

autonomous. The little required human intervention is more than capable of being

fulfilled by the author, Damian Peckett,

As for help with the implementation of the experiments and debugging, faculty support

will be somewhat limited due to the lack of expertise in machine learning. However the

author is known for resilience and has successfully self taught up until the present time.

Help will prove to be available in several machine learning and AI forums to which he

is a member of.

As for report suggestions and help with the university relations, the supervisors, Dr.

Alison McCarthy and Dr Nigel Hancock have been holding regular weekly meetings

with the author. This arrangement has proven highly successful up until this point and

the author believes it should remain so. This represents a two to three hour weekly

commitment from each of the supervisors.
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E.2 University Resources

Beyond access to several square meters of USQ Ag. Plot space, running water, electric-

ity and internet connectivity the experiment is not particularly dependent on university

resources. As for software requirements and equipment, the authors design is capable

of operating using entirely open source and free software. As for construction of the

experimental apparatus, the author has access to a fully equipped personal workshop

that should prove ideal.

However this being said, university resources were invaluable during the research phase,

with special mention to the USQ library with its well stocked book collection and journal

subscriptions.

E.3 Project Budget

As identified previously a maximum worst case gross project cost of approximately 1400

dollars is predicted. This takes into account pricing variability amongst retailers and

includes a twenty percent safety margin for unforeseen costs and equipment failures.

This value in its gross form is presently higher than ideal, however with some inventive

buying and recycling this should prove satisfactory and achievable.

This gross value excludes potential contributions from the university, however keep-

ing this project as primarily self sponsored allows for a greater deal of flexibility and

simplifies property ownership. The borrowing of several items from faculty such as

computing devices etc, remains an avenue to be investigated.

The budget identifies critical components and has sourced potential suppliers for each,

potential avenues for the unavailability of critical components has also been investi-

gated, however at this point little trouble has been identified and action has therefore

yet to be taken.

The primarily difficult to source component at the present time, is the biological samples

for the emphArabidopsis Thaliana. No Australian retailers have been identified who

carry specimens of the widely cultivated Columbia-0 phenotype. The import restric-

tions on Arabidopsis have been researched and it has been identified that international
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ordering is a viable avenue. The author has asked for a quotation on the importation of

two hundred seeds from the American retailer ”Carolina Biological Supply Company.”

In the event that such importation proves unsuccessful, several nearby universities have

been shown to work with Arabidopsis Contact may be made with them to identify their

suppliers or potentially obtain a biological sample.



Appendix F



103

Preliminary Budget



Appendix G

Risk Analysis, Algorithm

Performance Experiment



Risk Assessment 1

Page 1

Description of Hazards People at Risk Number at Risk Parts of Body Risk Level

2 All

Categories Short Term Controls Long Term Controls Completion Details

Description of Hazards People at Risk Number at Risk Parts of Body Risk Level

Fire Hazard Due To Electrical Malfunction All in Area More Than 5. All

Categories Short Term Controls Long Term Controls Completion Details

Description of Hazards People at Risk Number at Risk Parts of Body Risk Level

Tripping on Exposed Leads All in Area 1 All Moderate

Categories Short Term Controls Long Term Controls Completion Details

Risk Management Chart For Location: USQ Ag Plot                          Hazard Category: Electrical

High Voltage Electric Shock Due to 240V Mains 
Leakage

Persons within 
Several Metres of 

Current Leak

High Consequences, 
Low Probability

Design
Substitution
Redesign
Separation

Administration
P.P.E.

 Low Voltage DC Used in Moisture Prone Areas.

All High Voltage Connections To Be Securely 
Insulated and Kept Away From Human Contact,

* Low Voltage Mains Isolated Supplies
* Earth Current Leakage Safety Switches.
* Doubly Insulated 240V Connections.
* Properly Earthed Power Supply.

Risk Management Chart For Location: USQ Ag Plot                          Hazard Category: Electrical

High Consequences, 
Very Low Probability

Design
Substitution
Redesign
Separation

Administration
P.P.E.

 Employ The Use of Fuse's and Current Breakers.

Test Apparatus is to be Isolated From Flammable 
Materials.

* Proper Fusing
* Locating Away From Flammable Materials.
* Ensure CO2 Fire Extinguishers Available

Risk Management Chart For Location: USQ Ag Plot                          Hazard Category: Obstacle

Design

Substitution
Redesign
Separation

Administration
P.P.E.

Ensure All Cables Are Well Secured and Out of 
The Way of Peoples Feet

Ensure Cables are Located In Rarely Traversed 
Areas.

* Warning Sign-age
* Buried Cables



Risk Assessment 2

Page 1

Description of Hazards People at Risk Number at Risk Parts of Body Risk Level

Operator 1 All Low

Categories Short Term Controls Long Term Controls Completion Details

Description of Hazards People at Risk Number at Risk Parts of Body Risk Level

All in Area 1 All Low

Categories Short Term Controls Long Term Controls Completion Details

Ensure All Trays/Tanks Securely Affixed. * Build a Fence around the test apparatus

Description of Hazards People at Risk Number at Risk Parts of Body Risk Level

Tripping On Slippery Surfaces Due to Run Off All in Area 1 All Moderate

Categories Short Term Controls Long Term Controls Completion Details

Risk Management Chart For Location: USQ Ag Plot                          Hazard Category: Sharp Objects

Cutting Oneself on Exposed Sharp Surfaces 
(Corner, Screws, etc.)

Design
Substitution
Redesign
Separation
Administration
P.P.E.

Ensure All Sharp Surfaces are Sanded Smooth 
And No Nails/Screws Are Exposed.

* All Sharp Surfaces are Sanded Smooth
* Necessary Sharp Surfaces Shielded With     
Safety Guarding

Risk Management Chart For Location: USQ Ag Plot                          Hazard Category: Gravity

Falling Water Reserviour, Seedling Trays, Etc

Design
Substitution
Redesign
Separation
Administration
P.P.E.

Risk Management Chart For Location: USQ Ag Plot                          Hazard Category: Obstacle

Design
Substitution
Redesign
Separation

Administration
P.P.E.

Ensure All Run Off Is Drained Into Porous Soil

Make Sure Drainage Area Is Inaccessible  To Foot 
traffic.

*Attach To Proper Drainage System/Bed
* Fence Around Drainage Area



Appendix H

Arabidopsis Crop Model

/∗ Arabidopsis Thaliana Crop Model
∗ WARNING: MAYORMAYNOTGENERATECORRECTRESULTS
∗ kind of l ike schrodingers cat :P
∗
∗ You are welcome to use this however you wish , however I ’d love an email
∗ i f you do something cool with i t ! Word Out! Damo
∗
∗ Copyright (c) 2013, Damian Peckett <damian.peckett@gmail .com>
∗ All rights reserved .
∗
∗ Redistribution and use in source and binary forms , with or without
∗ modification , are permitted provided that the following conditions are met:
∗
∗ 1. Redistributions of source code must retain the above copyright notice , this
∗ l i s t of conditions and the following disclaimer .
∗ 2. Redistributions in binary form must reproduce the above copyright notice ,
∗ this l i s t of conditions and the following disclaimer in the documentation
∗ and/or other materials provided with the distribution .
∗
∗ THIS SOFTWARE IS PROVIDED BY THECOPYRIGHTHOLDERSANDCONTRIBUTORS ”AS IS” AND
∗ ANYEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
∗ WARRANTIESOFMERCHANTABILITYAND FITNESS FOR A PARTICULARPURPOSEARE
∗ DISCLAIMED. IN NOEVENT SHALL THECOPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FOR
∗ ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
∗ (INCLUDING, BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
∗ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDAND
∗ ONANYTHEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT
∗ (INCLUDING NEGLIGENCEOROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS
∗ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGE.
∗/

#include <stdio .h>
#include <string .h>
#include <stdlib .h>
#include <math.h>
#include <time .h>

#define VERBOSELOG

//simulation parameters
#define SIMULATEDAYS 30
#define SIMULATETIMESTEP 5 //seconds
#define WATERRATE 2 //water application rate in ml/s

#define SATURATETEST

//datasets
int n;
double ∗precip , ∗wind, ∗soiltmp , ∗airtmp ,
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∗humidity , ∗potentialleaftmp , ∗flux ;

//load matlab formated data f i l e s
int load(char fname [ ] , double ∗∗values)
{

int ALLOCBLKSIZ=512, FILEBLOCKSZ=4096;
int blocks=0, n, posread=0, j , cnt , oneempty=0;
char ∗ f i leblock , ∗nextblock , combinestr [32 ] ;
float val ;
FILE ∗data ;

//open f i l e for reading
data = fopen(fname, ”rb”) ;
i f ( ! data)return −1;

// in i t ia l memory allocation
∗values = NULL;
fi leblock = (char∗)malloc(FILEBLOCKSZ∗sizeof(char) ) ;
nextblock = (char∗)malloc(FILEBLOCKSZ∗sizeof(char) ) ;

// in i t ia l chunk reads
fread( fileblock , 1 , FILEBLOCKSZ, data ) ;
fread(nextblock , 1 , FILEBLOCKSZ, data ) ;

//read in loop
for(n = 0;;++n){

//allocate memory for the double array
i f (n>= blocks∗ALLOCBLKSIZ)
∗values = (double∗) realloc (∗values ,
(++blocks)∗ALLOCBLKSIZ∗sizeof(double) ) ;

//skip leading whitespace characters
for ( ; ; ){

i f (posread >= FILEBLOCKSZ){
memcpy( fileblock , nextblock , FILEBLOCKSZ∗sizeof(char) ) ;
cnt=fread(nextblock , 1 , FILEBLOCKSZ∗sizeof(char) , data ) ;
i f (cnt != FILEBLOCKSZ∗sizeof(char)){

i f (oneempty == 2){ fc lose (data ) ; return n;}
i f (cnt < 0)memset(nextblock , ’ ’ , FILEBLOCKSZ∗sizeof(char) ) ;
else memset(nextblock+cnt , ’ ’ , (FILEBLOCKSZ∗sizeof(char)
−cnt∗sizeof(char) ) ) ;

oneempty++;
}
posread−=FILEBLOCKSZ;

}
i f ( f i leblock [ posread ] != ’ ’ )break;
posread++;

}

//combine elements from two f i l e chunks
for( j = 0; combinestr [ j−1] != ’ ’ ; ++j ){

i f ((posread+j ) >= FILEBLOCKSZ)combinestr [ j ] = nextblock [ ( posread+j )
−FILEBLOCKSZ] ;
else combinestr [ j ] = fi leblock [ posread+j ] ;

}
j−−;
combinestr [ j ] = 0; posread+=j ;

//read in value
sscanf (combinestr , ”%f” , &val ) ;
(∗values ) [n] = (double)val ;

}

return n;
}

int loaddatasets ()
{

int individn ;

n = 10e6 ;
i f (( individn=load(”dataset/precip . txt” , &precip )) < 0){
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printf (”Error Reading precip Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

i f (( individn=load(”dataset/wind. txt” , &wind)) < 0){
printf (”Error Reading wind Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

i f (( individn=load(”dataset/soiltmp . txt” , &soiltmp)) < 0){
printf (”Error Reading soiltmp Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

i f (( individn=load(”dataset/airtmp . txt” , &airtmp)) < 0){
printf (”Error Reading airtmp Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

i f (( individn=load(”dataset/rh . txt” , &humidity)) < 0){
printf (”Error Reading humidity Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

i f (( individn=load(”dataset/potentialleaftmp . txt” , &potentialleaftmp)) < 0){
printf (”Error Reading potentialleaftmp Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

i f (( individn=load(”dataset/flux . txt” , &flux )) < 0){
printf (”Error Reading flux Dataset File !\n”) ;
return −1;
} i f ( individn < n)n = individn ;

return 0;
}

//The Actual Simulator
void simulationloop(int STARTINGDAYINYEAR)
{

//constants
/∗ soi l resistance , from theta = 0.12 to theta = 0.25, for peat/perl i te 50/50 mix

(Haofang Yan, Chuan Zhang, Hiroki Oue, Hideki Sugimoto 2012)
∗/

double retable [ ] = {
71.4000 ,60.1800 ,53.0400 ,46.9200 ,41.8200,37.7400,34.1700,31.1100,27.5400,25.5000,
23.4600 ,21.9300 ,20.9100 ,19.8900 ,17.8500,16.3200,14.7900,13.7700,12.7500,12.2400,
11.2200 ,10.7100 ,9.6900 ,8.6700 ,8.6700 ,8.6700 ,8.1600 ,6.6300 ,5.6100 ,5.6100};

//cr i t ica l volumetric water ratio
//http ://www. treemail . nl/download/treebook7/soi l/chapt6 .htm#eq6 4
//moderately drought sensitive crop
double ET0COEFF[ ] = {

1.0 , 0.75 ,0.65 ,0.55 ,0.45 ,0.40 ,0.38 ,0.33 ,0.30 ,0.25
}; //ET0 = 0.0−1.0cm.dˆ−1

//Rate of photosynthesis vs Photosynthetic Flux Density
//Growth and photosynthesis under high and low irradiance of Arabidopsis
//thaliana Eckardt et al . , 1997 Derived from figure 4
double photovsPPFD[ ] = {

0.00 , 0.16 , 0.33 , 0.46 , 0.56 , 0.66 , 0.72 , 0.78 , 0.83 , 0.86 , 0.88 , 0.92 ,
0.95 , 0.97 , 1.00}; //0−700 umol∗m̂−2∗sˆ−1

//The efficiency of the photosynthetic pathway at converting exchanged
//carbon into biomass Tuned empirically
double photosynthetic efficiency = 0.83;

//(The ELF4ELF3LUX complex links the circadian clock to diurnal control of
//hypocotyl growth)
double stochasticmagic = 3.5; //scaling factor , chosen empirically so that

//the stochastic application converges
double growthvshoursincesunrise [ ] = {
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0.0807 ,0.0719 ,0.0590 ,0.0462 ,0.0386 ,0.0339 ,0.0316 ,0.0298 ,0.0292 ,0.0292 ,
0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0304 ,0.0327 ,0.0357 ,
0.0432 ,0.0549 ,0.0701 ,0.0783};

//Growing Pot Constraints
double pot volume = 425; //in ml
double pot surface area = 44; //in cmˆ2

/∗ van genutchen modelled values , for 50/50 peat perl i te mixture
Simultaneous Determination of Water Retention Curve and Unsaturated

Hydraulic Conductivity of Substrates Using a Steady−state Laboratory Method
???(Haofang Yan, Chuan Zhang, Hiroki Oue, Hideki Sugimoto 2012)
∗/

double theta fc = 0.248;
double theta wilt = 0.120;
double theta crit ical = 0.216;
double theta sat = 0.650;

//Variables

//internal math
double gva, gv;
double esatleaf , esatsoil , eair , molswaterpersecperm2 ;
double potential ml lost transpiration , wateravailability , transpirationloss ;
double Pn, PAR, PPFD, photosynthetic rate , photopercent , photodiff , photointerp ;
int PPFDidx, PPFDidxb;
double dmarea, carbon exchanged ;
double drymassgain , wet biomass gain in g , ml lost ;
double lastsunrise=−29600; //dodgy f i r s t pass parameter to get things going
double sincesunrise , leafareadeficit ;
int rateidx , reidx ;
double soilresistance , boundaryresistance , latentflux , latentjoules ;
double mlrainfall ;

double ET0,megajoulesflux , esatair ; //cm.dˆ−1
double Pdiff , Pinterp , P, beta ;
int Rnindex, Pidx, Pidxb;

//starting condition , pot at f i e ld capacity
double current volumetric ratio = theta fc ;

/∗ dry biomass in grams, 10mg at the end of the germination phase (rough 7
∗ days) , sure that might sound small but (GLUTATHIONEDYNAMICS IN ARABIDOPSIS
∗ SEEDDEVELOPMENTANDGERMINATION) shows the arabidopsis seed has a dry
∗ mass of roughly 20ug and that includes the seed coat , 10mg is probably
∗ on the order of 500x the stored biomass ! !
∗/

double current shoot biomass = 0.01;//dry biomass in grams
//100mm̂ 2, or the usual area after 8 days ,
//great in i t ia l condition and approximation for the germination phase
double current leaf area = 100e−6;

double simutime ;
int hour idx ;

int lastidx = 0, last record = 0;
FILE ∗ logf ;
double lastrecord = −1e6 ;

#ifdef VERBOSELOG
logf = fopen(”log . csv” , ”wb”) ;
i f ( ! logf ){puts(”Error Opening Logging File !” ) ;return;}

#endif

//Main loop
for(simutime = 0; simutime <= (SIMULATEDAYS∗24∗3600); simutime+=SIMULATETIMESTEP)
{

//which index in the dataset
hour idx = (int )(((STARTINGDAYINYEAR−1)∗24) + floor (simutime/3600));
i f (hour idx >= n)hour idx−=n;

#ifdef SATURATETEST
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//saturation , conditions found in study :
//Maximal Biomass of Arabidopsis fha/iana Using a Simple , Low−Maintenance
//Hydroponic Method and Favorable Environmental Conditions
i f (hour idx%24<= 10){ //10 hour photoperiod

flux [ hour idx ] = 202; //about 400 umol∗m̂−2∗sˆ−1
}else flux [ hour idx ] = 0;
precip [ hour idx ] = 0;
humidity [ hour idx ] = 75;
wind[ hour idx ] = 1;
soiltmp [ hour idx ] = 293; //20c
airtmp [ hour idx ] = 293; //20c
potentialleaftmp [ hour idx ] = 290; //21c . . . b i t of estimate
current volumetric ratio = theta fc ; //continuous f ie ld capacity

#endif

//Transpiration
//a l l from environmental biophysics chap 4.1
//boundary layer resistances
//convection formulas break down at low wind speed , (1962 paper)
i f (wind[ hour idx ] < 2.0)gva = 1.4∗0.147∗sqrt (2/0.0086);
else gva = 1.4∗0.147∗sqrt (wind[ hour idx ]/0.0086);
//stomata conductivities for arabidopsis
gv = (0.5∗0.24∗gva)/(0.24+gva) + (0.5∗0.17∗gva)/(0.17+gva) ; //mol∗m̂−2∗sˆ−1

//Saturated vapor pressure at leaf temperature (Murray, 1967),
//pressure in kpa , T in kelvin
esatleaf = 0.61078∗exp(17.269388∗((potentialleaftmp [ hour idx]−273.16)
/(potentialleaftmp [ hour idx]−35.86)));

eair = (humidity [ hour idx]/100)∗0.61078∗exp(17.269388∗((airtmp [ hour idx]−273.16)
/(airtmp [ hour idx]−35.86)));

molswaterpersecperm2 = gv∗(( esatleaf−eair )/100);

//How many mls of water does this equate to
potential ml lost transpiration = molswaterpersecperm2∗18.0152
∗SIMULATETIMESTEP∗current leaf area ;

//now this is assuming infinite water supply , of course this is wrong,

//Diff icult to source something direct but
//Drought stress inhibits photosynthesis by decreasing stomatal a
//perture not by affecting ATP synthesis Interspecies differences in
//photosynthetic gas exchange characteristics and acclimation to soi l
//moisture stress . . . So stomata conductivity is proportional to
//photosynthetic rate , so we need stomatol conductivity vs water
//Effect of soi l moisture on canopy conductance of Amazonian rainforest
//A canopy conductance and photosynthesis model for use in a GCM land
//surface scheme http ://www. fao . org/docrep/x0490e/x0490e08.htm
//very rough penmann approximation
esatair = 0.61078∗exp(17.269388∗((airtmp [ hour idx]−273.16)/(airtmp [ hour idx]−35.86)));
for(Rnindex = hour idx , megajoulesflux = 0; Rnindex < hour idx+24; ++Rnindex)

megajoulesflux+= 0.0036∗ flux [ (Rnindex>= n)?Rnindex−n:Rnindex ] ;
i f (wind[ hour idx ] < 2)ET0 = (0.006∗megajoulesflux+(4.5/airtmp [ hour idx ] )
∗(esatair−eair ))/0.217; //cm∗dˆ−1 low windspeed approximation

else ET0 = (0.006∗megajoulesflux+(4.5/airtmp [ hour idx ])∗wind[ hour idx ]
∗(esatair−eair ))/(0.20 + 0.017∗wind[ hour idx ] ) ; //cm∗dˆ−1

i f (ET0 > 0.9)P = 0.25;
else{

Pidx = (int)( f loor (ET0∗(sizeof(ET0COEFF)/sizeof(double) ) ) ) ;
Pidxb = (int)( ce i l (ET0∗(sizeof(ET0COEFF)/sizeof(double) ) ) ) ;
Pdiff = ET0COEFF[Pidxb]−ET0COEFF[Pidx ] ;
Pinterp = ET0∗(sizeof(ET0COEFF)/sizeof(double)) − (double)Pidx;
P = ET0COEFF[Pidx] + Pinterp∗Pdiff ;
}
//our actual value for theta cr i t ica l
//http ://www. treemail . nl/download/treebook7/soi l/chapt6 .htm
theta crit ical = (1−P)∗( theta fc−theta wilt)+theta wilt ;
//Now we model the water avai labi l i ty using . . . A canopy conductance
//and photosynthesis model for use in a GCM land surface scheme
// ’Jarvis ’ Model, Just used some fair ly generic tuning parameters
i f ( current volumetric ratio >= theta crit ical )beta = 1;
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else i f ( current volumetric ratio > theta wilt && current volumetric ratio
< theta crit ical )beta = (current volumetric ratio−theta wilt )
/( theta critical−theta wilt ) ;

else beta = 0;
wateravailability = (1−exp(0.3∗beta))/(1−exp(0.3)) ;
//Thornthwaite (1955), claims transpiration varies linearly with soi l
//water avai labi l i ty , ’ Jarvis ’ model is surprisingly consistent !
//How much water is predicted that we did lose?
transpirationloss = potential ml lost transpiration∗wateravailability ;
current volumetric ratio = current volumetric ratio
− ( transpirationloss/pot volume) ; //update our counter

//Propagation
//Impact of Elevated CO2 on Growth and Development of Arabidopsis
//thaliana L. http ://www.landesmuseum. at/pdf frei remote/PHY 36 2 0173−0184.pdf
//(SASAKI, H. , M. FUKUYAMAAND T. ONOUE 2001)
Pn = −0.031∗((potentialleaftmp [ hour idx]−273.15)∗
(potentialleaftmp [ hour idx]−273.15))
+ 1.897∗(potentialleaftmp [ hour idx]−273.15) − 5.229;
Pn ∗=0.84; //tuned to match Eckardt et al . , 1997
//(M. Tsubo and S. Walker 2005), fresno california
PAR= 0.45∗ flux [ hour idx ] ; //photosynthetically active radiation
//(Forest ecosystems and environments p 336, Takashi . Kohyama, Josep .
//Canadell , Dennis S. Ojima, Louis F. Pitelka)
PPFD = PAR∗4.4; //bit of an approximation but close !
i f (PPFD>= 650){
photopercent = 1.0;

}else{ //linear interpolation
PPFDidx = (int)( f loor ((PPFD/700)∗(sizeof(photovsPPFD)/sizeof(double) ) ) ) ;
PPFDidxb = (int)( ce i l ((PPFD/700)∗(sizeof(photovsPPFD)/sizeof(double) ) ) ) ;
photodiff = photovsPPFD[PPFDidxb]−photovsPPFD[PPFDidx] ;
photointerp = ((PPFD/700)∗(sizeof(photovsPPFD)/sizeof(double))) − (double)PPFDidx;
photopercent = photovsPPFD[PPFDidx] + photointerp∗photodiff ;

}

//earlier we established the stomatol response to water limitation is somewhat linear
//as stomata conductivity limits carbon dioxide exchange , we wi l l assume the ef fect
//on pohtosynthetic rate is therefore also linear
//Thornthwaite (1955), claims transpiration varies linearly with soi l water avai labi l i ty
photosynthetic rate = photopercent∗Pn∗wateravailability ; //in umol(CO2)∗m̂−2∗sˆ−1
//completely saturated photosynthetic pathway
i f (photosynthetic rate > 15∗photosynthetic efficiency )photosynthetic rate
= 15∗photosynthetic efficiency ;

//Net Carbon Exchange Rates of Field−grown Crops in Relation to
//Irradiance and Dry Weight Accumulation, based on caulifower/cabbage
//values
i f (PAR== 0){//nighttime , carbon eff lux , 44000mg a mole of co2
dmarea = 100∗current leaf area ;
i f (potentialleaftmp [ hour idx ] < 5)carbon exchanged = 0; //dormant
//in moles , at higher temperatures , the plant is more metabolically active
else carbon exchanged = ((−0.4∗(potentialleaftmp [ hour idx]−278.15))
∗dmarea)/(44000∗(3600/SIMULATETIMESTEP)) ;

}else carbon exchanged = 0.000001∗photosynthetic rate∗SIMULATETIMESTEP
∗current leaf area ; //in moles

//now how much biomass did we accumulate , Growth and carbon economy of
//a fastgrowing and a slow−growing grass species as dependent on ontogeny 2001
//very rough to apply cross species
//from graphs , carbon content is a pretty consistent 35 mmol∗gˆ−1
//(dry weight ) , just for giggles that is 42% of the total dry mass
drymassgain = (carbon exchanged∗1000)/35; //Growth and carbon economy of
//a fastgrowing and a slow−growing grass species as dependent on ontogeny 2001
wet biomass gain in g = drymassgain/0.08; //arabidopsis dry matter 8̃% of
//total , Browse and Somerville (1994) Chap 32 of Arabidopsis , Cold Spring
//Harbor Laboratory Press
//WATERUSED BY PHOTOSYNTHESIS, ORRELEASED AS PARTOFMETABOLISM
ml lost = wet biomass gain in g−drymassgain ;
current volumetric ratio = current volumetric ratio − (ml lost/pot volume) ;
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//update our counter
//Roughly 66% of the biomass exists as leaf tissue , (An aeroponic culture
//system for the study of root herbivory on Arabidopsis thaliana 2011)
//Growth of Arabidopsis thaliana seedlings under water def ic i t studied
//by control of water potential in nutrient−agar media
current shoot biomass = current shoot biomass + 0.66∗drymassgain ;

#ifdef SATURATETEST
//See Below For Justification
current leaf area=20∗(current shoot biomass/1000);

#else
//now le ts convert our biomass gain to a corresponding leaf area gain ,
//very rough and approximate step ! ! ! Response of mannitol−producing
//Arabidopsis thaliana to abiotic stress 2007 from the control graphs
//we see ˜10% dry weight ratio and we see a leaf area to mass ratio of
//approximately 15m̂ 2kgˆ−1 (dry weight ) , this figure is identical to
//(Growth and carbon economy of a fastgrowing and a slow−growing grass
//species as dependent on ontogeny 2001)
//very interesting observation .
//Further observations of the study Maximal Biomass of Arabidopsis
//fha/iana Using a Simple , Low−Maintenance Hydroponic Method and
//Favorable Environmental Conditions
//Indicates approximately 25m̂ 2kgˆ−1 (dry weight)
//I think a compromise can be made at roughly ˜20m̂ 2kgˆ−1
//growth rate varies with the time in the dirunal cycle , we wi l l
//model for this (The ELF4ELF3LUX complex links the circadian clock
//to diurnal control of hypocotyl growth) day length calculations
i f (hour idx > 0 && flux [ hour idx ] > 0 && flux [ hour idx−1] == 0)

lastsunrise = simutime ; //sunrise
sincesunrise = simutime−lastsunrise ;
i f ( sincesunrise < 0)sincesunrise+=(24∗3600);
rateidx = (int) f loor ( sincesunrise/3600 + 0.5);
i f ( rateidx == 24)rateidx = 0;

leafareadeficit = 20∗(current shoot biomass/1000) − current leaf area ;
current leaf area = current leaf area + leafareadefic it ∗((stochasticmagic
∗growthvshoursincesunrise [ rateidx])/(3600/SIMULATETIMESTEP)) ;

#endif

//Evaporation
reidx = floor ((( current volumetric ratio−theta wilt )/( theta fc−theta wilt ))
∗(sizeof( retable)/sizeof(double)) + 0.5);

i f ( reidx < 0)reidx = 0;//simple bounds checking
else i f ( reidx >= (sizeof( retable)/sizeof(double))) reidx =

(sizeof( retable)/sizeof(double) ) ;
soi lresistance = retable [ reidx ] ;
//(Haofang Yan, Chuan Zhang, Hiroki Oue, Hideki Sugimoto 2012) eq 6,
//wind at 2m
i f (wind[ hour idx ] < 1){ //for low wind speeds , natural convection becomes

//dominant, very rough approximation
//boundary layer resistance

boundaryresistance = (1/(0.1681))∗ log(2/0.001)∗ log (2/0.001);
}else boundaryresistance = //boundary layer resistance

(1/(0.1681∗wind[ hour idx ]))∗ log(2/0.001)∗ log (2/0.001);

//Saturated vapor pressure (Murray, 1967), pressure in kpa , T in kelvin
esatsoi l = 0.61078∗exp(17.269388∗((soiltmp [ hour idx]−273.16)
/(soiltmp [ hour idx]−35.86)));

//(Haofang Yan, Chuan Zhang, Hiroki Oue, Hideki Sugimoto 2012) eq 5,
//approximated for sea leve l ˜20c
latentflux = (1005∗1.2∗( esatsoil−eair ))/(0.0665∗(boundaryresistance
+soilresistance )) ; //in watts per m̂ 2 of surface

latentjoules = latentflux∗(pot surface area∗0.0001)∗SIMULATETIMESTEP;
//YES SOMETIMES THIS WILL BE NEGATIVE, MORNINGDEW :D
ml lost = ( latentjoules/2.45e3 ) ; //using latent heat of vaporisation
//approximated to 2.45MJkĝ −1
current volumetric ratio = current volumetric ratio − (ml lost/pot volume) ;

//Precipitation
mlrainfall = (precip [ hour idx ]∗( pot surface area/10))/(3600/SIMULATETIMESTEP);
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current volumetric ratio = current volumetric ratio + (mlrainfall/pot volume) ;

//Irrigation
//Basic Bang−Bang irrigation control strategy
i f ( current volumetric ratio < ( theta crit ical+theta wilt )/2){

printf (”Applying Water\n”) ;
lastidx = hour idx ;
current volumetric ratio = theta fc ;

}

//Normalize/Sanitize Values
i f ( current volumetric ratio < theta wilt ){
puts(”Water loss wil l not continue at the current rate !” ) ;
puts(”so i l resistance wil l become very dominant!” ) ;
puts(”Poorly Defined Region Of Model!” ) ;

}
i f ( current volumetric ratio < 0.75∗ theta wilt ) current volumetric ratio =
0.75∗ theta wilt ; //sanitize value

else i f ( current volumetric ratio > theta fc )current volumetric ratio =
theta fc ; //water lost to drainage

//Record Interim Values I f We Want. . .
#ifdef VERBOSELOG

i f (( lastrecord + 15∗60) <= simutime){ //Every 15 mins in sim time
lastrecord = simutime ;
i f (simutime == 0) fprintf ( logf , ”\”Volumetric Water Ratio\”,\”Leaf Area\”,”
”\”Photosynthetic Rate (umol∗m̂−2∗sˆ−1)\”,\”Transpiration Rate\”\n”) ;

fprintf ( logf , ”%g,%g,%g,%g\n” , current volumetric ratio ,
current leaf area∗1000000, ((carbon exchanged∗1000000)/
( current leaf area∗SIMULATETIMESTEP)) , transpirationloss∗
(3600/SIMULATETIMESTEP)) ;

}
#endif
}

fc lose ( logf ) ;

printf (”Modelled Final Values:\nDry Shoot Biomass : %.3g grams\nLeaf Area: %d mm̂ 2\n” ,
current shoot biomass , (int)( current leaf area∗1000000));

}

int main()
{

//Load Datasets
i f ( loaddatasets () < 0)
return −1;

//Run A Simulation Starting On Day 90 Of The Year
simulationloop (1);

system(”pause”) ;

return 0;
}



Appendix I

Leaf Temperature Model

% You are welcome to use this however you wish , however I ’d love an email
% i f you do something cool with i t ! Word Out! Damo
%
% Copyright (c) 2013, Damian Peckett <damian.peckett@gmail .com>
% All rights reserved .
%
% Redistribution and use in source and binary forms , with or without
% modification , are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice , this
% l i s t of conditions and the following disclaimer .
% 2. Redistributions in binary form must reproduce the above copyright notice ,
% this l i s t of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution .
%
% THIS SOFTWARE IS PROVIDED BY THECOPYRIGHTHOLDERSANDCONTRIBUTORS ”AS IS” AND
%ANYEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
%WARRANTIESOFMERCHANTABILITYAND FITNESS FOR A PARTICULARPURPOSEARE
% DISCLAIMED. IN NOEVENT SHALL THECOPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FOR
%ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
% (INCLUDING, BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDAND
%ONANYTHEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT
% (INCLUDING NEGLIGENCEOROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS
%SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGE.

%written from chap 4.1 in ”Environmental Biophysics”

airtmp = load( ’processed/airtmp . txt ’ ) ;
soiltmp = load( ’processed/soiltmp . txt ’ ) ;
humid = load( ’processed/rh . txt ’ ) ;
flux = load( ’processed/flux . txt ’ ) ;
wind = load( ’processed/wind. txt ’ ) ;

tablea3 = [ . . .
268.2 ,−5 ,0.422 ,32 ,293 ,0.149 ,0.66; . . .
269.2 ,−4 ,0.455 ,34 ,298 ,0.151 ,0.67; . . .
270.2 ,−3 ,0.490 ,36 ,302 ,0.153 ,0.67; . . .
271.2 ,−7 ,0.528 ,39 ,307 ,0.154 ,0.68; . . .
272.2 ,−1 ,0.568 ,42 ,311 ,0.156 ,0.68; . . .
273.2 ,0 ,0.611 ,44 ,316 ,0.158 ,0.69; . . .
274.2 ,1 ,0.657 ,47 ,320 ,0.160 ,0.69; . . .
275.2 ,2 ,0.706 ,50 ,325 ,0.161 ,0.70; . . .
276.2 ,3 ,0.758 ,54 ,330 ,0.163 ,0.70; . . .
277.2 ,4 ,0.813 ,57 ,335 ,0.165 ,0.71; . . .
278.2 ,5 ,0.872 ,61 ,339 ,0.167 ,0.71; . . .
279.2 ,6 ,0.935 ,65 ,344 ,0.168 ,0.72; . . .
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280.2 ,7 ,1.001 ,69 ,349 ,0.170 ,0.72; . . .
281.2 ,8 ,1.072 ,73 ,354 ,0.172 ,0.73; . . .
282.2 ,9 ,1.147 ,77 ,359 ,0.174 ,0.73; . . .
283.2 ,10 ,1.227 ,82 ,365 ,0.176 ,0.74; . . .
284.2 ,11 ,1.312 ,87 ,370 ,0.178 ,0.74; . . .
285.2 ,12 ,1.402 ,92 ,375 ,0.179 ,0.75; . . .
286.2 ,13 ,1.497 ,98 ,380 ,0.181 ,0.75; . . .
287.2 ,14 ,1.597 ,104 ,386 ,0.183 ,0.76; . . .
288.2 ,15 ,1.704 ,110 ,391 ,0.185 ,0.76; . . .
289.2 ,16 ,1.817 ,116 ,396 ,0.187 ,0.77; . . .
290.2 ,17 ,1.936 ,123 ,402 ,0.189 ,0.77; . . .
291.2 ,18 ,2.062 ,130 ,407 ,0.191 ,0.78; . . .
292.2 ,19 ,2.196 ,137 ,413 ,0.193 ,0.79; . . .
293.2 ,20 ,2.336 ,145 ,419 ,0.195 ,0.79; . . .
294.2 ,21 ,2.485 ,153 ,425 ,0.197 ,0.80; . . .
295.2 ,22 ,2.642 ,161 ,430 ,0.199 ,0.80; . . .
296.2 ,23 ,2.808 ,170 ,436 ,0.201 ,0.81; . . .
297.2 ,24 ,2.982 ,179 ,442 ,0.203 ,0.81; . . .
298.2 ,25 ,3.166 ,189 ,448 ,0.205 ,0.82; . . .
299.2 ,26 ,3.360 ,199 ,454 ,0.207 ,0.82; . . .
300.2 ,27 ,3.564 ,209 ,460 ,0.209 ,0.83; . . .
301.2 ,28 ,3.778 ,220 ,466 ,0.211 ,0.83; . . .
302.2 ,29 ,4.004 ,232 ,473 ,0.214 ,0.84; . . .
303.2 ,30 ,4.242 ,244 ,479 ,0.216 ,0.85; . . .
304.2 ,31 ,4.492 ,256 ,485 ,0.218 ,0.85; . . .
305.2 ,32 ,4.754 ,269 ,492 ,0.220 ,0.86; . . .
306.2 ,33 ,5.030 ,283 ,498 ,0.222 ,0.86; . . .
307.2 ,34 ,5.320 ,297 ,505 ,0.224 ,0.87; . . .
308.2 ,35 ,5.624 ,311 ,511 ,0.227 ,0.87; . . .
309.2 ,36 ,5.943 ,327 ,518 ,0.229 ,0.88; . . .
310.2 ,37 ,6.278 ,343 ,525 ,0.231 ,0.89; . . .
311.2 ,38 ,6.629 ,359 ,532 ,0.233 ,0.89; . . .
312.2 ,39 ,6.996 ,376 ,538 ,0.235 ,0.90; . . .
313.2 ,40 ,7.382 ,394 ,545 ,0.238 ,0.90; . . .
314.2 ,41 ,7.785 ,413 ,552 ,0.240 ,0.91; . . .
315.2 ,42 ,8.208 ,432 ,559 ,0.242 ,0.91; . . .
316.2 ,43 ,8.650 ,452 ,567 ,0.245 ,0.92; . . .
317.2 ,44 ,9.113 ,473 ,574 ,0.247 ,0.93; . . .
318.2 ,45 ,9.597 ,495 ,581 ,0.249 ,0.93; . . .

] ;

%implementing (Gaylon S. Campbell & John M. Norman)

leaftmp = [0 ] ;

for i=1:8736
%convection formulas break down at low wind speed , (1962 paper)
i f wind( i ) < 2
gHa = 1.4∗0.135∗sqrt(2/0.0086);
gva = 1.4∗0.147∗sqrt(2/0.0086);

else
gHa = 1.4∗0.135∗sqrt(wind( i )/0.0086);
gva = 1.4∗0.147∗sqrt(wind( i )/0.0086);

end

idx = round((airtmp( i )−273)+6);
i f idx < 1
idx = 1;

elseif idx > length(tablea3)
idx=length(tablea3 ) ;

end

gr = tablea3(idx ,6) ;
gHr = gHa + gr ;

%stomata conductivities for arabidopsis , proud of that ! ! !
gv = (0.5∗0.24∗gva)/(0.24+gva) + (0.5∗0.17∗gva)/(0.17+gva) ;

ystar = ((6.66e−4)∗gHr)/gv;

s = tablea3(idx ,4)/100000;
D = tablea3(idx ,3) − (humid( i )/100)∗tablea3(idx ,3) ;

Rabs = 0.55∗ flux ( i ) ;
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Remitt = 0.97∗tablea3(idx ,5) ;
Rni = Rabs − Remitt ;

delta = (ystar/(ystar+s))∗(Rni/(gHr∗29.3) − D/(100∗ystar )) ;
i f flux ( i ) < 100 %nightitme sanitization , empiraclly calculated by damian peckett

i f flux ( i ) > 0
%MOVINGAVERAGESMOOTHING
leaftmp( i ) = (leaftmp( i−1) + airtmp( i ) + 0.4∗delta )/2;

else
leaftmp( i ) = airtmp( i ) + 0.4∗delta ;

end

else
leaftmp( i ) = airtmp( i ) + delta ;

end
end

save( ’ leaftmp . txt ’ , ’ leaftmp ’ , ’−asc i i ’ ) ;



Appendix J

Soil Temperature Model

% You are welcome to use this however you wish , however I ’d love an email
% i f you do something cool with i t ! Word Out! Damo
%
% Copyright (c) 2013, Damian Peckett <damian.peckett@gmail .com>
% All rights reserved .
%
% Redistribution and use in source and binary forms , with or without
% modification , are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice , this
% l i s t of conditions and the following disclaimer .
% 2. Redistributions in binary form must reproduce the above copyright notice ,
% this l i s t of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution .
%
% THIS SOFTWARE IS PROVIDED BY THECOPYRIGHTHOLDERSANDCONTRIBUTORS ”AS IS” AND
%ANYEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
%WARRANTIESOFMERCHANTABILITYAND FITNESS FOR A PARTICULARPURPOSEARE
% DISCLAIMED. IN NOEVENT SHALL THECOPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FOR
%ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
% (INCLUDING, BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDAND
%ONANYTHEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT
% (INCLUDING NEGLIGENCEOROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS
%SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGE.

% CSIRO SHALLOW SOIL MODEL

%Fresno California
latitude = 36.75;
longitude = 240.25;

minmaxtmp = load( ’ soiltemp/minmax. txt ’ ) ;

plottmp = [0 ] ;
elements = 0;

for dayoftheyear=1:364
%convert the longitude to hour value and calculate an approximate time for
%sunrise/sunset
lngHour = longitude / 15;
tr ise = dayoftheyear + ((6 − lngHour) / 24);
tset = dayoftheyear + ((18 − lngHour) / 24);

%calculate the Sun’ s true longitude
Lrise = (0.9856∗ tr ise ) − 3.289 + (1.916 ∗ sin(degtorad(((0.9856∗ tr ise ) −
3.289)))) + (0.020 ∗ sin(2∗degtorad(((0.9856∗ tr ise ) − 3.289)))) + 282.634;
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i f Lrise > 360
Lrise=Lrise−360;

elseif Lrise < 0
Lrise=Lrise+360;

end

Lset = (0.9856∗ tset ) − 3.289 + (1.916 ∗ sin(degtorad(((0.9856∗ tset ) −
3.289)))) + (0.020 ∗ sin(2∗degtorad(((0.9856∗ tset ) − 3.289)))) + 282.634;
i f Lset > 360
Lset=Lset−360;

elseif Lset < 0
Lset=Lset+360;

end

%calculate the Sun’ s right ascension
RArise = (180/3.14159)∗atan(0.91764 ∗ tan(degtorad(Lrise ) ) ) ;
RAset = (180/3.14159)∗atan(0.91764 ∗ tan(degtorad(Lset )) ) ;

%sanitize quadrant
Lquadrant = (floor(Lrise/90)) ∗ 90;
RAquadrant = (floor(RArise/90)) ∗ 90;
RArise = (RArise + (Lquadrant − RAquadrant))/15;
Lquadrant = (floor(Lset/90)) ∗ 90;
RAquadrant = (floor(RAset/90)) ∗ 90;
RAset = (RAset + (Lquadrant − RAquadrant))/15;

%lots of maths, but turn the angle of sunset/rise into minutes
Hrise = ((360 − (180/3.14159)∗acos((−((0.39782∗sin(degtorad(Lrise )))
∗sin(degtorad( latitude ))))/(cos(asin(0.39782∗sin(degtorad(Lrise ))))
∗cos(degtorad( latitude )))))/15);
Hset = ((180/3.14159)∗acos((−((0.39782∗sin(degtorad(Lset )))
∗sin(degtorad( latitude ))))/(cos(asin(0.39782∗sin(degtorad(Lset ))))
∗cos(degtorad( latitude ))))/15);

%convert to local time at our longitude
Hrise = (Hrise+RArise−(0.06571∗ tr ise )−6.622)∗60;
Hset = (Hset+RAset−(0.06571∗tset )−6.622)∗60;

i f Hrise < 0
Hrise=Hrise+1440;

elseif Hrise > 1440
Hrise=Hrise−1440;

end
if Hset < 0
Hset=Hset+1440;

elseif Hset > 1440
Hset=Hset−1440;

end

%variables
airtempmin = minmaxtmp(dayoftheyear∗2−1);
airtempmax = minmaxtmp(dayoftheyear∗2);
i f dayoftheyear == 1
airtempminlastday = airtempmin;
airtempmaxlastday = airtempmax;

else
airtempminlastday = minmaxtmp(dayoftheyear∗2−3);
airtempmaxlastday = minmaxtmp(dayoftheyear∗2−2);

end
if dayoftheyear == 364
airtempminnextday = airtempmin;

else
airtempminnextday = minmaxtmp(dayoftheyear∗2+1);

end

for minutes since midnight=0:60:1380
% Algorithm implemented from:
% Models for estimation of hourly soi l temperature at 5 cm depth and for
% degree−day accumulation from minimum and maximum soi l temperature .
% (B. Horton 2012, CSIRO Publishing)
% Damian Peckett , April 2013
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Hmid = (Hset+Hrise )/2;
Hmin = Hrise + 0.19∗(Hmid−Hrise) + 28.5; %Time of minimum soi l temperature
Hmax = Hmid + 0.097∗(Hset−Hmid) + 118.5; %Time of maximum soi l temperature

%transistion point Hx is roughly 1 hour after sunset
Hx = Hset+60;
%Calculated using data from the BOM and G. W. Leeper
Dmax = airtempmax−0.3∗(airtempmax−airtempmin) ;
Dmin = airtempmin+0.1∗(airtempmax−airtempmin) ;
Dx = 0.5∗(Dmax+Dmin) ; %̃ 1 hour after sunset (B. Horton)
Dmaxyester = airtempmaxlastday−0.3∗(airtempmaxlastday−airtempminlastday ) ;
Dminyester = airtempminlastday+0.1∗(airtempmaxlastday−airtempminlastday ) ;
Dx yesterday = 0.5∗(Dmaxyester+Dminyester ) ; %̃ 1 hour after sunset (B. Horton)
Dmintom = airtempminnextday+0.1∗(airtempmax−airtempminnextday) ;

timeplot = minutes since midnight ;
i f timeplot >= 1440
timeplot = timeplot − floor(timeplot/1440)∗1440; %sanitization within day

end

%timeplot < Hmin (decay function eq 5a)
%timeplot > Hmin and timeplot < Hmax ( tr ip le sin function eq 6)
%timeplot > Hmax and timeplot < Hx (sin decay eq 4)
%timeplot > Hx (decay function eq 5a)
i f timeplot < Hmin %eq 5a
D = Dx yesterday + (Dx yesterday−Dmin)∗sin(3.14159+0.5∗3.14159
∗((timeplot+(1440−Hx))/(Hmin+(1440−Hx)))) ;

elseif timeplot > Hmin && timeplot < Hmax%eq 6
D = (Dmin+Dmax)/2 + 0.5∗(Dmax−Dmin)∗sin(3.14159∗((timeplot−0.5
∗(Hmin+Hmax))/(Hmax−Hmin))) ;

elseif timeplot > Hmax && timeplot < Hx %eq 4
D = Dx + (Dmax−Dx)∗sin(0.5∗3.14159 + 0.5∗3.14159∗((timeplot−Hmax)
/(Hx−Hmax))) ;

elseif timeplot > Hx %eq 5a
D = Dx + (Dx−Dmintom)∗sin(3.14159+0.5∗3.14159∗((timeplot−Hx)
/((Hmin+1440)−Hx))) ;

end

%our results
%D

elements = elements + 1;
plottmp(elements)=D;

end

if dayoftheyear == 365 %complete the dataset
timeplot = 1439;
i f timeplot >= 1440
%sanitization within day
timeplot = timeplot − floor(timeplot/1440)∗1440;

end
if timeplot < Hmin %eq 5a
D = Dx yesterday + (Dx yesterday−Dmin)∗sin(3.14159+0.5∗3.14159
∗((timeplot+(1440−Hx))/(Hmin+(1440−Hx)))) ;

elseif timeplot > Hmin && timeplot < Hmax%eq 6
D = (Dmin+Dmax)/2 + 0.5∗(Dmax−Dmin)∗sin(3.14159∗((timeplot
−0.5∗(Hmin+Hmax))/(Hmax−Hmin))) ;

elseif timeplot > Hmax && timeplot < Hx %eq 4
D = Dx + (Dmax−Dx)∗sin(0.5∗3.14159 + 0.5∗3.14159∗((timeplot−Hmax)
/(Hx−Hmax))) ;

elseif timeplot > Hx %eq 5a
D = Dx + (Dx−Dmintom)∗sin(3.14159+0.5∗3.14159∗((timeplot−Hx)
/((Hmin+1440)−Hx))) ;

end
elements = elements + 1;
plottmp(elements)=D;

end
end

meas = plottmp(1:(length(plottmp)−8));



121

meas = [meas(17:24) ,meas ] ;
meas = meas+273.15;

save( ’ soiltmp . txt ’ , ’meas ’ , ’−asc i i ’ ) ;



Appendix K

Massively Parallel MDP Solver

/∗ Pretty darn fast , portable , MDP solver , Value iteration with RBF Network
∗ Value Estimation , WARNING: MAYORMAYNOTGENERATECORRECTRESULTS
∗ kind of l ike schrodingers cat :P
∗
∗ You are welcome to use this however you wish , however I ’d love an email
∗ i f you do something cool with i t ! Word Out! Damo
∗
∗ Copyright (c) 2013, Damian Peckett <damian.peckett@gmail .com>
∗ All rights reserved .
∗
∗ Redistribution and use in source and binary forms , with or without
∗ modification , are permitted provided that the following conditions are met:
∗
∗ 1. Redistributions of source code must retain the above copyright notice , this
∗ l i s t of conditions and the following disclaimer .
∗ 2. Redistributions in binary form must reproduce the above copyright notice ,
∗ this l i s t of conditions and the following disclaimer in the documentation
∗ and/or other materials provided with the distribution .
∗
∗ THIS SOFTWARE IS PROVIDED BY THECOPYRIGHTHOLDERSANDCONTRIBUTORS ”AS IS” AND
∗ ANYEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
∗ WARRANTIESOFMERCHANTABILITYAND FITNESS FOR A PARTICULARPURPOSEARE
∗ DISCLAIMED. IN NOEVENT SHALL THECOPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FOR
∗ ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
∗ (INCLUDING, BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
∗ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDAND
∗ ONANYTHEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT
∗ (INCLUDING NEGLIGENCEOROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS
∗ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGE.
∗/

#include <stdio .h>
#include <string .h>
#include <stdlib .h>

#include <math.h>
#include <time .h>

//#define WINDOWS

#ifdef WINDOWS
// Dodgy implementation of pthreads for Windows
//http :// locklessinc .com/
//makes linux porting way easier
#include <windows.h>
#include ”pthreads .h”
#endif

#define TRAINSAMPLES 2000
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#define HOLDOUTSAMPLES 50
#define DISCOUNT 0.98 //common empirical value

#define Rn 14 //dimensions

//from decompose centroids matlab script
#define NRBF 8
double RBFCentroids[NRBF∗Rn] = {
296 ,40 ,369 ,0.158 ,6265 ,1.8 ,296 ,41 ,1.8 ,296 ,42 ,1.6 ,27 ,0.621 ,
298 ,38 ,374 ,0.168 ,21144 ,2.1 ,299 ,36 ,2.5 ,298 ,35 ,2.5 ,31 ,1.42 ,
296 ,43 ,290 ,0.164 ,9870 ,1.8 ,296 ,44 ,2 ,295 ,45 ,2.1 ,26 ,0.772 ,
293 ,51 ,340 ,0.175 ,577 ,1.8 ,291 ,55 ,1.7 ,291 ,55 ,1.7 ,21 ,0.0948 ,
292 ,53 ,284 ,0.171 ,1826 ,1.7 ,292 ,54 ,1.7 ,292 ,54 ,1.6 ,21 ,0.225 ,
297 ,41 ,299 ,0.151 ,15506 ,2.4 ,297 ,39 ,2.2 ,298 ,39 ,2.1 ,29 ,1.18 ,
293 ,50 ,293 ,0.162 ,3713 ,1.8 ,292 ,50 ,1.8 ,293 ,50 ,1.8 ,23 ,0.406 ,
295 ,44 ,291 ,0.159 ,10501 ,2 ,295 ,45 ,2 ,295 ,45 ,2.2 ,26 ,0.808
};

#define ALLOCBLOCKSZ 1024
double ∗∗dataset = NULL;
int nsamples = 0, allocsamples = 0;

// Low accuracy stub for modelling purposes
// Linear approximation for a fixed 120s timestep
// comments stripped for brevity , to understand whats going on, read
// the crop model source code
void modelStub(double ∗state , int addwater , double ∗retstate )
{

double retable [ ] = {
71.4000,60.1800,53.0400 ,46.9200,41.8200,37.7400,34.1700 ,31.1100,27.5400,
25.5000,23.4600,21.9300 ,20.9100,19.8900,17.8500,16.3200 ,14.7900,13.7700,
12.7500,12.2400, 11.2200 ,10.7100 ,9.6900 ,8.6700 ,8.6700 ,8.6700 ,8.1600 ,
6.6300 ,5.6100 ,5.6100};

double ET0COEFF[ ] = {
1.0 , 0.75 ,0.65 ,0.55 ,0.45 ,0.40 ,0.38 ,0.33 ,0.30 ,0.25

};
double photovsPPFD[ ] = {

0.00 , 0.16 , 0.33 , 0.46 , 0.56 , 0.66 , 0.72 , 0.78 , 0.83 , 0.86 , 0.88 , 0.92 ,
0.95 , 0.97 , 1.00};

double photosynthetic efficiency = 0.83;
double stochasticmagic = 3.5;
double growthvshoursincesunrise [ ] = {

0.0807 ,0.0719 ,0.0590 ,0.0462 ,0.0386 ,0.0339 ,0.0316 ,0.0298 ,0.0292 ,0.0292 ,
0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0292 ,0.0304 ,0.0327 ,0.0357 ,
0.0432 ,0.0549 ,0.0701 ,0.0783};

double pot volume = 425;
double pot surface area = 44;
double theta fc = 0.248;
double theta wilt = 0.120;
double theta crit ical = 0.216;
double theta sat = 0.650;
double gva, gv;
double esatleaf , esatsoil , eair , molswaterpersecperm2 ;
double potential ml lost transpiration , wateravailability , transpirationloss ;
double Pn, PAR, PPFD, photosynthetic rate , photopercent , photodiff , photointerp ;
int PPFDidx, PPFDidxb;
double dmarea, carbon exchanged ;
double drymassgain , wet biomass gain in g , ml lost ;
int reidx ;
double soilresistance , boundaryresistance , latentflux , latentjoules ;
double ET0,megajoulesflux , esatair ;
double Pdiff , Pinterp , P, beta ;
int Pidx, Pidxb, i ;
double avail ;
double current volumetric ratio = state [3]∗( theta sat−theta wilt)+theta wilt ;
double current leaf area = state [4]/1e6 ;
double current shoot biomass = 0.005 + current leaf area∗50;

i f (addwater){
//add 5ml as minimum increment size
current volumetric ratio += 5/pot volume ;
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}

for( i=0;i<15;++i ){
i f ( state [5 ] < 2.0)gva = 1.4∗0.147∗sqrt (2/0.0086);
else gva = 1.4∗0.147∗sqrt ( state [5]/0.0086);
gv = (0.5∗0.24∗gva)/(0.24+gva) + (0.5∗0.17∗gva)/(0.17+gva) ;
esatleaf = 0.61078∗exp(17.269388∗(( state[0]−2−273.16)/

( state [0]−2−35.86)));
eair = ( state [1]/100)∗0.61078∗exp(17.269388∗(( state [0]−273.16)/

( state [0]−35.86)));
molswaterpersecperm2 = gv∗(( esatleaf−eair )/100);

esatair = 0.61078∗exp(17.269388∗(( state [0]−273.16)/(state [0]−35.86)));
megajoulesflux = state [12 ] ;
i f ( state [5 ] < 2)ET0 = (0.006∗megajoulesflux+(4.5/state [0])∗( esatair−eair ))
/0.217;

else ET0 = (0.006∗megajoulesflux+(4.5/state [0])∗ state [5]∗( esatair−eair ))
/(0.20 + 0.017∗state [ 5 ] ) ; //cm∗dˆ−1

i f (ET0 > 0.9)P = 0.25;
else{

Pidx = (int)( f loor (ET0∗(sizeof(ET0COEFF)/sizeof(double) ) ) ) ;
Pidxb = (int)( ce i l (ET0∗(sizeof(ET0COEFF)/sizeof(double) ) ) ) ;
Pdiff = ET0COEFF[Pidxb]−ET0COEFF[Pidx ] ;
Pinterp = ET0∗(sizeof(ET0COEFF)/sizeof(double)) − (double)Pidx;
P = ET0COEFF[Pidx] + Pinterp∗Pdiff ;
}

theta crit ical = (1−P)∗( theta fc−theta wilt)+theta wilt ;
i f ( current volumetric ratio >= theta crit ical )beta = 1;
else i f ( current volumetric ratio > theta wilt && current volumetric ratio
< theta crit ical )beta = (current volumetric ratio−theta wilt )/

( theta critical−theta wilt ) ;
else beta = 0;
wateravailability = (1−exp(0.3∗beta))/(1−exp(0.3)) ;
transpirationloss = potential ml lost transpiration∗wateravailability ;
current volumetric ratio = current volumetric ratio − ( transpirationloss
/pot volume) ;

Pn = −0.031∗((state[0]−2−273.15)∗(state[0]−2−273.15)) +
1.897∗( state[0]−2−273.15) − 5.229;

Pn ∗=0.84;
PAR= 0.45∗state [ 2 ] ;
PPFD = PAR∗4.4;
i f (PPFD>= 700){
photopercent = 1.0;

}else{
PPFDidx = (int)( f loor ((PPFD/700)∗(sizeof(photovsPPFD)/sizeof(double) ) ) ) ;
PPFDidxb = (int)( ce i l ((PPFD/700)∗(sizeof(photovsPPFD)/sizeof(double) ) ) ) ;
photodiff = photovsPPFD[PPFDidxb]−photovsPPFD[PPFDidx] ;
photointerp = ((PPFD/700)∗(sizeof(photovsPPFD)/sizeof(double)))
− (double)PPFDidx;

photopercent = photovsPPFD[PPFDidx] + photointerp∗photodiff ;
}
photosynthetic rate = photopercent∗Pn∗wateravailability ;
i f (photosynthetic rate > 15∗photosynthetic efficiency )photosynthetic rate
= 15∗photosynthetic efficiency ;

i f (PAR== 0){
dmarea = 100∗current leaf area ;
i f ( state[0]−2 < 5)carbon exchanged = 0;
else carbon exchanged = ((−0.4∗(state[0]−2−278.15))∗dmarea)/(44000
∗(3600/120));

}else carbon exchanged = 0.000001∗photosynthetic rate∗120∗current leaf area ;

drymassgain = (carbon exchanged∗1000)/35;
wet biomass gain in g = drymassgain/0.08;
ml lost = wet biomass gain in g−drymassgain ;
current volumetric ratio = current volumetric ratio − (ml lost/pot volume) ;
current shoot biomass = current shoot biomass + 0.66∗drymassgain ;
current leaf area=20∗(current shoot biomass/1000);
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reidx = (int) f loor ((( current volumetric ratio−theta wilt )/( theta fc−
theta wilt ))∗(sizeof( retable)/sizeof(double)) + 0.5);

i f ( reidx < 0)reidx = 0;
else i f ( reidx >= (sizeof( retable)/sizeof(double))) reidx = (sizeof( retable )

/sizeof(double) ) ;
soi lresistance = retable [ reidx ] ;
i f ( state [5 ] < 1){
boundaryresistance = (1/(0.1681))∗ log(2/0.001)∗ log (2/0.001);

}else boundaryresistance = (1/(0.1681∗state [5]))∗ log(2/0.001)∗ log (2/0.001);
esatsoi l = 0.61078∗exp(17.269388∗(( state[0]−2−273.16)/(state [0]−2−35.86)));
latentflux = (1005∗1.2∗( esatsoil−eair ))/(0.0665∗(boundaryresistance
+soilresistance )) ;

latentjoules = latentflux∗(pot surface area∗0.0001)∗120;
ml lost = ( latentjoules/2.45e3 ) ;
current volumetric ratio = current volumetric ratio − (ml lost/pot volume) ;

i f ( current volumetric ratio < 0.75∗ theta wilt
current volumetric ratio = 0.75∗ theta wilt ;

else i f ( current volumetric ratio > theta fc )
current volumetric ratio = theta fc ;

}

avail = (current volumetric ratio−theta wilt )/( theta sat−theta wilt ) ;
memcpy( retstate , state , sizeof(double)∗Rn);
retstate [3 ] = avail ;
retstate [4 ] = current leaf area∗1e6 ;
retstate [13] = state [13]+0.005; //5ml increment size

}

//Marsaglia ’ s xorshf generator , very fast PRNG
unsigned int xorshf96()
{

static unsigned int x=123456789, y=362436069, z=521288629, t ;
x ˆ= x << 16; x ˆ= x >> 5; x ˆ= x << 1;

t = x; x = y; y = z ; z = t ˆ x ˆ y;
return z>>17; //value in range 0−32767
}

//Cross platform fork functions by damian peckett
//dumb and ugly but portable !
#ifdef WINDOWS
void crossfork (char ∗argv [ ] , char ∗argString [ ] , HANDLE ∗child )
{

char argStringOne [512] ;
STARTUPINFO StartupInfo ;
PROCESSINFORMATION ProcessInfo ;

sprintf (argStringOne , ”\”%s\” \”%s\” \”%s\”” , argv [0 ] ,
argString [0 ] , argString [ 1 ] ) ;

memset(&StartupInfo , 0 , sizeof(StartupInfo )) ;
StartupInfo . cb = sizeof(STARTUPINFO);
i f ( !CreateProcessA(argv [0 ] , argStringOne , NULL, NULL, FALSE,
NORMALPRIORITYCLASS, NULL, NULL, &StartupInfo , &ProcessInfo ))
fprintf ( stderr , ”Error Executing Program (%d)\n” , GetLastError () ) ;

∗child = ProcessInfo . hProcess ;
CloseHandle(ProcessInfo .hThread) ;

}
double getreturn(HANDLE child )
{

char path [16 ] ;
FILE ∗fp ;
double val ;
sprintf (path , ”%d. ret” , GetProcessId( child )) ;
WaitForSingleObject(child , INFINITE);
do{

fp = fopen(path , ”rb”) ;
i f ( ! fp)Sleep(50);

}while( ! fp ) ;
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fscanf (fp , ”%l f ” , &val ) ;
fclose ( fp ) ;
sprintf (path , ”del /Q%d. ret” , GetProcessId( child )) ;
system(path) ;
return val ;
}
int returnvalue(double val)
{

int pid ;
char path [16 ] ;
FILE ∗fp ;
pid = GetCurrentProcessId () ;
sprintf (path , ”%d. ret” , pid ) ;
fp = fopen(path , ”w”) ;
fprintf (fp , ”%g\n” , val ) ;
fclose ( fp ) ;
exit (0);

}
#else // l ike ly linux
#include <unistd .h>
typedef unsigned int HANDLE;
void crossfork (char ∗argv [ ] , char ∗argString [ ] , HANDLE ∗child )
{
∗child = fork () ;
i f (!∗ child){
execlp(argv [0 ] , argv [0 ] , argString [0 ] , argString [1 ] , NULL);
exit(−1);

}
}
double getreturn(HANDLE child )
{

char path [16 ] ;
FILE ∗fp ;
double val ;
sprintf (path , ”/tmp/%d. ret” , child ) ;
do{

fp = fopen(path , ”rb”) ;
i f ( ! fp)usleep(50000);

}while( ! fp ) ;
fscanf (fp , ”%l f ” , &val ) ;
fc lose ( fp ) ;
sprintf (path , ”rm −f /tmp/%d. ret” , child ) ;
system(path) ;
return val ;
}
int returnvalue(double val)
{

int pid ;
char path [16 ] ;
FILE ∗fp ;
pid = getpid () ;
sprintf (path , ”/tmp/%d. ret” , pid ) ;
fp = fopen(path , ”w”) ;
fprintf (fp , ”%g\n” , val ) ;
fclose ( fp ) ;
exit (0);

}
#endif

void generatePhi(double ∗phi , double ∗state , double ∗RBFVariances, int singleIndex)
{

double L2Sum;
int i , j ;

phi [0 ] = 1.0; //Constant Bias
for( j = (( singleIndex>0)?(singleIndex−1):0); j < (( singleIndex>0)?singleIndex :NRBF); ++j ){

for( i = 0 , L2Sum = 0; i < Rn; ++i )
L2Sum+=(state [ i ]−RBFCentroids[ j∗Rn+i ])∗( state [ i ]−RBFCentroids[ j∗Rn+i ] ) ;

phi[1+j ] = exp(−RBFVariances[ j ]∗L2Sum);
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}
}

double RbfNetwork(double ∗knownphi, double ∗state , double ∗weights , double ∗RBFVariances)
{

int i ;
double phi [NRBF+1];
double networkValue ;

//generate features
i f (knownphi)memcpy(phi , knownphi, sizeof(phi ) ) ;
else generatePhi(phi , state , RBFVariances, −1);

//Sum With Our Weightings
for( i = 0 , networkValue = 0; i < NRBF+1; ++i )

networkValue+=weights [ i ]∗phi [ i ] ;

//return value
return networkValue ;

}

double reward(double ∗state )
{

double rew;

//prevent divide by zero
i f ( state [13] <= 1e−5)

state [13] = 0.005;

//ratio of biomass to applied irrigation
rew = state [4 ] / state [13 ] ;

return rew;
}

//http ://www. research . rutgers .edu/˜lihong/pub/Zinkevich11Parallelized . pdf
#define SGDTHREADS 6
#define LEARNRATE 1e−4 //tuned experimentally
struct stochParam{
unsigned int ∗trainIndex ;
int minIndex;
int maxIndex;
double wi [NRBF+1];
double weights [NRBF+1];
double variances [NRBF+1];
double ∗y;
};
void ∗SimuParallelSGD(void ∗vparam)
{

struct stochParam ∗param =
(struct stochParam ∗)vparam;

double hypothesis , phi [NRBF+1];
double ∗∗chunk, ∗y, ∗tmp, tmpd;
int i , j , from, to , nsamples ;
double wi [NRBF+1];

//Allocate local memory, don’ t have to deal with
//memory locks etc then
nsamples = param−>maxIndex−param−>minIndex+1;
chunk = (double∗∗)malloc(nsamples∗sizeof(double∗∗));
y = (double∗)malloc(nsamples∗sizeof(double) ) ;

for( i = param−>minIndex; i <= param−>maxIndex; ++i ){
chunk[ i−param−>minIndex] = dataset [param−>trainIndex [ i ] ] ;
y [ i−param−>minIndex] = param−>y[ i ] ;

}

//shuff le our chunk
for( i = 0; i < nsamples/4; ++i ){

from=(xorshf96()∗nsamples)/32768;
to=(xorshf96()∗nsamples)/32768;
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tmp = chunk[ from ] ;
chunk[ from] = chunk[ to ] ;
chunk[ to ] = tmp;

tmpd=y[ from ] ;
y[ from] = y[ to ] ;
y [ to ] = tmpd;

}

//zero wi in the original algorithm
//set to iterative approach in mine
memcpy(wi , param−>weights , sizeof(wi )) ;

//paral le l stochastic gradient descent
for( i = 0; i < nsamples ; ++i ){

generatePhi(phi , chunk[ i ] , param−>variances , −1);
hypothesis = RbfNetwork(phi , chunk[ i ] , param−>weights , param−>variances ) ;
for( j = 0; j < (NRBF+1); ++j )

wi [ j]+=LEARNRATE∗(y[ i ]−hypothesis)∗phi [ j ] ;
}

//copy our results
memcpy(param−>wi , wi , sizeof(param−>wi)) ;

//free local memory
free (y) ;
free (chunk) ;
pthread exit(NULL);

}

double valueIterationAndHoldoutCheck(double ∗variances , double ∗weights , int maxIter)
{

//indexs
int i , j ;
unsigned int trainIndex [TRAINSAMPLES] ;
unsigned int validIndex [HOLDOUTSAMPLES] ;

//mdp stuf f
int iter , gradIter ;
double y[TRAINSAMPLES] ;
double outstate [14] , noapply , apply ;
double di f f ;
double yi ;

//Parallel s tuf f
pthread t threadHandle [SGDTHREADS] ;
struct stochParam threadParam[SGDTHREADS] ;
int samplesPerWorker , ret ;

//select representative samples to train with
for( i = 0; i < TRAINSAMPLES; ++i )

trainIndex [ i ] = xorshf96 () ;
//select holdout samples
for( i = 0; i < HOLDOUTSAMPLES; ++i )

validIndex [ i ] = xorshf96 () ;

//clear memory
memset(y, 0 , sizeof(y)) ;

for( iter = 0; iter < maxIter ; ++iter ){
for( i = 0; i < TRAINSAMPLES; ++i ){

// k = 1 because our modelstub is deterministic
// Action Don’ t Apply Water
modelStub(dataset [ trainIndex [ i ] ] , 0 , outstate ) ;
noapply = reward(dataset [ trainIndex [ i ] ] )
+ DISCOUNT∗RbfNetwork(NULL, outstate , weights , variances ) ;

// Action Apply Water
modelStub(dataset [ trainIndex [ i ] ] , 1 , outstate ) ;
apply = reward(dataset [ trainIndex [ i ] ] )
+ DISCOUNT∗RbfNetwork(NULL, outstate , weights , variances ) ;



129

i f (apply > noapply)y[ i ] = apply ;
else y[ i ] = noapply ;

}

//ratio of optimizaztion to bellman loops tuned experimentally
for(gradIter=0; gradIter < (int) ce i l ((double)7500/TRAINSAMPLES) ; ++gradIter){

samplesPerWorker=TRAINSAMPLES/SGDTHREADS;
for( i = 0; i < SGDTHREADS; ++i ){

threadParam[ i ] . trainIndex = trainIndex ;
threadParam[ i ] .minIndex = i∗samplesPerWorker ;
threadParam[ i ] .maxIndex = i∗samplesPerWorker + samplesPerWorker − 1;
memcpy(threadParam[ i ] . weights , weights , sizeof(threadParam[ i ] . weights )) ;
memcpy(threadParam[ i ] . variances , variances , sizeof(threadParam[ i ] . variances )) ;
threadParam[ i ] . y = y;

}

//spawn our threads
for( i = 0; i < SGDTHREADS; ++i ){
i f (pthread create(&threadHandle [ i ] , NULL, SimuParallelSGD, (void ∗)&threadParam[ i ] ) )

fprintf ( stderr ,”Ignoring Broken Thread\n”) ;
}

//Wait For All The Threads To Return
for( i = 0; i < SGDTHREADS; ++i )

pthread join(threadHandle [ i ] , (void∗∗)&ret ) ;

//update parameters
for( j = 0; j < (NRBF+1); ++j ){

//calculate a mean of the paral le l runs
weights [ j ] = 0;
for( i = 0; i < SGDTHREADS; ++i ){

weights [ j]+=threadParam[ i ] . wi [ j ] ;
}
weights [ j ]/=(double)SGDTHREADS;

}
}

// Holdout Cross Validation
di f f = 0;
for( i = 0; i < HOLDOUTSAMPLES; ++i ){

// Action Don’ t Apply Water
modelStub(dataset [ trainIndex [ i ] ] , 0 , outstate ) ;
noapply = reward(dataset [ validIndex [ i ] ] ) + DISCOUNT
∗RbfNetwork(NULL, outstate , weights , variances ) ;

// Action Apply Water
modelStub(dataset [ trainIndex [ i ] ] , 1 , outstate ) ;
apply = reward(dataset [ validIndex [ i ] ] ) + DISCOUNT
∗RbfNetwork(NULL, outstate , weights , variances ) ;

i f (apply > noapply)yi = apply ;
else yi = noapply ;
d i f f += fabs ((RbfNetwork(NULL, dataset [ validIndex [ i ] ] ,
weights , variances) − yi)/yi ) ;

}
di f f = di f f / HOLDOUTSAMPLES;

//Have we converged yet?
//general cutoff of error within 10%
//minimum of 25 iterations for consistency
// i f ( i ter >= 25 && di f f < 0.10){
// fprintf (stderr ,”Value Iteration Converged In %d Iterations\n”, i ter );
// fprintf (stderr ,”Final Cross Validation Error : %.3g Percent\n”, d i f f ∗100);
// break ;
//}

}

return di f f ;
}

//Tuned experimentally , and from experience
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#define STEPTHREADS 8 //must be a multiple of 2
#define INITIALGAMMA 10e−9

struct workerArg{
double variances [NRBF] ;
double weights [NRBF+1];
double score ;
};

int main(int argc , char ∗argv [ ] )
{

int i , j ;
char l ine [256] , ∗ptr ;
double ∗leakchunk ;
FILE ∗fp ;

int step , maxsteps = 50;

//network parameters
double ∗variances ;
double ∗weights ;
double val ;
double stepsz ;
int unchanged = 0;

//thread stuf f
struct workerArg arg [STEPTHREADS+1];
char ∗∗argPass ;
HANDLE handles [STEPTHREADS+1];

argPass = (char∗∗)malloc(sizeof(char∗)∗2);
argPass [0 ] = (char∗)malloc(512);
argPass [1 ] = (char∗)malloc(512);

fp = fopen(”data . csv” , ”rb”) ;
i f ( ! fp)return −1;

//fast f i l e load
do{

//Need More Memory ?
i f (nsamples >= allocsamples){
//purposely leak this chunk of heap memory, loading speed up
leakchunk = (double∗)malloc(sizeof(double)∗ALLOCBLOCKSZ∗Rn);
dataset = (double∗∗) realloc (dataset , (allocsamples+ALLOCBLOCKSZ)
∗sizeof(double∗));

for( i = 0; i < ALLOCBLOCKSZ; ++i )
dataset [ i+allocsamples ] = leakchunk+i∗Rn;

allocsamples+=ALLOCBLOCKSZ;
}

i f ( ! fgets ( line , sizeof( l ine ) , fp ))
break; //read error

//replace comma with space
for(ptr = line ; ∗ptr ; ++ptr)

i f (∗ptr == ’ , ’ )∗ptr = ’ ’ ;

sscanf ( line , ”%l f %l f %l f %l f %l f %l f %l f %l f %l f %l f %l f %l f %l f %l f ” ,
dataset [nsamples ] , dataset [nsamples]+1, dataset [nsamples]+2,
dataset [nsamples]+3,dataset [nsamples]+4, dataset [nsamples]+5,
dataset [nsamples]+6, dataset [nsamples]+7,dataset [nsamples]+8,
dataset [nsamples]+9, dataset [nsamples]+10, dataset [nsamples]+11,
dataset [nsamples]+12, dataset [nsamples]+13);

nsamples++;
}while( ! feof ( fp )) ;
fclose ( fp ) ;

weights = (double∗)malloc(sizeof(double)∗(NRBF+1));
variances = (double∗)malloc(sizeof(double)∗NRBF);

i f (argc == 3){ //child process
//load weights from command line
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for( i = 0 , ptr = argv [ 1 ] ; i < (NRBF+1); ++i ){
i f ( i )for (;∗ptr ; ptr++)

i f (∗ptr == ’ ’ ){ptr++;break;}
sscanf (ptr , ”%l f ” , &weights [ i ] ) ;

}

//load variances from command line
for( i = 0 , ptr = argv [ 2 ] ; i < NRBF; ++i ){

i f ( i )for (;∗ptr ; ptr++)
i f (∗ptr == ’ ’ ){ptr++;break;}

sscanf (ptr , ”%l f ” , &variances [ i ] ) ;
}

//calculate for 100 iterations
val = valueIterationAndHoldoutCheck(variances , weights , 100);
fprintf ( stderr , ”Child Calculated : %g Percent\n” , val∗100);
returnvalue(val∗100);

}else{
stepsz = 10; //logsearch

// in i t ia l conditions
memset(weights , 0 , sizeof(double)∗(NRBF+1));
for( j = 0; j < NRBF; ++j )variances [ j ] = INITIALGAMMA;

i f (STEPTHREADS%2){
fprintf ( stderr , ”Number of threads must be a multiple of 2!\n”) ;
return −1;
}

//random coordinate descent
//with some twists by Damian Peckett
fprintf ( stderr ,”Performing Gradient Descent On RBF Variances\n”) ;
for(step = 0; step < maxsteps ; ++step){

//tuned experimentally
i f (step){
stepsz/=2; //gradually resduce our grid size

}

//set memory
memset(arg , 0 , sizeof(arg )) ;
for( i = 0; i < (STEPTHREADS+1); ++i ){
memcpy(arg [ i ] . variances , variances , sizeof(arg [ i ] . variances )) ;
memcpy(arg [ i ] . weights , weights , sizeof(arg [ i ] . weights )) ;
}

//step forwards and back , log search
//arg [0] is current position
for( i = 0; i < STEPTHREADS/2; ++i ){

for( j = 0; j < NRBF; ++j ){
arg[1+i ∗2]. variances [ j ]∗=pow(stepsz , (double) i ) ; //step forward
arg[2+i ∗2]. variances [ j ]/=pow(stepsz , (double) i ) ; //step back

}
}

//spawn our worker processes
for( i = 0; i < (STEPTHREADS+1); ++i ){

//construct our arguments
//long because i t s generalized
argPass [ 0 ] [ 0 ] = 0;
for( j = 0; j < (NRBF+1); ++j ){

sprintf ( line , ”%g ” , arg [ i ] . weights [ j ] ) ;
strcat (argPass [0 ] , l ine ) ;

}
argPass [ 1 ] [ 0 ] = 0;
for( j = 0; j < NRBF; ++j ){

sprintf ( line , ”%g ” , arg [ i ] . variances [ j ] ) ;
strcat (argPass [1 ] , l ine ) ;

}

//spawn the process
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crossfork (argv , argPass , &handles [ i ] ) ;
}

//wait for the worker processes to finish
//and record their results
for( i = 0; i < (STEPTHREADS+1); ++i ){

arg [ i ] . score = getreturn(handles [ i ] ) ;
i f (arg [ i ] . score <= 0)arg [ i ] . score = 100;

}

//make changes
for( i = 0 , j = 0; i < STEPTHREADS/2; ++i ){

i f (arg[1+i ∗2]. score < arg [ 0 ] . score){
for( j = 0; j < NRBF; ++j )
variances [ j ]∗=pow(stepsz , (double) i ) ; //step forward
break;
}else i f (arg[2+i ∗2]. score < arg [ 0 ] . score){

for( j = 0; j < NRBF; ++j )
variances [ j ]/=pow(stepsz , (double) i ) ; //step back
break;
}else j++;

}

i f (unchanged == 3)break;
i f ( j ==STEPTHREADS/2)unchanged++; //pretty much converge
else unchanged=0;

fprintf ( stderr ,”Updated Variances :\n”) ;
for( j = 0; j < NRBF; ++j )

fprintf ( stderr ,”%.5g ” , variances [ j ] ) ;
fprintf ( stderr ,”\n”) ;

}

//Calculate The Corresponding weights
fprintf ( stderr , ”Winning Variance , gamma =%g\n” , variances [ 0 ] ) ;
val = valueIterationAndHoldoutCheck(variances , weights , 500);
fprintf ( stderr , ”Winning Weights , Accurate To (%g Percent)\n” , val∗100);
for( i = 0; i < (NRBF+1); ++i )

fprintf ( stderr , ”%g,” , weights [ i ] ) ;
fprintf ( stderr , ”\n”) ;

return 0;
}

return −1;
}
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Generate Seed Clusters

% You are welcome to use this however you wish , however I ’d love an email
% i f you do something cool with i t ! Word Out! Damo
%
% Copyright (c) 2013, Damian Peckett <damian.peckett@gmail .com>
% All rights reserved .
%
% Redistribution and use in source and binary forms , with or without
% modification , are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice , this
% l i s t of conditions and the following disclaimer .
% 2. Redistributions in binary form must reproduce the above copyright notice ,
% this l i s t of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution .
%
% THIS SOFTWARE IS PROVIDED BY THECOPYRIGHTHOLDERSANDCONTRIBUTORS ”AS IS” AND
%ANYEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
%WARRANTIESOFMERCHANTABILITYAND FITNESS FOR A PARTICULARPURPOSEARE
% DISCLAIMED. IN NOEVENT SHALL THECOPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FOR
%ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
% (INCLUDING, BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDAND
%ONANYTHEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT
% (INCLUDING NEGLIGENCEOROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS
%SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGE.

%GENERATEA POOLOF POSSIBLE CLUSTER CENTROIDS
%BASEDONKMEANS

dataset = load( ’datapoints . csv ’ ) ;

NCLUSTERS = 8;

fprintf( ’Generating Seed Cluster Pool\n ’ ) ;

% Take a random selection of 1000 points from the dataset
points = round(1 + (length(dataset)−1).∗rand(1000));
subset = zeros(length(points ) , 14);
for i=1:length(points)

subset( i , : ) = dataset(points( i ) , : ) ;
end

for z=1:10

opts = statset ( ’MaxIter ’ ,10000);
[˜ , centroid ] = kmeans(subset , NCLUSTERS, ’options ’ , opts ) ;
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fname = sprintf( ’ centers . txt ’ , z ) ;
f i leID = fopen(fname, ’a+’ ) ;

for i=1:NCLUSTERS
fprintf( fileID , ’%g %g %g %g %g %g %g %g %g %g %g %g %g %g\n ’ , . . .

centroid( i ,1) , centroid( i ,2) , centroid( i ,3) , centroid( i ,4) , centroid( i ,5) , centroid( i ,6) , . . .
centroid( i ,7) , centroid( i ,8) , centroid( i ,9) , centroid( i ,10) , centroid( i ,11) , centroid( i ,12) , centroid( i ,13) , centroid( i ,14) . . .

) ;
end

fclose( fi leID ) ;
end
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Average Out Clusters

% You are welcome to use this however you wish , however I ’d love an email
% i f you do something cool with i t ! Word Out! Damo
%
% Copyright (c) 2013, Damian Peckett <damian.peckett@gmail .com>
% All rights reserved .
%
% Redistribution and use in source and binary forms , with or without
% modification , are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice , this
% l i s t of conditions and the following disclaimer .
% 2. Redistributions in binary form must reproduce the above copyright notice ,
% this l i s t of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution .
%
% THIS SOFTWARE IS PROVIDED BY THECOPYRIGHTHOLDERSANDCONTRIBUTORS ”AS IS” AND
%ANYEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
%WARRANTIESOFMERCHANTABILITYAND FITNESS FOR A PARTICULARPURPOSEARE
% DISCLAIMED. IN NOEVENT SHALL THECOPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FOR
%ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
% (INCLUDING, BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDAND
%ONANYTHEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT
% (INCLUDING NEGLIGENCEOROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS
%SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGE.

% Find Some Averages From Our Pool Of Clusters

X = load( ’ centers . txt ’ ) ;

NUMBERCLUSTERS= 8;

% Group Close Together Points
% http ://homepage. tudel f t . nl/19j49/t−SNE. h t m l
X2D = tsne(X) ;
distances = squareform(pdist (X2D)) ;
closethresh = 0.5; % Tuned Experimentally

while 1
groups = zeros(length(X2D) ,1);
curgroupid = 1;

for i=1:length(distances )
Z = distances ( i , i : length(distances )) < closethresh ;

assign group = curgroupid ;
for j=1:length(Z)
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i f Z( j ) > 0
i f groups( j+i−1) ˜= 0
assign group = groups( j+i−1);
break;

end
end

end

for j=1:length(Z)
i f Z( j ) > 0
groups( j+i−1) = assign group ;

end
end

if assign group == curgroupid
curgroupid = curgroupid + 1;

end

end

fprintf( ’%d Clusters This Run\n ’ , curgroupid−1);

%got the desired number of clusters
i f curgroupid−1<=NUMBERCLUSTERS
break;

else
closethresh = closethresh + 0.1; %expand out

end
end

% Calculate The Averages Of Each Group
avgcluster = [ ] ;
outfp = fopen( ’ averagecenters . txt ’ , ’w’ ) ;
for i=1:(curgroupid−1)
sum = zeros(1 ,14);
npoint = 0;

for j=1:length(groups)
i f groups( j ,1) == i
sum = sum + X(j , : ) ;
npoint = npoint + 1;

end
end

sum = sum / npoint ;
avgcluster = [ avgcluster ; sum] ;
fprintf(outfp , ’%d %d %d %0.3g %d %2.2g %d %d %2.2g %d %d %2.2g %2.2g %0.3g\n ’ , . . .
round(sum(1)) , round(sum(2)) , round(sum(3)) , sum(4) , round(sum(5)) , sum(6) , . . .
round(sum(7)) , round(sum(8)) , sum(9) , round(sum(10)) , . . .
round(sum(11)) , sum(12) , sum(13) , sum(14));

end
fclose(outfp ) ;

%Display data
labels = num2str(groups , ’%d ’ ) ;
gscatter (X2D(: ,1) ,X2D(: ,2) , labels ) ;
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