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Mesoscopic approach to the soft breakdown failure mode
in ultrathin SiO , films
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We present an analytic model for the soft breakdown failure mode in ultrathinfi® based on

the conduction theory through quantum point contacts. The breakdown path across the oxide is
represented by a three-dimensional constriction in which, due to the lateral confinement of the
electron wave functions, discrete transverse energy levels arise. In the longitudinal direction, such
levels are viewed by the incoming electrons as effective potential barriers, which can be treated
using the one-dimensional tunneling formalism. In addition, it is shown that our mesoscopic
approach is also consistent with the hard breakdown conduction mod200® American Institute

of Physics. [DOI: 10.1063/1.1339259

Since the discovery of conductance quantization in 1988he SBD’s and HBD'’s particular features essentially arise as
by van Weeset al! and by Wharanet al.? electron trans- a consequence of the lateral dimensions of the breakdown
port in narrow constrictions has been extensively investi-spots. In this context, and as considered in a previous Work,
gated. The phenomenon, which is nothing but the manifestawe will identify the breakdown path with a three-
tion of the wave-like character of electrons when laterallydimensional(3D) constriction and the semiconductor elec-
confined, has been observed in a wide variety of experimerirodes with infinite charge reservoirs attached at its two ends.
tal setups as well as under very different measurement cor-his is the picture usually considered in the analysis of me-
ditions: split gate devicek? mechanically controllable break Soscopic conducting devic&which will be further adapted
junctions? scanning tunneling microscop&samorphous- t0 represent the system under study.
silicon memory structuresgold coated relay contactstc. The measurements were performed at room temperature
This seeming universal behavior of electrons when passingn conventional metal—oxide—semicondudOS) capaci-
through atom-sized volumes points out that, in a general°rs with oxide thlckne_sses of 3 and 4.6 nm and_ areas of
sense, the conducting properties of such systems are neitr@pout 10 °cr. Following standard microelectronic tech-
essentially linked to the origin nor to the particular micro- Nd4es, th?s oxides were thermally grown onto mitype
scopic nature of the path connecting the electrodes. Onl{™ 10"cm ) silicon substrate at 800 °C. The top electrode

+ i 108 ~m—3 i
their dimensions, with the consequent current and energ as anrr: -poI;I/_S|I|qon (f 10%cm™) gate. ASI is well
funneling effects, seem to be relevant. Moreover, experi- nown, the application of a proper constant voltage or cur-

mental conditions priori quite far from those expected for rent stress, or even a voltage sweep, can lead to the appear-

the phenomenon to be observable do not limit its detection®'°€ of SBD or HBD indistinctly. Typical SBD and HBD

. . current—voltage I(-V) curves as well as the Fowler—
conductance quantization has been reported both at high ap: . ; -
. 56 ordheim (FN) conduction characteristic, the latter mea-
plied bias'® and at room temperatufé. . : -
. . sured prior to the breakdown event, are illustrated in Fig. 1.
Here, we show that the postbreakdown conduction in

o . Following previous approaché$!* the schematic en-
SIO; films can also be explained by means of concepts deérgy diagram of a narrow constriction with a large applied

veloped to deal with the tran_sport 'problem N MESOSCOPIG,;a5 is depicted in Fig. 2. We consider that the total applied
systems. Phenomenally, the dielectric breakdown of an Ox'dsoltage () partly drops in the semiconductor electrodes

is characterized by an abrupt loss of its insulating capability(vo) and partly at the two edges of the conduction path
which is electrically related to the appearance of a local low V,), i.e., V=V, +V,. Although V, is expected to be a
resistance path running between the electrodes. In this r¢ynciion of the applied bias, in order not to introduce addi-
gard, there is wide agreement in ascribing the origin of thisjonal complexities, we will take it as a constant representing
path to the generation of defects caused by the application ¢f;, average potential drop. In addition, a paramgteontrols

a previous electrical wear-out conditibhTwo remarkably the fraction of the potentiaV/, that drops abruptly on the
dissimilar breakdown modes have been detected in ultrathigource side of the constriction. In the zero-temperature limit,
oxides: the so-called soft or quasibreakdol@BD) and the  the current through a potential barrietdis

hard or catastrophic breakdowhliBD) modes; their names

being related to the severity of the event. Our proposal is that
2e (Eg+peV,

@E|ectronic mail: emirand@tron.fi.uba.ar h Ep—(1-pleV,

T(E,V.)dE, (1)
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FIG. 1. Typical breakdown modes of an ultrathin oxide in a MOS structure.FIG. 3. Experimental and theoretidatV characteristics associated with the
FN refers to the Fowler—Nordheir-V characteristic measured on the soft breakdown conduction mod¥, is a parameter of the model and rep-
fresh sample, SBD to soft breakdown, and HBD to hard breakdown. resents an average potential drop in the electrodes.

wheree is the electron chargdy Planck’s constantE the  of the constriction and the electron effective mass. Hereafter,
electron energykr the Fermi level, and’ the transmission e will assume that level§, are not affected by the sample
probability. By decoupling the _Schdmger equation N pias, that the effective cross-sectional area at the narrowest
transverse and longitudinal equations, the conduction prolyart of the constriction is independent of the electron energy
lem through a 3D _constr_lctmn can be _straughtforwardly(aS in a box-type potential wgjland that the potential drops
treated as a one-dimensionélD) tunneling problent? symmetrically at the two ends of the constrictiof= 1/2).
When the lateral confining potential is narrow, a discrete seggnsider now thaE < E,, i.e., the electron energy is well

of transverse energy level§,(z), arises along the constric- pejow the bottom of the first subband level, as depicted in

tion. As in a quantum well, tighter confinement rises suchgig 2. under these assumptions, using E@s.and(2), the
levels, each of them acting as a longitudinal potential barriegrent is.

for the incoming electrons. If the modé&s(z) are expanded
to second order ire in the vicinity of the constriction’s 4e . [ a1e(V—Vy)
bottleneck (arbitrarily located atz=0), the transmission I= a_lhexii— a(Ei— EF)]smI'(T). (3)
probability is->1°
Figure 3 shows, for comparison, two fittings to a typical
SBD |-V characteristic using E¢3), one withV,=0 V and
the other withVy=0.6V. Considering the latter value, the
" ; o 1 . .
whereN is the number of available conducting channels, anc{lit:rnﬁe)i/;? ifcéllw_éfii\gl 2{}? v?ﬂifr:f?scgv\?e?; tsar;tlsagng%rl e
En=En(0) anda, are constants dependent on the geometry o, rother tunneling models report barrier heights of 6.2
(Ref. 179 and 4.2 eV(Ref. 18]. It is worth emphazising that
XA this barrier is not material related like that of the Si—SiO
S~ interface, for example. Physically, it arises as a consequence
Y of the fact that the electrons’ transversal wavelength associ-
(a) ated with the energy window of the current-carrying states is
larger than the effective diameter of the narrowest point
along the SBD path.
On the other hand, whele>E,, i.e., when the energy
of the incoming electrons is higher than the bottom of the
- Er energy subband\, Egs. (1) and (2) yield T(E)~N and
eV T(E) * G(V)=dI/dV=NG,, Gy,=2e?/h being the quantum con-
Ee-(1-BleVe ductance unit. In this connection, Fig. 4 shows several
conductance—voltageG(—V) characteristics measured after
' ' the detection of successive HBD events on the same sample.
The events were induced by high-field voltage sweeps as
reported in Ref. 19. The lower trace in Fig. 4 corresponds to
(b) the foremost open HBD spot and has a conductance plateau
at approximatel\G~2G,. The second curve corresponds to
FIG. 2. () Top view of the constriction(breakdown pathbetween the  the currents flowing in parallel through the first and second
electrodes(b) Energy diagram of the constriction shown(® with alarge  induced spots. Therefore, the conductance of this second
applied biasE, is the bottom of the first energy subbands the applied g4t 5 ahout B, as well. The differences between succes-
voltage, V. the potential drop across the constriction, aggdthe oxide . .
thicknessEp is the Fermi level an is a paramster of the moddl(E) is ~ SIve G—V curves clearly reveal that there are spots with
the transmission probability for the inverted parabolic barrier. conductances of about 1, 2, ands3, as predicted by our

N
T(E)=n§l {1+exd — an(E-E)]} 4, 2

YN

— toy—>
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explain the difference between the conduction modes re-
ferred to as soft and hard breakdown. It was proposed that
the lateral dimensions of the breakdown spot determine
whether electron transport is dominated by tunneling through
an area-related potential barrigsoft) or by ballistic point
contact conductiorthard.
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