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Abstract

The aim of this report is a self-contained overview on shearlets, a new
multiscale method emerged in the last decade to overcome some of the
limitation of traditional multiscale methods, like wavelets.

Shearlets are obtained by translating, dilating and shearing a single mother
function. Thus, the elements of a shearlet system are distributed not only
at various scales and locations — as in classical wavelet theory — but also
at various orientations. Thanks to this directional sensitivity property,
shearlets are able to capture anisotropic features, like edges, that fre-
quently dominate multidimensional phenomena, and to obtain optimally
sparse approximations. Moreover, the simple mathematical structure of
shearlets allows for the generalization to higher dimensions and to treat
uniformly the continuum and the discrete realms, as well as fast algorith-
mic implementation.

For all these reasons, shearlets are one of the most successful tool for
the efficient representation of multidimensional data and they are being
employed in several numerical applications.

Keywords: Shearlets, Affine systems, Frames, Unitary representations of
locally compact groups, Sparse approximation, Image processing, Wavelets

2010 MSC: 42C40, 22D10, 42C15, 94A08

*This work is supported by the Italian national research project “FIRB2012 — Apprendere
nel tempo: un nuovo approccio computazionale per U'apprendimento automatico di distemi
dinamici”, grant n. RBFR12M3AC, and by the local research projects “FAR2012 — Opti-
mization Methods for Inverse Problems” and “FAR2013 — Optimization methods for Imaging
and Learning in dynamic systems” of the University of Ferrara.



Introduction

Nowadays, technology allows for easy acquisition, transmission and storage of huge amounts of
data: medical imaging, astronomy, seismology, meteorology, air traffic control, internet traffic,
audio and video applications and digital communications, just to mention a few. All this data
require efficient analysis and processing in order to extract the relevant information from them.
Moreover, it is important not only to provide the methodology to process various different types
of data, but also to analyze the accuracy of such methods and to provide a deeper understanding
of the underlying structures.

Usually, the first step to this end is to decompose the signal in suitable building blocks which
should be well-suited for the specific application and should allow a fast and efficient extraction.
This art of “breaking into pieces” to gain insight into an object is exactly the role of (applied)
harmonic analysis.

Just to fix the idea, given a class of data & € L?(R?), d > 1, a collection of analyzing functions
(¢i)ier € L*(RY), where T is a countable indexing set, is sought such that, for all f € €, we
get the expansion

1= alfor

i€

This formula not only provides a decomposition for any element f € % into a countable col-
lection of linear measurements (c;(f))iez C ¢*(Z), i.e., its analysis; but also it illustrates the
process of synthesis, where f is reconstructed from the expansion coefficients (¢;(f))iez.
Hence, one major goal of applied harmonic analysis is the construction of special classes of
analyzing elements which can best capture the most relevant information in a certain class
of data. Yet, this is the onset of one particular problem which is currently in great demand:
directional information and sensitivity. Indeed, it is well known that, due to their limited direc-
tional sensitivity, traditional multiscale methods, like wavelets, are not very efficient in dealing
with anisotropic features or distributed discontinuities such as the edges occurring in natural
images or the boundaries of solid bodies, that however frequently dominate multidimensional
phenomena. To address these issues, several variations of the wavelet scheme have been recently
proposed, such as directional wavelets [21], complex wavelets [22], ridgelets [2], bandelets [30]
and contourlets [12].

The real breakthrough occurred with the introduction of curvelets by Candes and Donoho [3]: it
is the first system that provides a truly directional multiscale representation of multidimensional
data. Roughly, curvelets form a pyramid of analyzing functions defined not only at various scales
and locations, like wavelets, but also at various orientations, with the number of orientations
increasing at finer scales. This property makes curvelets able to achieve an essentially optimal
approximation rate for 2-D smooth functions with discontinuities along %*-curves. However,
there are two main drawbacks: this system is not derived from the action of countably many
operators applied to a single (or a finite set) of generating functions and its construction involves
rotations that do not preserve the digital lattice, which prevents a direct transition from the
continuum to the discrete setting.

At the same time, Guo, Kutyniok, Labate, Lim, and Weiss provided in [18, 29] an alternative
approach to curvelets: the shearlets. Unlike curvelets, shearlets are derived within the class



of affine systems as a truly multivariate extension of the wavelet framework and they use a
shearing parameter to control directional selectivity, in contrast to rotation used by curvelets.
These are fundamental different concepts, since they allow shearlet systems to be derived from
a single (or a finite set) of generators and they ensure a unified treatment of the continuum and
discrete realms due to the fact that the shearing operation preserves integer lattices.

This combination of highly desirable properties make shearlets stand out:

e A single or a finite set of generating functions.

Optimally sparse approximations of anisotropic features in multivariate data.

Compactly supported analyzing elements.

Fast algorithmic implementations.

e A unified treatment of the continuum and digital realms.

Association with classical approximation spaces.

In the following, we present a brief overview of some key results from the theory and applications
of shearlets, focused primarily on the 2D construction, discussing both the continuum and the
discrete setting. We start, in Chapter 1, by establish the notation adopted throughout these
notes and presenting some background material from harmonic analysis and wavelet theory.
In Chapter 2, we give the definition of continuous shearlet transform; in Chapter 3 we discuss
discrete shearlet systems and in Chapter 4 we focus on multidimensional extensions, primarily
on 3-D continuous shearlet transform.



Chapter 1

Notation and Background

In the following, R* = {z € R: 2 > 0} and R} = {z € R: x > 0}. Vectors in R? or C¢, d > 1,
are always assumed to be column vectors, and their inner product shall be denoted by (-, -).
L'(R%) is the space of Lebesgue integrable functions on R% and L?(R?) is the Hilbert space of
square Lebesgue integrable functions on R? endowed with the inner product (f,g) = fRd fg.

1.1 Fourier Analysis

The Fourier transform is a fundamental tool in harmonic analysis. Since it is discussed in many
textbooks, we need to spend only a few words just to establish the notations we use and recalling
the properties we need.

Definition 1.1. The Fourier transform, denoted by F, is the operator mapping a function
f € LYR?) into Ff = f defined by

fe) = [ f@pe .

The inverse Fourier transform, denoted by F !, is the operator mapping a function g € L'(R%)
into F~'g = §, where

@) = o) = [ o,

The function f(€) is continuous and bounded, since |f(£)] < [ 1f(z)|dz; moreover |£(€)] tends
to zero when |£| — oco. We recall also that f is called a band-limited function if its Fourier
transform is compactly supported.

If f € L'(RY) with f € L*(R?), we have f = (f)¥, hence in this case - which is by far not the
only possible case - the inverse Fourier transform is the inverse operator of F (that is why it is
denoted by F~1).

It is well known that this definition can be extended to L?(R?) and, as usual, also these ex-
tensions will be denoted by f and ¢. By using this definition of the Fourier transform, the
Plancherel formula for f,g € L?(R?) reads

(f,9)=(f.9)

and, in particular,

17112 = [1f]]2-

Among the most important properties of Fourier analysis we recall the following list of results
(cf. [15]).



Theorem 1.2. Let f,g € L'(R?) and

T,f(z) = f(z — 1), t € RY (1.1)

Dyrf(z) = |det(M)| 2 f(M~'z), M € GLy(R) (1.2)
the translation and the dilation operator respectively. The following properties hold true:
(i) (TH)NE) = e 2N f(€) and (Darf)M(€) = Dxf(€), where N = (MT) !

(ii 9" = fg.

)

) (f*

(i) If 2 f € LYRY) for |o| < k, then 0°f = ((—2miz)*f)".

(iv) If f € CHRY), 9*f € LY(RY), for |a| < k, and 8*f € Co(RY), for |a| < k — 1, then
(0 1)1 (&) = (2mi&)* f(£)).

(v) F(L'(R?) € Co(RY)

The following proposition is a simple application of the Fourier transform showing that regularity
on R implies decay in the Fourier domain (cf. [15]).

Proposition 1.3. Suppose that ¢ € L2(RY) is such that ) € C°(R), where R = supp (¢) C R
Then, for each k € N there is a constant C, € Rt such that, for any x € R?, we have

[(@)] < O(L+ |z*)7*

22 s the frequency domain

In particular, Cy, = k p(R)(|[¥]loo + [|A*)]|00), where A = 34| o€

Laplacian operator and u(R) is the Lebesgue measure of R.

We refer to [15] or [32] for more details.

1.2 Frame Theory

When designing representation systems of functions, it is sometimes advantageous or unavoid-
able to go beyond the setting of orthonormal bases and consider redundant systems. The notion
of a frame guarantees stability while allowing non-unique decompositions: frames were invented
in 1952 by Duffin and Schaeffer, but it took several years before the potential was realized by
the scientific community; by now, frame theory is well established.

We will only give a glimpse of the general theory, recalling the basic definitions from frame
theory in the setting of a general (real or complex) Hilbert space J#. For additional details we
refer the reader to [5] and [4].

Definition 1.4. A sequence (g;)iez in 2 is called a frame for s, if there exist constants
0 < A < B < oo such that

Allz(]> <>l 00)” < Bl for all = € 2.
€T

The frame constants A and B are called lower and upper frame bound, respectively. They are
not unique. The optimal upper frame bound is the infimum over all upper frame bounds, and
the optimal lower frame bound is the supremum over all lower frame bounds. Note that the
optimal bounds actually are frame bounds.

A special role is played by frames for which the optimal frame bounds coincide:



Definition 1.5. A sequence (y;)iez in J€ is a tight frame if there exists a constant A > 0 such
that

>l o)* = Al Vo e A

1€L
If A =1, then (¢;)iez is called Parseval frame. A frame is called equal-norm if there exists
some ¢ > 0 such that ||p;|| = ¢ for all ¢ € I, and it is unit-norm if ¢ = 1.

A simple example of a Parseval frame are three vectors of the same length in R? forming a
Mercedes-Benz star, which even led to its name ‘Mercedes-Benz frame’.

Apart from providing redundant expansions, frames serve as an analysis tool. In fact, if (;)ier
in JZ is a frame for J# it allows the analysis of data through the study of the associated frame
coefficients ((x, ¢i))iez, where the operator F' defined by

F:o — *(1), z = ((z,9i))iez

is called the analysis operator. The adjoint F* of the analysis operator is referred to as the
synthesis operator and satisfies

F*: 013(T) = A, (ci)iez = Z@%
ie1

The main operator associated with a frame, which provides a stable reconstruction process, is
the frame operator
S=F'F: 5 — X, xb—>z<x,cpi>g0¢.
€L

Note that because (¢;)ic7 is a Bessel sequence!, the series defining S converges unconditionally
for all x € 7 (cf. corollary 2.4 in [5]). Moreover, S is a positive, self-adjoint invertible operator
on € with A- 1,0 < S < B-1I,, where I, denotes the identity operator on 7 and A and B
are the frame costants. In the case of a Parseval frame, this reduces to S = I .
In general, x € JZ can be recovered from its frame coefficients through the reconstruction
formula

= (z,0)5 g (1.3)

1€T

Notice that one of the cases where this decomposition is very useful is when x € J# represents
a signal.
The sequence (S~ '¢;)iez, which can be shown to form a frame itself, is referred to as the
canonical dual frame. Taking a different viewpoint and regarding a frame as a means for
expansion in the system (;);ez, we observe that, for each vector x € 7,

T = Z (z, 57 1p;) 5. (1.4)

1€

The frame decomposition, stated above, is one of the most important frame results. It shows
that if (¢;)iez is a frame for 7, then every element in J# has a representation as an infinite
linear combination of the frame elements. Thus, it is natural to view a frame as some kind of
“generalized basis”.

In particular, when the frame (p;);cz does not constitute a basis, i.e., it is redundant, the
coefficient sequence ({z,S7'¢;))ier of this expansion is certainly not unique; but it is this

'Recall that a sequence (¢;)icz in S is called a Bessel sequence if there exists a constant B > 0 such that

> Iz, 00)]* < Bljz||? for all z € 7.

i€L



property which enables to derive much sparser expansions. It should also be noticed that the
sequence ((x, S~1p;));er has the characterizing property of being the smallest of all expansion
coefficient sequences with respect to the ¢? norm.

Despite this, (1.3) and (1.4) reveals one of the main difficulties in frame theory: to make
expansions (1.3) and (1.4) practically useful we need either to find the operator S—!, or to
compute its action on the whole (¢;);ez. One way to bypass the problem is to consider only
tight frames, for which the following result holds true:

Corollary 1.6. If (;)icz is a tight frame with frame bound A, then the canonical dual frame
is (A=Y0y)iez, and for all x € A

T = %Z@a@i)%

i€T

Tight frames have additional advantages. For the design of frames with prescribed properties,
it is essential to control the behavior of the canonical dual frame, but the complicated structure
of both the frame operator and its inverse makes it difficult. For example, if we consider a frame
(i)ier for L*(R) consisting of functions with exponential decay, nothing guarantees that the
functions in the canonical dual frame (S~!¢;);cz have exponential decay. However, for tight
frames, this type of matters have satisfying arguments. Also, for a tight frame, the canonical
dual frame automatically has the same structure as the frame itself. For example, if the frame
has a wavelet structure, also the canonical dual frame does. In contrast, the canonical dual
frame of a nontight wavelet frame might not have the wavelet structure.

1.3 Representation of locally compact groups

Representation theory of groups is a vast subject. Many of the aspects of this theory that are
of interest in Applied Harmonic Analysis can be studied within the class of locally compact
and second countable topological groups, even if the most interesting examples belongs to the
smaller and nicer class of Lie groups. Most of the material presented here comes from the lectures
attended in Genova at the Workshop Three minicourses on Applied Harmonic Analysis.

We start refreshing the basics of topological groups as well as giving the definition and the
basic results regarding the Haar measure. For a deeper discussion on these topics the reader is
referred to [14].

1.3.1 Topological Groups and Haar measure
Definition 1.7. A topological group is a group G endowed with a topology relative to which

the group operations

(9,h) — gh, g gt

are continuous as maps G X G — G and G — @G, respectively. G is locally compact if every
point has a compact neighborhood. We shall also assume our groups to be Hausdorff?.

Definition 1.8. A Borel measure p on the topological space X is called a Radon measure if:
(i) it is finite on compact sets;

(ii) it is outer regular on the Borel sets: for every Borel set E

w(E) =inf{u(U) : U D E,U open set}

2Recall that a Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.



(iii) it is inner regular on the open sets: for every open set U

w(U) =sup{u(K) : K D E, K compact set}

If G is a topological group, for £ C G and x € G we define
zE = {xe:e € E}, Ex ={ex:ec E}.

Definition 1.9. A left Haar measure on the topological group G is a non zero Radon measure
w such that p(xE) = p(FE) for every Borel set E C G and every z € G. A similar definition is
given for right Haar measures.

Of course, the prototype of Haar measure is the Lebesgue measure on the additive group R¢,
which is invariant under left (and right) translations.

Theorem 1.10. Fvery locally compact group G has a left Haar measure A\, which is essentially
unique in the sense that if u is any other left Haar measure, then there exists a positive constant
¢ such that p = ch.

If we fix a left Haar measure A on G, then for any x € G the measure A, defined by
Az(E) = AM(Ex)

is again a left Haar measure, because of the commutativity of left and right translation. There-
fore there must exist a positive real number, denoted A(x) such that

Az = A(x) A

The function A : G — RT thus defined is independent of the choice of A and it is called the
modular function of G.

Proposition 1.11. Let G be a locally compact group. The modular function A : G — RT
is a continuous homomorphism into the multiplicative group RY. Furthermore, for every f €

LY(G, ) we have
[ saie = @)™ [ s
G el

A group for which every left Haar measure is also a right Haar measure, hence for which the
modular function is identically equal to one, is called unimodular. Large classes of groups
are unimodular, such as the abelian, compact, nilpotent, semisimple and reductive groups.
Nevetherless, in Applied Harmonic Analysis non-unimodular groups play a prominent role,
such as the affine group “ax 4+ b” that we shall define below.

First, we need to recall the definition of Lie group. The class of Lie groups is smaller but nicer:
indeed, since Lie groups are smooth manifolds, they can be studied using differential calculus
and their geometric nature allows, for istance, to speak about dimension. For a detailed account
on these matters the reader may consult [13].

Definition 1.12. A Lie group G is a C*° (smooth or differentiable) manifold endowed with a
group structure such that the group operations (g, h) — gh and g — g~! are smooth, that is,
Cc*.

ExXAMPLE 1.13 (The affine group “ax + b”). There are several possible versions of this group.
Let G = R™ x R as manifold. One can visualize it as the right half plane. The multiplication
is obtained by thinking of the pair (a,b), with @ > 0 and b € R, as identifying the affine



transformation of the real line given by z +— ax + b, whence the name. The composition of
maps
r = ar+b — d(ax+b)+V =[daz+[db+ V]

yields the product rule
(a',V)(a,b) = (d'a,d’b+ ).

Evidently, both functions a’a and a’b + b’ are smooth in the global coordinates on G, which is
then a Lie group. Clearly, G is connected. When speaking of the “ax + b” group we refer to
this group.

A non-connected version arises by taking a € R instead of a > 0. Yet another slightly different
construction comes from thinking of the pair (a,b) as identifying the affine transformation
x +— a(z + b). This point of view yields both a connected and a non-connected Lie group.

Left Haar measures are very easy to construct on Lie groups.

Proposition 1.14. If G is a Lie group whose underlying manifold is an open set in R and if
the left translations are given by affine maps, that is

zy = A(z)y + b(x),

where A(z) is a linear transformation and b(x) € Re, then |det A(z)|"'dz is a Haar measure
on G.

For example, in the group “azx 4 b” the left translations are

l(a,w(“vﬁ):[g gHg]JF[N

so that by Proposition 1.14 we have

d
det A(a, b)| " 'dadb = X2 db.
2
a

1.3.2 Representation Theory

Let A and 7% be two Hilbert spaces and suppose that T : 54 — 4 is linear and bounded,
that is T' € B(JA,.7#4%). Recall that T is an isometry if ||Tu|| = ||u|| for every u € 7. Since
[|Tu||? = (Tu, Tu) = (T*Tu,u) e ||u||> = (u,u), the polarization identity implies that T is an
isometry if and only if T*T = id s . Hence, isometries are injective, but they are not necessarily
surjective. A bijective isometry is called a unitary map. If T is unitary, such is also T~! and in
this case TT™* = id . In particular if JA = 7 = S, the set

U(A) ={T € B(s) : T is unitary}
forms a group.

Let now G be a locally compact Hausdorff topological (or a Lie) group.

Definition 1.15. A unitary representation of G on the Hilbert space ¢ is a group homomor-
phism 7 : G — U(H) continuous in the strong operator topology. This means:

(i) w(gh) = w(g)n(h) for every g,h € G,
(ii) w(g~") = m(g)~" = m(g)* for every g € G;

(iii) g — 7(g)u is continuous from G to S, for every u € .



EXAMPLE 1.16 (Wavelet representation). Let G be the “ax + b” group and % = L%*(R).
Define

ta,)f@) = =t (250

the so-called wavelet representation. Notice that it is just the composition of the two important
and basic unitary maps

Tyf(x) = f(x —b) (translation operator)
D, f(x) = \}& (g) (dilation operator)

for indeed

T,D0f () = TDuf)(w) = Duf(z = 1) = = (x . b) |

Observe that
TbTb’ = Tb+b’7 DaDa’ = Daa’-

It is important to observe that T,D, # D,T},. More precisely,

DA (@) = 0 (2) = T (2 -0) = 727 (F5) = TuDut @),

In other words
DT, = TwD,.

It follows that
(TﬁDa)(TbDa) = TB(DaTb)Da - TB(TabDa)Da - (TBTab)(DQDa) - Tﬁ—i-abDoza)
so that 7 is a homomorphism:

(e, B)m(a,b) = w(aa, B+ ab) = 7((a, B)(a, b)).
Finally, it is easy to check the strong continuity.

Definition 1.17. Let M be a closed subspace of 7. Then M is called an invariant subspace
for the unitary representation m, if 7(¢g)M C M for all g € G. If there exists a nontrivial
invariant subspace for 7w, then 7 is called reducible, otherwise 7 is irreducible.

REMARK 1.18. From the point of view of applications, a unitary representation m of a locally
compact group G (with Haar measure dg) is particularly useful if it yields a reproducing
formula, that is, a (weak) reconstruction of a function f in the representation space .# from
its voice transform V, : A — L*(G) given by V,(f)(g) := (f,m(g)n). In other words, a
reproducing formula is a weak reconstruction of the form

f= / (fym(g)n) m(g9)n dg, (1.5)
G

valid for every f € 2, for some admissible n € 7. We recall that, given a unitary representa-
tion 7 of G on S, a function n € S is called admissible, if

[ onwtayi dg < o
G

In this case, (G,m,n) is called a reproducing system; otherwise, we simply say that G is a
reproducing group. If 7 is irreducible, this is nothing else but the classical concept of square
integrable representation. We stress that formula (1.5) is important also because it is the
starting point for its discrete counterparts, within coorbit theory.
A classical example is when % = L?(R%): in this case an admissible 1 is sometimes called a
generating function or wavelet, as we shall see in the next section.

10



REMARK 1.19. It is clear from the above discussion that if a countable collection (p;);cz in
a Hilbert space J# is a Parseval frame, then this is equivalent to the reproducing formula
[ =2 icr (fy i) @i for all f € A, where the series converges in the norm of J#.

1.4 Wavelets

Since shearlets arise naturally from the general framework of wavelet analysis, a full under-
standing of shearlets can only be derived through a sound understanding of wavelets theory.
The emergence of wavelets about 20 years ago represents a milestone in the development of
efficient encoding of piecewise regular signals. The main reason for the spectacular success of
wavelets consists not only in their ability to provide optimally sparse approximations of a large
class of frequently occurring signals and to represent singularities much more efficiently than
traditional Fourier methods, but also in the existence of fast algorithmic implementations which
precisely digitalize the continuum domain transforms. The key property enabling such a unified
treatment of the continuum and discrete setting is a Multiresolution Analysis, which allows a
direct transition between the realms of real variable functions and digital signals. An additional
aspect of the theory of wavelets, which has contributed to its success is its rich mathemati-
cal structure, which allows one to design families of wavelets with various desirable properties
expressed in terms of regularity, decay, or vanishing moments. As a consequence of all these
properties, wavelets have literally revolutionized image and signal processing and produced a
large number of very successful applications.

In the following sections, we will present a self-contained overview of the key results from the
theory and applications of wavelets.

1.4.1 One-dimensional Continuous Wavelet Transform

Let A; be the affine group associated with R, consisting of all pairs (a,t), a,t € R,a > 0,
with group operation (a,t)(a’,t") = (ad’,t + at’). The (continuous) affine systems generated
by ¢ € L?(R) are obtained from the action of the quasi-regular representation 7(a,t) of A; on
L?(R), that is

{tust0) = rla)00) = TiDu0t0) = S (T ) @t e .

where the translation operator 73 and the dilation operator D, are defined as above.
It was observed by Calderon that, if ¢ satisfies the admissibility condition

R o da
/ [Y(a&)|*— =1 for a. e. £ € R, (1.6)
0 a
then any f € L?(R) can be recovered via the reproducing formula:

f= /A () i i),

where du(a,t) = dt% is the left Haar measure of A;. If 1 satisfies (2.6) the function ¢ is called
a continuous wavelet and

L*(R) > f = Wyf(a,t) = (f,Yar) (a,t) € Ay

is the Continuous Wavelet Transform of f. We refer to [33] for more details about this.

Discrete affine systems and wavelets are obtained by ‘discretizing’ appropriately the correspond-
ing continuous systems. In fact, by replacing (a,t) € A; with the discrete set (27,2/m), j,m € Z,
one obtains the discrete dyadic affine system

{Wjm(@) = TyymDytp(x) = DyTnip(x) = 27729272 —m) : (j,m) € Z}, (L.7)

11



and © is called a wavelet if (1.7) is an orthonormal basis or, more generally, a Parseval frame
for L2(R). The associated Discrete Wavelet Transform is then defined to be the map

L2R) > f = Wyf(j,m) = (f, ¢jm), J,m € L.

Being a wavelet is by no means very restrictive and a lot of choices exist. Indeed, it is possible
to construct wavelets ¢ which are well localized, in the sense that they have rapid decay both
in the spatial and frequency domain, or which satisfy other regularity or decay requirements.
Among the classical constructions, let us highlight the two most well-known wavelets. The
Daubechies wavelets have compact support and can be chosen to have high regularity, leading
to good decay in the frequency domain. It is not possible to write them down in closed form,
but the interested reader can refer to [1, 20] for the construction. The Lemarié-Meyer wavelet
Yrar s defined by ¥ (w) = €™ b(w), where

sin(Z(3le] — 1) &< |wl < 2
bw) =< sin(3F(3—|w]) 5<|w[<3
0 otherwise

The Lemarie-Meyer wavelets are band-limited and C'*° in the frequency domain, forcing rapid
decay in the spatial domain (cf. [20]).

It should be emphasized that the localization properties of wavelet bases are among the major
differences with respect to Fourier bases and play a fundamental role in their approximation
properties, as we will show below.

There is a general machinery to construct orthonormal wavelet bases called Multiresolution
Analysis (MRA). In dimension d = 1, this is defined as a sequence of closed subspaces (V});ez
in L?(R) which satisfies the following properties:

(i) {0}c...cVaocVicWwcViCcWcC...CL*R).
(ii) NjezVi={0} and U,z Vi = L*(R).
(ii) feV; ifandonlyif Dy'feV;_y.

(iv) There exists a ¢ € L%(R), called scaling function, such that {T},¢ : m € Z} is an orthonor-
mal basis for Vj.

This approach enables the decomposition of functions into different resolution levels associated
with the so-called wavelet spaces Wj, j € Z. These spaces are defined by considering the
orthogonal complements

Wj:Vj+1@V}', j €.

That is, a function f;1 € Vj11 is decomposed as fj1 = f; + g; € V; @ W, where f; contains,
roughly, the lower frequency component of f;41 and g; its higher frequency component. It
follows that L?(R) can be broken up as a direct sum of wavelet spaces. Also, given an MRA,
there always exists a function 1 € L?(R) such that {¢;,, : j,m € Z} is an orthonormal basis
for L?(R). In fact, the MRA approach allows to introduce an alternative orthonormal basis of
the form

{om =Tno=0(—m):meZ}U{jm:j=0,méeZL}

that involves both the wavelet and the scaling function.

In this case, the translates of the scaling function take care of the low frequency region - the
subspace Vo C L?(R) - and the wavelet terms of the high frequency region - the complementary
space L%(R) © V. For additional information about the theory of MRA see, e.g., [31] and [6].
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1.4.2 Higher-dimensional Continuous Wavelet Transform

The extension of wavelet theory to higher dimensions requires to extend the theory of affine
systems to higher dimensions. The natural way to do it is by replacing A; with the full affine
group of motions on R%, Ay, consisting of the pairs (M,t) € GLg(R) x R? with group operation
(M,t) - (M, ") = (MM',t + Mt'). Similarly to the one-dimensional case, the affine systems
generated by ¢ € L?(R?) are given by

1
{Yp) (@) = TeDap(x) = | det M| ™29 (M~ — 1)) : (M, 1) € Ag}, (1.8)
where the dilation operator Dy is defined by Dyib(z) = | det M]_%w(M_lx).
The mathematical structure of the affine systems becomes evident by observing that (1.8) can

be generated by the action of the unitary representation 7 : Ag — U(L?*(R?%)) defined by
m(M,t) = Ty Dyys. This allows us to write the elements of a wavelet system as

w(M,t) = W(Mu t) .
Then the following result on reproducibility of functions in L?(R%) holds true.

Theorem 1.20. Retaining the notations introduced in this subsection, let du be a left-invariant
Haar measure on G C GL4(R), and d\ be a left Haar measure of Ay. Further, suppose that
Y € L*(R?) satisfies the admissibility condition

19T det M) = 1.
Then any function f € L*(R?) can be recovered via the reproducing formula
£= [ v OL)
d

interpreted weakly.

When the conditions of the above theorem are satisfied, ¢ € L?*(R?) is called a continuous
wavelet. The associated Continuous Wavelet Transform is defined to be the mapping

L*RY S f = Wyf(M,t) = (f, darg), M,t € Ag.

One interesting special case is obtained, when the dilation group G has the form G = {aly :
a > 0}, which corresponds to the case of isotropic dilations, i.e. the dilation factor a acts in the
same way for each coordinate direction. In this case, the admissibility condition for ¢ becomes

o, da
| 1P =1,
0 a
and the (isotropic) Continuous Wavelet Transform is the mapping of f € L?(R%) into
Wy fla,t) = a ¥ | f(@)p(a=(z —t))de, a>0,teRY (1.9)
Rd

It is reasonable to expect that, by choosing more general dilation groups GG, one obtains wavelet
with more interesting geometric properties.

13



1.4.3 Drawbacks

Despite their success, wavelets are not very effective when dealing with multivariate data. In
fact, wavelet representations are optimal for approximating data with pointwise singularities
only and cannot handle equally well the case of distributed singularities, such as singularities
along curves. The intuitive reason is that wavelets are isotropic objects, being generated by
isotropically dilating a single generator or finite set of generators. However, in dimensions
greater than one, distributed discontinuities, such as edges of surface boundaries, are usually
present or even dominant and — as a result — wavelets are far from optimal in dealing with
multivariate data.

More generally, it can be shown that the Continuous Wavelet Transform can be used to charac-
terize the singular support of a function f, i.e., the Continuous Wavelet Transform of a function
f identify the location of the singularity through its asymptotic decay at fine scales. Indeed,
if f is a function regular everywhere except for a singularity at xy and 1 is smooth, a direct
computation shows that Wy f(a,t), given by (1.9), has rapid asymptotic decay, as a — 0, for
all values of ¢, but t = xy. Despite this, the Continuous Wavelet Transform is unable to provide
additional information about the geometry of the set of singularities, essentially because it lacks
of directional sensitivity. A detailed proof is far from the aim of this introduction; the interested
reader is referred to [25] for a simple heuristic argument and to [24] for a deeper study.

As far as Discrete Wavelet Systems concern, we recall here below the definition of non-linear
approrimation, just to outline the approximation error that can be achieved: this allows to
show that, for a smooth function f € L?(R) with pointwise discontinuities, Discrete Wavelet
Systems — as stated above — have much better nonlinear approximation rates than the Fourier
basis. Nevertheless, Discrete Wavelet Systems performances degrade with respect to both the
one-dimensional case and the optimal error rate in the general d-dimensional case.

In the context of wavelet bases the best N-term approximation is the proper notion of approx-
imation. Roughly, for a function f € L?(R?), the best N-term approximation fy of f with
respect to a wavelet basis is obtained by approximating f from its N largest wavelet coeffi-
cients in magnitude, rather than from its “first” N coeflicients, as it is the standard approach
in linear Fourier approximations. Hence, denoting by Ay the index set corresponding to the
N largest wavelet coefficients |(f, )| associated with some wavelet basis (¢))xea, the best
N-term approximation of some f € L?(R?) in (¢))rea is defined as

fn= >0 (Fea)a

AEAN

If a function is expanded in a frame rather than in a basis, the best N-term approximation
usually can not be explicitly determined.
The approximation error is measured by

Ex(f)=IIf - fnll*

If En(f) decays rapidly as N increases, then the representation system {1 : A € A} is sparse
and most of the information or essential features of f can be recovered by using a few represen-
tation terms only.

Now, if fﬁ € L?(R) is the best N-term approximation with respect to the Fourier series, and
likewise, considering an orthonormal basis {¢;m}, i € L%(R) is the best N-terms approxi-
mation from the wavelet coefficients {(f,;.,)} in absolute value, then it can be shown that
wavelets provide the optimal approximation error rate [25, 28]:

Fourier approximation error: ||f — f&|[? <c¢-N71, N — oo,

Wavelet approximation error: ||f — fiV||>? <c-N72, N — oo.
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As already stressed, although the Wavelet Transform outperforms the Fourier Transform for one-
dimensional signals, it does not perform equally well in higher dimensions, where anisotropic
features such as curves begin to play a role. In fact, the Continuous Wavelet Transform is not
able to precisely identify the wavefront set of a distribution, neither are the Discrete Wavelet
Systems capable to reach the optimal approximation error. Given a function f which is in
C%(R? \ T') where I' is a C? curve, the nonlinear approximation errors satisfy the following
estimates:

1
Fourier approximation error: ||f — f&|*> <c-N72, N — oo,
Wavelet approximation error: ||f — fX/|[?<c-N~1, N — oo,
Optimal approximation error: ||f — fQ|> <c-N72, N — oo.

As already stressed, the key problem of the suboptimal behavior of Fourier series and wavelet
bases is the fact that these systems are generated by isotropic elements. Intuitively, since the
discontinuity is spatially distributed, it interacts extensively with the elements of the wavelet
basis, and thus “many” wavelet coefficients are needed to represent the function accurately.

(a) Wavelet covering: isotropic (b) Shearlet covering: rotated,
elements capturing a disconti- anisotropic elements capturing a
nuity curve. discontinuity curve.

Figure 1.1: Shearlets are sparser than wavelets in approximating discontinuity curves.

Nevertheless, considering wavelets with anisotropic scaling will not fix the situation because of
the lack of control on the direction of the elements. Thus, to capture a discontinuity curve, one
needs not only anisotropic elements but also a location parameter to locate the elements on the
curve and a rotation parameter to align the elongated elements in the direction of the curve.
As we shall see in the next chapter, shearlets were introduced by Guo, Kutyniok, Labate, Lim
and Weiss in [18, 29] to address this problem.
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Chapter 2

Continuous Shearlet Systems

Before formally defining the (Continuous) Shearlet Systems, let us introduce intuitively the
main ideas of its construction. In this regard, we first restrict ourselves to the two-dimensional
case (the multivariate one will be discussed later).

As pointed out in the previous section, to achieve optimally sparse approximations of functions
exhibiting anisotropic singularities, the analyzing elements must consist of waveform elements
ranging over several scales, orientations, and locations with the ability to become increasingly
elongated at finer scales. This requires a combination of an appropriate scaling operator to
generate elements at different scales, an orthogonal operator to change their orientations, and
a translation operator to displace these elements over the space.

As can be easily imagined, for the translation operator one can use the standard operator T} as
defined in (1.1).

Next, we require a scaling operator to generate waveforms with anisotropic support. A natural
choice is to use the family of dilation operators D4, , a > 0, based on parabolic scaling matrices

A, of the form
a 0
(0 40).

where the dilation operator is defined as in (1.2). In particular, A, produces parabolic scaling,
that is f(Aqz) = f (Aa <i1 > leaves invariant the parabola z; = 22. It should be mentioned
2

that, rather than A,, it could be used the more general matrices

a O
0 a% )’

where a € (0, 1) controls the “degree of anisotropy”. However, the value o« = 1/2 plays a spe-
cial role in the discrete setting, i.e., when the parameters of the shearlet system are discretized:
indeed, parabolic scaling is required to obtain optimally sparse approximations (cf. [27]). For
this reason, in the remainder of this chapter, we will only consider the case a = 1/2.

Finally, as far as the orthogonal transformation concerns, the most obvious choice seems to be
the rotation operator. However, this is not “practicable” since rotations destroy the structure
of the integer lattice Z? (whenever the rotation angle is different from 0, +3, +m, i%ﬂ) This
becomes a serious issue for the transition from the continuum to the discrete setting. An alter-
native choice for the orthogonal transformation is the shearing operator Dg_, s € R, associated

with the shearing matriz Ss given by
1 s
5. = ( b ) |

The shearing matrix parameterizes the orientations using the variable s associated with the
slopes rather than the angles, and has the advantage of leaving the integer lattice invariant,
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provided that s is an integer.

Roughly speaking, the operation of shearing is a translation along an axis (e.g., the abscissa axis
x) by an amount that increases linearly with another axis (the ordinate axis y). Thus, the shear
transformation leave the y coordinate of any point (z,y) unchanged while the x coordinate is
stretched in a linear way, based on the height of the point above the = axis, i.e., on y. The
result is a shape distortions as if objects were composed of layers that slide one over another.
The change of coordinates has the form:

' =x+ sy

Y=y
where s is the constant that measures the degree of shearing. Clearly, if s is negative the
shearing is in the opposite direction.

For example, in 2D a shear along the x direction changes a rectangle (with lower right corner
at the origin) into a parallelogram, as it is shown in Figure 2.1:

) )

Pl

Figure 2.1: The shearing translation.

Note that the point P(0, H) is taken into the point P'(sH, H). It follows that the shearing
angle 7 (the angle through which the vertical edge is sheared) is given by:

tan(y) = o= S.

So the parameter s is just the trigonometric tangent of the shearing angle.

Combining these three operators, we are ready to define the Continuous Shearlet Systems. These
definitions are taken from [25].

Definition 2.1. For ) € L?(R?), the Continuous Shearlet System SH(v) is defined by
SHY) = {tpast(x) = TyDg,Da,p(z) = a_%w(Angs_l(x —t):a>0,scR,tecR?. (21)
The associated Continuous Shearlet Transform of some f € L*(R?) is given by
L*(R?) > f — S0 fa,8,t) = (f,Vast), (a,s,t) € RT x R x R?.

In other word, the Continuous Shearlet Transform projects the function f onto the functions
a5t at scale a, orientation s and location ¢. The anisotropic dilation A, controls the ‘scale’
of the shearlets, by applying a different dilation factor along the two axes. This ensures that
the frequency support of the shearlets becomes increasingly elongated at finer scales: indeed, as
a — 0 we obtain needlelike functions. The shear matrix S, is not expansive and determines the
orientation of the shearlets using the shear parameter s to detect different directions by slope.
Finally, the location parameter ¢ ensures position sensitivity.
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2.1 The Shearlet Group

In this section we show that the elements of a Shearlet System can be generated by using a
representation of a special group that we will refer to as the Shearlet Group.

Lemma 2.2. The set Rt x R x R? equipped with multiplication given by
(a,s,t)-(d, s, t') = (ad', s + 5'V/a, t + SsAut)
forms a group.

Proof. 1t is easy to check that (1,0,0) is the neutral element. The inverse of some (a,s,t) €

RT x R x R? is given by
1 S
==, ——, A8 ).
(@507 = (50~ A5,

. | I P - g1y
(a, s, t) < , A0S, t> = <aa,s \/&\/5,15 SsA.A, S;t ] =(1,0,0)

As far as the associative property concerns, observe that

s (G 26 0 )
(6 ) (6 )

_ (aa’ saxﬁ—l—s@)

)

[en}

0

G &

- SS_;’_SI\/& Aaa’

So, the following computation holds true:

((a, s, t)-(d, &, t)-(a", " ") = (ad, s+ s'\a, t + SsA.t') - (", §", ")

= (ad'd", s + s'Va+ s"Vaad', t + SsAat’ + S5y jgAaart”)
= (a(d'd"), s+ (s + s"Va)Va', t + SsAut' + SsAySy Agrt”)
= (a(d'd"), s+ (s + s"Va)lVa', t + SsAu(t' + Sy Agrt"))
=(a, 5, t) (d'd", s’ + 5"Va, t' + Sy Agt")

=(a, s, t)-((d, s, ) (a", s t").
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The previous lemma allows us to give the definition stated below.
Definition 2.3. The Shearlet Group S is defined to be the set Rt x R x R? along with the
multiplication law given by

(a, s, t)-(a, s, )= (ad, s+ s'\Va, t + SsA.t).

REMARK 2.4. It has been shown that the Shearlet Group is isomorphic to the locally compact
group G x R?, where G C GL3(R) is the set of matrices

GZ{Ma,5=<8 S\/\/a&>:CLER+,SER}.

Thus, it is a subgroup of the full group of motions Aq = GLg(R) x R%. Tt is evident that the
matrix M, s is the superposition of the parabolic scaling matrix A, and the shear matrix S
defined above.

Now, we are ready to prove that the map o : S — U(L?(R?)) is a unitary representation of the
Shearlet Group, where U(L?(R?)) denotes, as usual, the group of unitary operators on L?(R?).
Clearly, likewise the wavelets case, this representation can be related to the Continuous Shearlet
Transform in the following way:

IH pf(a,s,t) = (fibase) = (fiola, s, t)p)  forall f € L*(R?).
Lemma 2.5. Let o : S — U(L*(R?)) be defined by
3 o
o(a,s, t)p(z) = ast =a 19(A, LStz —t)).
Then o is a unitary representation of S on L?(R?).

Proof. Observe that

1 1 S s
— — 7 0 1 —s— s'\/§ 7 “ad o7
1 aa _ | aa aa a’v/a
A SSJFSII ( clm/) (0 1 ) ( 0 . ! )

Thus,

= 0 1
aa’
_ A—1 -1
Aa&' Ss+s’\/5

Now, let ¢ € L?(R?) and = € R?. Then
o(a,s,t) (o(d, ', #)0) (@) = o™ o(a, 5 ) Y(A7 ST (@ — 1))

= (ad) "1 P(AL S (A1 @ — ) — 1))
— (ad) T P(AZ' ST ATIS (o — (t+ SeAat')))
= (ad") T P(ALSTL, (& — (t+ SsAat")))

aa’~s+s'\/a
= o((ad’, s + s'Va, t + S Aat") )ib(x)
=o((a,s,t)- (d',s,t)v(x)

Thus, o is a representation. The second assertion follows immediately by that fact that
o(a,s,t)*o(a,s,t) = Id which in turn yields o(a, s, t)* = o((a, s,t)71). O
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In order to formulate the admissibility condition associated with the Shearlet Group S, we need
first the left Haar measure for this group. We already stressed that, for locally compact groups,
there always exist a left invariant Haar integrals. For the Shearlet group, this invariance implies

/ Flas,t) d = / f(da, s+ V@, '+ Sy Aut) du
S S

where du = v(a, s,t)dadsdt and v is a function of the parameters of the Shearlet transform.
The calculation of v can be done by calculating the Jacobian of the change of variables:

" / " / " /
a'=da, s =¢8+sVd, t'=t+SgA.t,

which turns out to be =5. Thus, the left Haar measure is da;lgg dt.

A heuristic explanatlon for the power of —3 in the density is the fact that this measure divides
the parameter space into unit cells of side a by y/a in space (hence a factor a3/ 2), unit intervals
of length /@ on the space of directions (hence, a factor a~'/2), and finally a factor of a~' since
a is a scale parameter:

dt ds da dadsdt

dp = B2 a2 ¢ a3

This point of view will be important in understanding the discretization of the transform.

Now, we are ready to derive the admissibility condition associated with the representation o
of the Shearlet Group S. We recall that the admissibility condition is important, since this is
automatically associated with a reconstruction formula. This approach can be found in [8].

Theorem 2.6. If f,v € L?(R?), then

/| f Tﬂast |2dad8dt // | dwlde/ /Md 2dl/1
// 2dW1 du.JQ/ /Wdl/g dl/1
—o0 JR Vl

Proof. Notice that the Shearlet transform of some function f € L?(R?) can be regarded as a
convolution product. Indeed,

IH s flays,t) = (f,a TG(AT ST (= 1)) = F i, 0(t), (2.2)

where 9} ¢ o(7) = Ya,s Ya.s0(—2) for all z € R, The Fourier transform of an element of the shearlets
system can be computed easily using (i) of Theorem 1.2:

—_— ~

Pasa(w) = ate D RATST L) = ate 2 ) (awy, va(ws + swr)), (2.3)

where BT denotes the transpose of a matrix B. Using (2.2), the Plancherel theorem, and (2.3),
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we obtain

/S|<f7 st =3 /|f*¢aso \thds—

d
- [ /R2|f ) 7 ()P s o5
= [ ] [P ot el Psds S
]Rz

= / //|f %@(awl,\/a(w2+sw1))|2dsdwda
R2

= [ 1R @ o ) P dads d
I/ /°° 15 a—%;%(awl,u2>|2dwdadw1dwz
Y on

The last two equivalences stem from the change of variables

vo = Va(ws + swr), v = awy.
O
The next two corollaries follow immediately from Theorem 2.6.
Corollary 2.7. Let ¢ € L*(R?) be such that
/]1@2 Wdyg dvy; < 00 (2.4)

is satisfied. Then v is admissible.

Corollary 2.8. Given an admissible 1) € L*(R?), define

00 n 2 0 n 2
i = / / 7“[)(”1’21/2” dl/2 dVl, CJ = / / 7|1/}(V1,2V2)| ClVQ dl/l.
0 R vy —co JR Vi

If Cp = ch = cy, then the shearlet transform is a cy-multiple of an isometry. Clearly, if cy = 1,
then the shearlet transform is an isometry.

Definition 2.9. A function v € L?(R?) is called a Continuous Shearlet if it satisfies the
admissibility condition (2.4).

Notice that examples of admissible shearlets are very easy to construct, including examples of
admissible shearlets which are well localized. Essentially, any function ¢ bandlimited (i.e., such
that 1& is compactly supported) away from the origin is an admissible shearlet. The following
example, which can be found in [18, 29], is very important.

EXAMPLE 2.10 (Classical Shearlet). Let 1) € L?(R?) be defined by

B(O) = B(61, &) = da(2)ds (?)
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where 1 € L?(R?) is a discrete wavelet in the sense that it satisfies the discrete Calderon
condition, given by

D 2P =1 for a.e. £ € R, (2.5)
JEZ
with 41 € C(R) and supp(t;) C [—3,—15] U4, 3], and ¢ € L*(R) is a bump function in
the sense that )
> e+ R)IP=1 for a.e. € € [—1,1], (2.6)
k=—1

satisfying ¢p € C(R) and supp(¢2) C [—1,1]. Then ¥ is called a Classical Shearlet.
Thus, a classical shearlet ¢ is a function which is wavelet-like along one axis and bump-like
along another one.

3

Va
N

7

Figure 2.2: Classical shearlets. Fourier domain support of several elements of the shearlet
system, for different values of a and s.

As illustrated in Figure 2.2, each element v, s; of Classical Shearlet System has frequency
support on a pair of trapezoids, symmetric with respect to the origin, oriented along a line of
slope s. The support becomes increasingly thin as a — 0. Indeed, observe that

&
1

We stress that the specific choices for the supports of the functions 1, 192 have no deeper
meaning. Indeed, all that is needed (for the detection of anisotropic structures) is that 1[11 is
supported away from zero (i.e., 11 is a wavelet) and ) is supported around zero (cf. [25]).
Notice that there exist several choices of ¥ and s satisfying conditions (2.5) and (2.6). One
possible choice is to set i1 to be a Lemarie—-Meyer wavelet and 2 to be a spline.

Finally, it is not difficult to prove that the Shearlet Transform associated with a classical shearlet
Y € L*(R?) is an isometry since Cp = c:; =1.

) 1 1 1
supp(iaes) € { (618 6 € |03, U 16z 20) [+

g\/&}

Due to the admissibility condition, it is possible to obtain an inversion formula for the Shearlet
Transform.

Theorem 2.11. Suppose ¢ € L*(R?) is admissible with Cp = C;Z = 1. Let {pn}32, be an
approzimate identity such that p, € L*(R?) and pn(v) = pp(—x) for all x. Then, for all
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f € LA(R?) it is limy o0 || f — fnll2 = 0, where
da
= /Y%¢f(a, $,t) (pn * Yast)(x) dtds 5
S
Proof. Since p, is even and and the Shearlet Transform is an isometry, we obtain

(f o) /f ) oul — ) dy
—

) CEIOTL>
= (IH [, SH(Tepn))

/56%”@0 a, s t)(pn( — ), Yast(: ))dtds@

Z/Sf%ﬂwf(a,s,t) (pn * Ya,se)(x )dtdsﬁ

Now, {pn}>2, is an approximate identity, thus lim,_,« ||f — fn|l2 = 0. O

2.2 Cone-Adapted Continuous Shearlet Systems

Although the Continuous Shearlet Systems defined above exhibit an elegant group structure,
there exist a directional bias related to the shear parameter. It is easy to see that the distribution
of directions becomes infinitely dense as s grows (cf. Figure 2.2). Indeed, consider a function
f which is mostly concentrated along the ordinate axis in the frequency domain: it is clear
that the energy of f is more and more concentrated in the shearlet components SHy f(a, s, t)
as s — o0o. This behaviour can be a serious limitation for some applications.
One way to address this problem is to partition the frequency domain into four cones %;, i =
., 4, while separating the low-frequency region by cutting out Z = {(&1,&2) : &1, |&2] < 1},
i.e., a square centered around the origin. This yields a partition of the frequency plane as
illustrated in Figure 2.3, that leads to the definition of Continuous Shearlet on the cone, a
variant of Continuous Shearlet System.

©a

©3

1

G

Figure 2.3: Resolving the problem of biased treatment of directions by continuous shearlet
systems. The frequency plane is partitioned into four cones %;, i = 1,...,4, and the low

frequency box Z = {(&1,&2) : |&1], [&2] < 1}.
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Definition 2.12. For ¢,¢,¢ € L2(R?), the Cone-Adapted Continuous Shearlet System SH (¢, 1, 1))
is defined by

H(p,1,1) = () UT(Y) U T(h),

where
(p) = {pr = ¢(- — 1) : t € R?},
U(y) = {ast—a (A 15;1(‘—t)):a€(0,1],\s\§1+\/&,teR2},
V() = {thasp = a 19(A;"S;T(- =) :a € (0,1],]s| < 1+ va, ¢ € R},

and A, =diag(a'/?, a).

Notice that, within each cone, the shearing variable s is only allowed to vary over a finite range
and thus we are able to detect only a certain subset of all possible directions.

Furthermore, the function ¢ will be chosen to have compact frequency support near the origin,
which ensures that the system ®(¢) is associated with the low frequency region Z.

ExAMPLE 2.13. If ¢ is a Classmal Shearlet, the system W(¢)) is associated with the horizontal
cones €1 U 63 = {(&1,&2) : | 2| < 1,|&| > 1}. The shearlet 1 can be chosen likewise with the

roles of & and & reversed, i.e., w(&,&) ¥(&2,&1). Then the system \Il(w) is associated with
the vertical cones 2 U %y = {(&1,&2) : |€1| > 1,]&| > 1}.

The previous example suggest that we can imagine the function f splitted into f = P" f4+P®) f
where P ig the frequency projection onto the cone with slope s < 1 and P ig the frequency
projection onto the cone with slope % < 1. Thus, fixed a shearlet (™ we can analyze only
P f while P™) f is analyzed defining (") (£, &) = ) (&, &1).

Similar to the situation of Continuous Shearlet systems, an associated transform can be defined
for Cone-adapted Continuous Shearlet Systems.

Definition 2.14. Set
Scone = {(a,s,t) :a € (0,1],]s] <1+ Va,t e RQ}.

Then, for ¢, w,zﬁ € L%(R?), the Cone-Adapted Continuous Shearlet Transform of f € L*(R?) is
the map

f - yf%wﬂzjf(t/v (av $7t)7 (d> 575)) = (<f7 80t>7 <f> wa,s,t>> <fa &a,gﬁ)

where
(t', (a,s,1), (@, 5,1) € R* x S

cone*

A similar argument to the one used in the proof of Theorem 2.6 can be used to show that the
map S5 Sabd) is an isometry, under suitable conditions on ¢, and .

Theorem 2.15. Retaining the notation of Theorem 2.6, let 1, Ve L?(R?) be admissible shear-
lets satisfying Cp = C:Z =1 and ci = ct =1, respectively, and let ¢ € L*>(R?) be such that, for

¥
a.e. £ = (&,6) € R?,
R 1 d 1 d
B +xaua© | lin(ee)P T+ xaua(© [ el T =1
Then, for each f € L*(R?),

A d A ~ -
I = [T e [ o) tuand P55 dsdes | [(Fxana) s S dsdi

cone Scone
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Notice that the functions ¢, and ¢ can be chosen to be in C>°(R?). In addition, the cone-
adapted shearlet system can be designed so that the low frequency and high frequency parts
are smoothly combined.

A more detailed analysis of the Cone-Adapted Continuous Shearlet Transform and its general-
izations can be found in [16, 17].

2.3 Resolution of edges using the Continuous Shearlet Systems

We already stressed that, if ¢ is a ‘nice’ continuous wavelet, then the Continuous Wavelet
Transform Wy f(a,t) is able to localize the singularities of f, i.e., for a — 0, the function
Wy f(a,t) tends rapidly to zero when t is outside the singularity and Wy f(a,t) tends to zero
slowly when ¢ is at the singularity.

One major property of Continuous Shearlets is their ability to resolve the discontinuities of
2D functions by identifying not only the location, but also the orientation of the discontinuity.
More precisely, if f is a 2D function that is smooth away from a discontinuity along a curve I,
then for @ — 0 the Continuous Shearlet Transform satisfies

| S f(a,s,t)| < ka", for each n =1,2,....,

unless t is at the singularity and s describes the direction that is perpendicular to the disconti-
nuity curve.

Furthermore, the Cone-Adapted Continuous Shearlet Transform can be used to provide a precise
characterization of edge-discontinuities of functions of two variables. In particular, consider a
function f = xp C L*(R?), where B C R? is a planar region with piecewise smooth boundary.
Then 7 S f characterizes both the location and orientation of the boundary edge OB by
its decay at fine scales. This property is very useful in applications which require the analysis
or detection of edge discontinuities. For example, using these observations, a shearlet-based
algorithm for edge detection and analysis was developed and related ideas were exploited to
develop algorithms for the regularized inversion of the Radon transform in [7].

A more detailed discussion of these issues, including the extensions to higher dimensions, can
be found in [24].
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Chapter 3

Discrete Shearlet Systems

Starting from continuous shearlet systems as defined in (2.1), several discrete versions of shearlet
systems can be constructed by an appropriate sampling of the continuous parameter set S or
Scone- Various approaches have been suggested, aiming for discrete shearlet systems which
preferably form an orthonormal basis or a tight frame for L?(R?).

One approach applies a powerful methodology called Coorbit Theory, which is used to derive
different discretizations while ensuring frame properties. In particular, the regular shearlet
frame which will be introduced in the next subsection can be derived using this machinery. More
details about this topic can be found in [9, 10]. A different path derives sufficient condition
studying t,-equations from the theory of wavelets. These equations are part of the sufficient
conditions needed for an affine system to form a wavelet orthonormal basis or a tight frame
([20]). Thus, due to the close relationship between shearlet systems and affine systems, this
approach can be transferred to the situation of cone-adapted continuous shearlet systems ([25]).

3.1 Discrete Shearlet Systems and Transforms

Discrete Shearlet Systems are formally defined by sampling Continuous Shearlet Systems on a
discrete subset of the shearlet group S. The following definition is taken from [25].

Definition 3.1. Let ¢ € L?(R?) and A C S. An irreqular discrete shearlet system, associated
with ¢» and A and denoted by SH(v, A), is defined by

SH(, A) = {thass = a~1(A;' ST (- = 1) : (a,5,t) € A},
A (regular) discrete shearlet system, associated with ¢ and denoted by SH(1)), is defined by
SHW) = {¢j7k‘7m = 2%]w(SkA2J : _m) : j> ke Zam € ZQ}

Observe that the regular versions of discrete shearlet systems are derived from the irregular
systems by choosing

A= {(Q_j, —k‘2_j/2, kaQﬂ'/zAijm) i k€Z,me ZQ}.

Indeed, keeping the greatest generality, we can choose an arbitrary set of scales {a;};ez C RT;
next, we pick the shear parameters {s;;}rez C R dependent on j, so that the directionality of
the representation is allowed to change with the scale. Then, in order to provide a “uniform
covering”, we allow the location parameter to describe a different grid depending on j, and hence,
on k: we can select t; ., = SsjykAajm, where m € Z?. Finally, the translation parameter can
be chosen to belong to ¢1Z x coZ for some (c1,c2) € (RT)2. This provides some additional
flexibility which is useful for some constructions.

As far as the previous definition concerns, we used the dyadic sampling for the scaling parameter,
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i.e., aj = 277, j € Z. Next, we set Sjk = —k279/2 k € Z, in order to get a larger number of

directions as j is getting smaller. Finally, the location parameter was determined by adjusting

the canonical grid Z? to the particular scaling and shear parameter, i.e., we choose tikm =
1

Ss;nAa;m =8 _jo-ipAgym, m € Z*. Combining all this and observing that A i pomi =

Ao Sy9-js2 = SiAy; we obtain the regular discrete shearlet system as defined above

Similarly to the continuous case, we define the Discrete Shearlet Transform, for the regular case,
as follows.

Definition 3.2. For v € L%(R?), the Discrete Shearlet Transform of f € L*(R?) is the map
defined by
f= IHyf(Gokym) = (i em)y (G kym) €L X L x L2

Thus, #7¢, maps the function f to the coefficients .7¢, f(j, k,m) associated with the scale
index j, the orientation index k, and the position index m. Clearly, the previous definition can
be extended to the irregular shearlet systems in the most natural way.

Now, since our aim is to apply shearlet systems as analysis and synthesis tools, we need to
derive the condition under which a discrete shearlet system SH() forms a basis or, more
generally, a frame. Similar to the wavelet case, we are particularly interested in selecting a
generator ¢ with special properties, e.g., regularity, vanishing moments, and compact support,
so that the corresponding basis or frame of shearlets has satisfactory approximation properties.
Particularly useful examples are the classical shearlets since, as the following result shows, they
generate a Parseval frames for L?(IR?).

Proposition 3.3. Let ¢ € L?(R?) be a classical shearlet. Then SH(3)) is a Parseval frame for
L?(R?).

Proof. We recall that SH(v) is a Parseval frame for L?(R?) if

> skm)? =[£I for all f € L*(R?).

j7k7m

Using (2.5) and (2.6) from the definition of classical shearlet, we obtain

SN ST A = 30 3 (20 w(zz?—)

2

JEZ kEZ JEZ keZ
=3 el 3 [ (242 1)
JEZ kEZ
=1

The claim follows immediately from the previous computation by using Theorem 3.1 in [23]. O

We already stressed that a classical shearlet 1) is a well localized function. Thus, the previous
proposition implies that there exist Parseval frames SH(1) of well localized discrete shear-
lets. The well localization property is critical for deriving superior approximation properties for
shearlet systems and will be required for deriving optimally sparse approximations.

Removing the assumption of well localization for ¢, it is possibile to construct discrete shearlet
systems which form not only tight frames but also orthonormal bases. Unfotunately, it seems
that well localized shearlet orthonormal bases does not exist. Indeed, in a recent work, it has
been shown that a well localized discrete shearlet system can form a frame or a tight frame but
not an orthonormal basis ([25]).

Finally, we observe that the shearlet systems generated by classical shearlets are band-limited,

27



i.e., they have compact support in the frequency domain and, hence, cannot be compactly
supported in the spatial domain. However, to achieve spatial domain localization, compactly
supported discrete shearlet systems are required. We will not focus on this topic in this presen-
tation.

3.2 Cone-Adapted Discrete Shearlet Systems and Transforms

As one can imagine, also discrete shearlet systems suffer from a biased treatment of the direc-
tions. As in the situation of continuous shearlet systems, this problem can be addressed by
dividing the frequency plane into cones.

Let us start by defining cone-adapted discrete shearlet systems with respect to an irregular
parameter set: obviously, the group to sample will be Scope-

Definition 3.4. Let ¢,¢,¢ € L?(R?), A C R2, and A, A C Scone. Then the irreqular cone-
adapted discrete shearlet system SH(p,1,1; A, A, A) is defined by

SH($,1,1; A, A A) = B(¢; A) UT(¥; A) U (Y A)
where

(¢, A) ={¢ = ¢(- —t) : t € A},

V(e A) = {tasa = a3 (A ST (= 1) : (a,s,8) € A},

U, 8) = {dasa = a4 (A8 (= 1) s (as,1) € A},
The regular variant of the cone-adapted discrete shearlet systems is much more frequently used.
To allow more flexibility and enable changes to the density of the translation grid, one can

introduce a sampling factor ¢ = (c1,c2) € (R*)? in the translation index. Thus, we have the
following definition.

Definition 3.5. For ¢,¢,1 € L2~(R2) and ¢ = (c1,c2) € (RY)2, the (regular) cone-adapted
discrete shearlet system SH(p,,1;c) is defined by

SH(p, ¥, ;¢) = ®(¢;¢1) U (¥;¢) UT(4;¢),

where
O(p;c1) = {pm = ¢(- — exm) : m € Z*},
T(3h;¢) = {jm = 239 (S Ags - —Mem) 1 j > 0, k| < [29/2],m € 72},
T (s ) = {h; pm = 237 P(SF Ayy - —Mem) : j > 0, |k| < [27/2],m € Z%}.
with

_(a 0 [ C2 0
Mc—<0 C2> and Mc—<0 q).

Clearly, if ¢ = (1, 1), the parameter ¢ can be omitted in the formulae above.

The generating functions ¢ will be referred to as shearlet scaling functions and the generating
functions 1, ’([J as shearlet generators. As in the continuous case, the system ®(¢; ¢1) is associated
with the low frequency region, and the systems ¥(v; ¢) and @(1;, ¢) are associated with the conic
regions %1 U €3 and %, U 6}, respectively (cf. Figure 2.3).

Even for the cone-adapted case, we give the definition just of shearlet transform associated with
the regular cone-adapted discrete shearlet systems. The extension to the irregular case is done,
again, in the most natural way.
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Definition 3.6. Set A = Ny x {—[2//2],...,[20/2]} x Z2. For ¢,1,¢ € L*(R?), the Cone-
Adapted Discrete Shearlet Transform of f € L?(R?) is the map defined by
f — y%qﬁ,wﬂ;f(m,? (]7 k? m)a (57 ;”.> m)) = (<f7 ¢m/>7 <f> wj,k,’m>7 <f7

where

(mla (j)kam)’ (iyl;,m)) S Z2 x A x A.

We already stressed that it seems impossible to construct a discrete shearlet orthonormal basis.
Hence, our goal is to derive Parseval frames.

First of all, in the next proposition we prove that a classical shearlet is a shearlet generator of
a Parseval frame for the subspace of L?(IR?) of functions whose frequency support lies in the
union of two cones €1 U 63.

Proposition 3.7. Let ¢ € L?(R?) be a classical shearlet. Then the shearlet system
V() = {$jhm = 219 $(SpAy - —m) : j > 0, |k < [29/%],m € 72}
is a Parseval frame for L?(€, U6s)Y = {f € L*(R?) : supp(f) C €1 U %63}

Clearly, a result similar to Proposition 3.7 holds true for the subspace L?(%3 U 64)Y if v is
replaced by 1,2 Thus, one can build up a Parseval frame for the whole space L?(R?) by piecing
together Parseval frames associated with different cones on the frequency domain together with
a coarse scale system which takes care of the low frequency region. From this idea arise the
following result.

AN

W/
|/

W

\
/

|/
i

/
\

Figure 3.1: Tiling of the frequency plane induced by a cone-adapted Parseval frame of shearlets.

Theorem 3.8. Let i) € L*(R?) be a classical shearlet, and let ¢ € L*(R?) be chosen so that,
for a.e. £ € R?,

BOP+Y . D> W AOPxe+Y, D WA )Pxs = 1.
320 |k|<[29/2] 320 |k|<[29/2]
Let Po¥ (1) denote the set of shearlet elements in V(1)) after projecting their Fourier transforms
onto C' = {(fl,§2> eR?: < 1}, and let Pé‘i/(zzj), where C = R2\ C, be defined analogously.

Then, the modified cone-adapted discrete shearlet system ®(¢p)UPoW (1)) UPé\il(zﬁ) is a Parseval
frame for L?(R?).

&2
3
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Notice that, despite its simplicity, the Parseval frame construction above has one drawback.
When the cone-based shearlet systems are projected onto C' and C , the shearlet elements over-
lapping the boundary lines &1 = &£, in the frequency domain are cut so that the “boundary”
shearlets lose their regularity properties. To avoid this problem, it is possible to redefine the
“boundary” shearlets in such a way that their regularity is preserved. This require to slightly
modify the definition of the classical shearlet. However, this topic is far from the aim of this
introduction.

In conclusion, in Figure 3.1 is illustrated the tiling of the frequency plane induced by a cone-
adapted Parseval frame of shearlets.

3.3 Sparse Approximations by Shearlets

We already stressed that one of the main motivations for the introduction of the shearlet frame-
work is the derivation of optimally sparse approximations of multivariate functions.

More precisely, let f be a 2-D function that is Cy apart from discontinuities along a Cy curve.
Then, denoting by fy the approximation obtained by taking the best N terms in the discrete
shearlets expansion of f, the error ||f — fxn||* of such approximation decays asymptotically as
O(N—2(log N)?), as N — oco. Since a log-like factor is negligible with respect to the other terms
for large N, the optimal error decay rate is essentially achieved. Indeed, the following result
holds true.

Theorem 3.9. Let ®(¢) U PoV(y) U Pé\il(zﬁ) be a Parseval frame for L*(R?) as defined in
Theorem 3.8, where 1 € L*(R?) is a classical shearlet and ) € C5°(R?). Let f be a cartoon-
like image and fn be its nonlinear N-term approximation obtained by selecting the N largest
coefficients in the expansion of f with respect to this shearlet system. Then there exists a
constant C > 0, independent of f and N, such that

|f — fnl? < C N~%(log N)? as N — .

It has been shown that the same error decay rate is achieved also using approximations based
on compactly supported shearlet frames.
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Chapter 4

Multidimensional Extensions

In the last decades, scientists faced a rapidly growing deluge of data, which are becoming increas-
ingly complex and higher dimensional and, thus, require highly sophisticated methodologies for
analysis and compression.

In particular, many current high-impact applications require to deal with multidimensional
data, especially 3-D data, such as seismic or biological ones. The computational challenges in
this setting are much more demanding than in 2-D case, and sparse approximations are strongly
needed. Due to the simplicity of the mathematical structure of shearlets, their extensions to
higher dimensions is quite natural. Some basic ideas were already introduced in [19], where it
was observed that there exist several ways to extend the shearing matrix to larger dimensions.
Several other results, such as the extension of the optimally sparse approximation results and
the analysis and detection of surface singularities, recently appeared (see [25] and the references
therein).

We work out the fundamental results in the greatest generality and then we focus on the 3-D
case. Indeed, the two crucial situations are the 2-D and the 3-D cases, because all the others
derive from the analysis of these two. Once it is known how to handle anisotropic features of
different dimensions, the step from 3-D to 4-D can be dealt with in a similar way. The same
happens for the extension to even larger dimensions.

4.1 Multivariate Continuous Shearlet Transform

To analyze data in R? , d > 3, we have to generalize the Shearlet Transform to higher dimen-
sions. The first step toward this end is the identification of a suitable shear matrix and the
generalization of the parabolic dilation matrix.
In the following, let 1; denote the d-dimensional identity matrix and 04, respectively 14, the
vectors with d entries equal to 0, respectively 1.
Given a d-dimensional vector space V and a k-dimensional subspace W of V, a reasonable
model for the shear matrix is the following: the shear should fix the space W and translate all
vectors parallel to W. Hence, for V=W @ W' and v = w + w’, the shear operation S can be
described as

S() =w+ (W' + s(w)) = (w+ s(w)) + ',

where s is a linear mapping from W’ to W. Then, with respect to an appropriate basis of V,
the shear operation S corresponds to a block matrix of the form

T
g - < 1y s > ’ s € RA-F)xk.
Ow—ryxk  La—k

Now, the crucial point is how to choose the block s, since we want to end up with a square
integrable group representation. Usually, the number of parameters has to fit together with the
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space dimension, otherwise the resulting group would be either too large or too small. Since we
have d degrees of freedom related with the translates and 1 degree of freedom related with the
dilation, d — 1 degrees of freedom for the shear component would be optimal. Therefore, one
natural choice would be s € RA=Dx1 e k=1

1 st d—1
S = , s e R,
(Odl 1d1>

We will prove that, with this choice, the associated multivariate shearlet transform can be
interpreted as a square integrable group representation of a (2d)-parameter group, that we will
refer to as the full shearlet group.
As far as the dilation matrix concerns, it should depend on a parameter a € R* = R\ {0} in
such a way that

Aq = diag (a1(a), . .., aq(a)),

where ai(a) = a and a;(a) = a® with o; € (0,1), j = 2,...,d. In order to have directional
selectivity, the dilation factors on the diagonal of A, should be chosen in an anisotropic way,
i.e., laj(a)|, 7 =2,...,d, should increase less than linearly in a as a — co. Our choice is

OT
Ag=1{ " d-1, .
041 sgn(a)laldlg—y

As in the 2-D case, we need to combine dilation matrices and shear matrices. A straightforward
computation shows that:

—1 1 —ST
SS = and SSAQSS/Aa/ =5

A,
O0g—1 1g—1 s+la|! a

1s
Lemma 4.1. The set R* x R x R? endowed with the operation

(a, s, t)o(a', s, t') = (ad, s + |a|1_%s', t+ SsAqt")
s a locally compact group S. The left Haar measures on S is given by

1
du(a, s, t) =du(a, s, t) = Wdads dt

Proof. See [10, 11]. O
For f € L*(R%) we define
w(a, 8, 8)f(2) = fasa(@) = |det Ag| "2 f(A7IST (@ — 1) = Jal2a ! f(A1S (@ — 1))

It is easy to check that m: S — U(L?*(R?)) is a map from S into the group U(L?(R?)) of unitary
operators on L? (Rd) and, what is more important, the following lemma holds true.

Lemma 4.2. The map 7 defined above is a unitary representation of S.
Proof. See [10, 11]. O
We recall that a nontrivial function v € L2(R?) is called admissible if
[ mta, s, 00) P duta, s, 1) < .
S
If 7 is irreducible and there exits at least one admissible function 1 € L?(R%), then = is called

square integrable. The following result shows that the unitary representation 7 defined above
is, actually, square integrable.
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Theorem 4.3. A function ¢ € L*(R?) is admissible if and only if it fulfills the admissibility

condition o
[ (w)]

Cy = / dw < 0.
Y Jaa el

If ¢ is admissible, then, for any f € L*(R?), the following equality holds true:

8- dia, 5. = o 11y

In particular, the unitary representation m is irreducible and hence square integrable.
Proof. See [10, 11]. O

A function ¢ € L2(R?) that fulfills the admissibility condition is called continuous shearlet, the
transform 757, : L?(R%) — L%(S) such that

yjfwf(av S, t) = <f7 ¢a,s,t> = (f * ¢Z,s,0)(t)7

is called continuous shearlet transform and S defined in Lemma (4.1) is called full shearlet group.

ExXAMPLE 4.4. An example of a continuous shearlet can be constructed using the same idea
shown in the 2-D case. Let 11 be an admissible wavelet with ¢); € C®°(R) and supp(1) C
[—2,—1] U[1,2], and let 12 be such that o € C>®(R41) and supp(z/zg) C [~1,1]4"1. Then, the
function ¢ € L?(R?) defined by

A~

() = Dlwr, @) = dilwr)ds (;1 w)

is a continuous shearlet.

REMARK 4.5. It is clear from the above that, also in the multidimensional case, the continuous
shearlet transform is nothing else but the continuous wavelet transform associated with a special
subgroup Ag of the affine group A,4. For a fixed a = (a1,...,4-1) where a; € (0,1),1 < j <
d—1, Ag consists of the elements (M, s,t), where

a a®*sy ... a%-lsg_q

0 a* ... 0
My =

0 0 . a%d-1

a>0,5=(s1,...,5¢-1) € R and t € R% Clearly, each matrix M, is the product of the
shear matrix S5 and the dilation matrix Ag:

1 s1 ... s4-1 a 0 ... 0

o 1 ... 0 0 a*r ... 0
Ss: . . . Aa:

0o 0 ... 1 0 0 ... a%1

Obviously, the continuous shearlet transform is given by
L2<Rd) > f — <f7 wMa,s¢>7 (Ma,sﬂt) € Ag,
and the analyzing elements vy, , ; are the affine functions defined by
1
UMy t(w) = | det Mas| 2 (Mg (x —1)).

Remark 4.5 is the starting point for the 3-D setting.
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4.2 3-D Continuous Shearlet Transform

The construction of shearlet systems in 3-D follows essentially the same ideas as the 2-D con-
struction. Indeed, also in this case, it is convenient to use separate shearlet systems defined in
different subregions of the frequency space.

(a) (b) ()

Figure 4.1: The partition of the frequency domain: sketch of the three couple of pyramids.

Recall that, in the definition of cone-adapted discrete 2-D shearlets, the 2-D frequency domain
was partitioned into two pairs of high-frequency cones and one low-frequency rectangle. Anal-
ogously, we partition the 3-D frequency domain into the three pairs of pyramidal regions given
by

91:{(51752753)€R3:|§1|21, 5—2 <1 and @ gl}7
&1 &1

322:{(517{%53)6R3:’52‘21, é Sland é Sl},
&2 &2

=92’3={(§1,€2,€3)€R33|€3|21, & <1 and & >1},
&3 &3

and the centered cube

¢ ={(£1,62,83) € R® ¢ [|(£1,6,83) [0 < 1}

This partition is illustrated in Figures 4.1 and 4.2: in Figure 4.1 one can observe the three pairs
of pyramids, while in Figure 4.2 the centered cube surrounded by the three pairs of pyramids
P, Py, and P is depicted.

Now, for € = (£1,62,&3) € R3, &, #0, let (@, d =1,2,3 be defined by

P (&) = pW (€1, €2,63) = 1h1(&1) o <§—2) e (é) ;

&1 &1

D@ (€) = PP (&1, 6,&) = 1 (&) ¥o (?) s (@) ,
2 &2

DO (€) = PO (€1, &, &) = 1 (€3) Do (%) s (5_2) ’
3 &3

where 91, 9 satisfy the same assumptions as in the 2-D case. Note that w(d), d=1,2,3,is
nothing else but a special case of Example 4.4, i.e., a 3-D generalization of the 2-D classical
shearlet. We give the definition of 3-D pyramid-based continuous shearlet systems in this special
case.
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&2

&

Figure 4.2: The partition of the frequency domain: the centered cube %. See Figure 4.1 for a
sketch of the pyramids.

Definition 4.6. For d = 1,2,3, let ¥ ¢ L2(R3) and %, be defined as above. The 3-D
pyramid-based continuous shearlet systems SH(p, M 2 ) for L2(2,)Y, generated by
o, M @) ) e L2(R3), is defined by

SH(p, v, @ ) = o(g) U ¥V (1) U TE (@) U TE (Y®),

where
O(p) = {pr = ¢(- —t) : t € R3},
D) (DY = (D . 1 3 3 3 3 5
\II( )(1/}( ))_{¢a’517527t'0§a§47 _§§81§§’ _§§82§§7t€R ,
with
d 1 _
U ) = et ML, 5 0O, )7 o = 1),
and
a a'/?s; a'l?sy A2 0 o0
Mégals)l,@ =10 a1/2 0 ) Mcg?f:)l,sz = a1/281 a a1/282 )
0 0 al/? 0 0 a2
al/2 0 0
M(§,381,32 = 0 all? 0

a1/281 a1/252 a

Note that the elements of the shearlet systems ¢¢(1(,is) 152, are well-localized waveforms associated
with various scales, controlled by a, various orientations, controlled by the two shear variables
s1, 82 and various locations, controlled by t.

Similar to the 2-D case, in each pyramidal region the shearing variables are only allowed to
vary over a compact set. This approach is essential to provide an almost uniform treatment of
different directions in a sense of a good approximation to rotation.
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Finally, for f € L?(R3) we define the 3-D (fine-scale) pyramid-based continuous shearlet trans-
form f — S5 f(a,s1,892,t) , for a >0, s1, s2 € R, t € R3 by

ol 0 if sl lse) < 1
2 .
A f(ars1,59,8) = L UL 2 ) iflsi] > 1 ]sel < sl

)

’s178q

3 .
F® 1) if sl |sal > s
b 52 b 52 K
Depending on the values of the shearing variables, the 3-D continuous shearlet transform cor-
responds to one specific pyramid-based shearlet system.

4.3 3-D Discrete Shearlet Transform

The partition defined in the previous section enables restriction also in the discrete setting: the
shear parameters is restricted to [—[27/2],[29/2]], as in the definition of cone-adapted discrete
shearlet systems.

Pyramid-adapted discrete shearlets are scaled according to the paraboloidal scaling matrices

AD 4 =1,2,3 and j € Z defined by

25
270 0 212 0 0 20/2 0 0
A =0 272 o |, aP=|0 2 o |, aAP=|0 270
0o 0 2/2 0 0 2i/2 0 0 2

and directionality is encoded by the shear matrices S (d), d=1,2,3 and k = (ky, kg) € Z?, given
by

1k ko 10 0 1 0 0
sV=1o 1 0], SP=(k 1 k|, s9=[0 1 0
0 0 1 0 0 1 ko ky 1

respectively. Clearly, these definitions are (discrete) special cases of the general setup discussed
in the previous subsections. The translation lattices will be defined through the matrices Mc(l) =
diag(ey, c2, ¢2), M(EQ) = diag(cg, c1, ¢2), and Még) = diag(cg, c2,¢1), where ¢; > 0 and ¢ > 0. In
the following, we use the vector notation |k| < K for k = (k1, k2) and K > 0 to denote |k;| < K
and |k2| < K.

Now, we are ready to introduce 3-D shearlet systems for the discrete setting.

53

&1

Figure 4.3: Support of two shearlet elements v, 1., in the frequency domain. The two shearlet
elements have the same scale parameter j, but different shearing parameters k = (k1, k2).
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Definition 4.7. For ¢ = (c1,c2) € (RT)?, the Pyramid-adapted Discrete Shearlet System
SH(p, v, @ »3); ) generated by ¢, pM), ) ) e L2(R3) is defined by

SH(p, W, 3 )i 0) = 0(pre1) U W (15 0) U T (@) U WO (3);¢),
where

B(p;c1) = {om = (- —m) : m € 1 Z%},

U@ D) = (0], = P V(S0 AL) - —m) 1 > 0|k < [2/7].m € M2,

where d = 1,2,3, j € Ny and k € Z2.

Once again, our aim is to derive Parseval frames. For this purpose, let us consider the shearlet
generator ¢ € L?(R3) defined by

$() = (1) b (g) b (?"’) |

We stress that, ¢ € L?(R3) as defined above is a canonical generalization of the classical band-
limited 2-D shearlets. Recall that ¥, and 19 satisfy the following assumptions:

a) 1 € C(R), supp(ihr) € [4, 3] U [}, 4] and

Y (2 =1 for [¢| > 1,£ € R.
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b) by € C®(R), supp(¢y1) C [-1,1], and

1
7 ae+ k)P =1 for [€] < 1,6 € R.

k=-1

In frequency domain, the band-limited function ¢ € L?(R3) is almost a tensor product of one
wavelet with two “bump” functions. This implies that the support in frequency domain has a
needle-like shape with the wavelet acting in radial direction ensuring high directional selectivity,
as can be observed in Figure 4.3. Indeed, the derivation from being a tensor product, i.e., the
substitution of & and &3 by the quotients & /& and /&1, respectively, ensures a favorable
behavior with respect to the shearing operator, and thus a tiling of frequency domain which
leads to a tight frame for L2(R3).

A first step toward this result is the following observation.

Theorem 4.8. Let ¢ be a band-limited shearlet as defined in this subsection. Then the family
of functions Py, W (1) forms a tight frame for L?(271)Y = {f € L*(R3) : suppf C 1}, where
Py denotes the orthogonal projection onto L*(%1)V and

U() = {Wjpm 7 >0, |k < [2973],m € éZ:”}.

By Theorem 4.8 and a change of variables, it is possible to construct shearlet tight frames
for L2(27,)Y, L*(%,)Y and L%*(3)Y, respectively. Furthermore, wavelet theory provides us
with many choices of ¢ € L*(R3) such that ®(¢; %) forms a tight frame for L?*(R). Since
R = €U P U Py U P35 as a disjoint union, we can express any function f € L?(R?) as
f=Psf+ Pp f+ Pp,f + Pp, f, where Pc denotes the orthogonal projection onto the closed
subspace L?(C)V for some measurable set C C R3.

Then, we can expand the projection Py, f in terms of the corresponding tight frame Py, ¥ (1))
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and similarly for the other three projections. Hence, the representation of f is the sum of these
four expansions.

Finally, we remark that the projection of f and the shearlet frame elements onto the four
subspaces can lead to artificially slow decaying shearlet coefficients; this is the case, e.g., if f is
in the Schwartz class. This problem does not occur in the construction of compactly supported
shearlets.

REMARK 4.9. As already stressed, the situation for 3-D data is quite different from the situation
for 2-D since anisotropic features of different dimensions are involved, namely, singularities on 1-
D and 2-D manifolds. For this reason, beside the parabolic scaling matrix previously considered
there is not another possibility:

270 0 20 0
0 212 ¢ instead of 0 2/2
0o 0 2 0 0 2i/2

The first choice leads to needle-like shearlets, which are intuitively better suited to capture
1-D singularities. The second choice leads to plate-like shearlets, which are more suited to
2-D singularities. Both systems are needed if the goal is to distinguish these two types of
singularities. However, for the construction of (nearly) optimally sparse approximations, it can
be shown that the plate-like shearlets are the right approach ([25]).

4.4 Optimally Sparse Approximations

We already stressed that capturing anisotropic phenomenon in 3-D is quite different from cap-
turing anisotropic features in 2-D. Indeed, in 2-D we have “only” curves to handle with, while in
the 3-D setting can occur two different geometric structures: curves (1-D anisotropic features)
and surfaces (2-D features).

In Remark 4.9 we observed that intuitively both needle-like and plate-like shearlets are needed
to distinguish between these two types of singularities. However, in [27] it is proved that 3-D
shearlet elements plate-like in spatial domain are able to perform optimally when representing
and analyzing 3-D data containing both curve and surface singularities.

Before giving the general result, we need two more definition.

Definition 4.10. For a fixed u > 0, the class &2(R%) of cartoon-like images is the set of
functions f : R? — C of the form

f=Jfo+ fixs,
where B C [0,1]¢ and f; € €?(R?) are functions with supp(f;) C [0,1] and || f;|lg2 < p for each
i=0,1.

This class was introduced to provide a simplified model of natural images, which emphasizes
anisotropic features, in particular edges, whence the name. This is the standard model class
used to derive results in approximation theory.

Definition 4.11. Let ® = (¢;)icz be a frame for L?(RY) with d = 2 or d = 3. We say that
d provides optimally sparse approximations of cartoon-like images if, for each f € & 2(Rd),
the associated N-term approximation fy obtained by keeping the N largest coefficients of

c=c(f) = ((f, ¢i))icz satisfies
Hf—fN||%2<N_% as N — oo,

and s

__d¥l
ley| <m 201 as n — 0o,

up to a log-factor.
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Now, we are ready to state the general result in the case of band-limited generators. We observe
that a similar result can be proved for compactly supported generators (see [27]).

Theorem 4.12. Assume that ¢, 3 B € L2(R3) are band-limited and € in the fre-
quency domain and that the shearlet system SH(¢, IRTICRTICR c) forms a frame for L*(R3).
For any p > 0, the shearlet frame SH(gb,l/)(l),zb@),i/J(?’);c) provides optimally sparse approxi-
mations of functions f € &2(R3) in the sense of previous definition, i.e.,

If = fyllie < N"'(log N)*  as N — oo,

and
k| < ntlogn asn — oo.

Proof. See [27]. O

The previous result can extended to the so-called extended class of cartoon-like image &7(R3),

where L € N denotes the number of €?-smooth pieces in which the discontinuity surface 9B is
divided.

In conclusion, we observed that, using cartoon-like images as model class, we can measure the
approximation properties by considering the decay rate of the L? error of the best N-term
approximation. Up to date, shearlet systems are the only representation system able to provide
optimally sparse approximations of this model class in 2-D as well as 3-D.
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Conclusions

This overview has the purpose to give a brief introduction on shearlets. Although there are no
new results, the contribution lies in having collected, organized, explained and tied up a lot of
material that is currently scattered in many different books and articles, even in different areas
of mathematics, since this subject is pretty recent. The starting point for this work was the
nice book on shearlets published in 2012, edited by Labate and Kutyniok [26], that had the
merit of collecting a number of relevant results on shearlets. However, this book is not aimed
at providing a whole reorganization of the material conceived until then, in particular for what
concerns multivariate and 3-D shearlet systems and transform, and the related theory from
continuum to discrete setting.

The overview presented here is intended as a theoretical guide to address numerical issues
related to the practical application of sherlets in various contexts. The work in progress involve
applications in the numerical solution of inverse problems, starting from some important results
in image application and data separation recently published.
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