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Lineage and Genogroup-Defining Single Nucleotide Polymorphisms of

Escherichia coli O157:H7

Woo Kyung Jung,® James L. Bono,® Michael L. Clawson,® Shana R. Leopold,© Smriti Shringi,> Thomas E. Besser®

Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, Washington, USA?, United States
Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA; Institut fiir Hygiene,

Universitatsklinikum Munster, Munster, Germany*©

Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously
published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP)-based typing panel was developed that
redundantly identified 11 genogroups that span six of the eight lineages recently described for E. coli 0157:H7 (J. L. Bono, T. P.
Smith, J. E. Keen, G. P. Harhay, T. G. McDaneld, R. E. Mandrell, W. K. Jung, T. E. Besser, P. Gerner-Smidt, M. Bielaszewska, H.
Karch, M. L. Clawson, Mol. Biol. Evol. 29:2047-2062, 2012) and additionally defined subgroups within four of those lineages.
This assay was applied to 530 isolates from human and bovine sources. The SNP-based lineage groups were concordant with pre-
viously identified E. coli 0157:H7 genotypes identified by other methods and were strongly associated with carriage of specific
Stx genes. Two SNP lineages (Ia and Vb) were disproportionately represented among cattle isolates, and three others (IIa, Ib, and
IIb) were disproportionately represented among human clinical isolates. This 48-plex SNP assay efficiently and economically

identifies biologically relevant lineages within E. coli 0157:H7.

Escherichia coli O157:H7 is an important zoonotic pathogen
that may cause diarrhea, bloody diarrhea, and hemolytic-ure-
mic syndrome (1, 2). E. coli O157:H7 is transmitted to humans
indirectly by ingestion of contaminated water or food or directly
by contact with infected animals (1, 3). E. coli O157:H7 typically
produces one or more Shiga toxins (most commonly Stx1, Stx2a,
and Stx2c) encoded by lambdoid bacteriophages (4, 5). In U.S.
isolates, the Stx1-, Stx2a-, and Stx2c-associated bacteriophages are
typically inserted within or adjacent to the conserved chromo-
somal loci yehV, wrbA or argW, and sbcB, respectively (6-8).

Cattle, an important animal reservoir, harbor diverse geno-
types of this pathogen as defined by Stx-associated bacteriophage
insertion site (SBI) typing. These genotypes include some that are
frequently associated with human disease (clinical genotypes) and
others that are relatively underrepresented among human clinical
isolates (bovine-biased genotypes) (9-11). In addition to these
host distribution differences, the SBI genotypes differ in their ex-
pression of virulence genes and genes associated with resistance to
adverse environmental conditions and in their virulence in animal
models (12, 13). Specifically, genes encoding E. coli O157:H7 vir-
ulence factors, including locus of enterocyte effacement products,
enterohemolysin, and pO157 products, showed increased expres-
sion in clinical genotypes compared to bovine-biased genotypes.
In contrast, genes essential for acid resistance (e.g., gadA, gadB,
and gadC) and stress fitness (e.g., dps, osmY, and uspA) were rela-
tively upregulated in bovine-biased genotypes (13). Clinical geno-
types of E. coli O157:H7 demonstrated more virulence than bo-
vine-biased genotypes in both neonatal piglet and Dutch Belted
rabbit models of disease (12). Other molecular subtyping methods
that are also strongly influenced by bacteriophage mobility (e.g.,
pulsed-field gel electrophoresis and octamer-based genome scan-
ning) similarly detect strain types of E. coli O157:H7 that are dif-
ferently represented among isolates from clinical and bovine
sources (14, 15).

More recently, single nucleotide polymorphisms (SNPs) iden-
tified throughout the E. coli O157:H7 genome have been used to
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characterize the phylogeny of this pathogen (10, 16-19). SNP
analysis within the chromosomal backbone is a powerful tech-
nique for determining the genetic relatedness and descent of E. coli
0157:H7 strains in a manner independent of epidemiological
data. Initially, large SNP sets are required to inform the phylogeny,
but smaller sets of SNP loci can subsequently be used to unequiv-
ocally assign isolates to specific clades. The goal of this study was to
implement a practical method for determination of SNP alleles
and to prospectively evaluate SNP phylogeny for lineages associ-
ated with cattle or human disease isolates of E. coli O157:H7.

MATERIALS AND METHODS

Bacterial isolates. The strains of E. coli O157:H7 used in this study are
described in Table S1 in the supplemental material. A total of 342 E. coli
0157:H7 isolates from cattle and human sources were randomly selected
from the strain bank at the Field Disease Investigation Unit at Washington
State University, avoiding overrepresentation of individual farms (no
more than one isolate per farm per year) or outbreaks (see Table S1). In
addition, 67 strains of diverse provenance representing most of the SNP
genotypes identified in reference 19 were provided by James L. Bono.
Shannon D. Manning (Michigan State University, East Lansing, MI)
kindly provided 32 E. coli O157:H7 strains representing most of the indi-
vidual SNP genotypes identified in reference 17, and Nigel P. French
(Massey University, Palmerston North, New Zealand) kindly provided
89 isolates from New Zealand cattle and human sources. SBI genotypes
of 155 of these strains have been previously reported (20), as indicated
in Table S1. Sequences of strain Sakai (GenBank accession no.
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NC_002695.1), a fully sequenced Japanese E. coli O157:H7 outbreak
strain, and E. coli O55:H7 strain CB9615 (GenBank accession no.
CP001846.1), representing the postulated “ancestral” strain of E. coli
O157:H7, were used as controls (21, 22). Genomic DNA was extracted
using a MagMax total nucleic acid isolation kit (Ambion, Foster City, CA)
according to the manufacturer’s protocol.

SNP discovery and selection. Clawson et al. (10) described a highly
efficient strategy for SNP discovery in E. coli O157:H7 by 454 resequenc-
ing of DNA pooled from multiple E. coli O157:H7 isolates. Each locus
where one or more of the resequencing reads differs from the reference
sequence represents a candidate polymorphism, and the percentage of the
sequencing reads that share the same candidate polymorphism represents
the approximate frequency of that polymorphism among the pooled iso-
lates. We previously described five clusters of E. coli O157:H7 using the
cumulative results of several different genotyping methods: SBI typing
(23), LSPA-6 genotyping (24), Q933/Q21 PCRs (25), and an informative
tir SNP (26). Two of those five clusters were minimally represented in the
Clawson SNP discovery effort (10); therefore, we selected a panel of 31
isolates (see Table S2 in the supplemental material) from those clusters
and extracted and pooled their genomic DNA for 454 sequencing. The 454
sequencing run produced 306 Mb of sequences for an average read depth
of 55, representing on average 1.8 X coverage depth of each pooled strain.
The 454 reads were assembled against the strain Sakai reference genome
(21), with sequence errors corrected as previously reported (16).

Candidate SNPs discovered in this process were screened to remove
those identified at loci with poor resequencing coverage (read depth <
10), those that were relatively uncommon among the pooled isolates (al-
ternative allele in <25% of reads at the locus), and those located in O-is-
land rather than backbone loci. After this screening, the remaining 412
SNPs were characterized by genomic location (using strain Sakai as a
reference), inter- or intragenic location, and, for intragenic SNPs, synon-
ymous versus nonsynonymous nature. The SNPs included 207 that had
been previously published (10, 16, 17, 19) as well as 205 that had not
previously been reported. The newly identified SNPs included 58 in inter-
genic regions and 55 synonymous and 92 nonsynonymous SNPs in anno-
tated open reading frames. SNPs selected for the initial 96-plex assay in-
cluded 20 designed to identify six of the eight major lineages defined
previously (19) and 76 of the novel SNPs identified here. The latter were
randomly selected from among the 205 identified, stratified to include
approximately equal numbers of SNPs affecting 25% to 49%, 50% to 74%,
and 75% to 100% of the read depth.

SNP typing and data analysis. Initially, SNPs were assayed using a
96-plex GoldenGate assay system. Genomic DNA from wild-type E. coli
0157:H7 isolates and controls was genotyped at the IBEST DNA Sequenc-
ing Analysis Core (Department of Biological Sciences, University of
Idaho) using the Illumina BeadArray platform. The allele data for the 96
SNP loci were concatenated by physical order along the E. coli O157:H7
genome. Subsequently, a subset of SNPs was chosen after elimination of
loci used in the 96-plex assay that failed to produce reliable allele reads,
removal of loci that provided more than 3-fold redundancy in the identi-
fication of some lineage groups, and addition of a key SNP in tir (26) to
produce the SNP set used in the 48-plex assay (see Table S2 in the supple-
mental material). The final 48-plex SNP assay included 27 SNPs that are
newly published here and 21 SNPs that were reported previously (10, 19).
Two different alleles of SNP 544618 were found within one of the lineage
groups, so that locus was not considered for lineage determination but is
reported here because the locus appears to identify a geographically asso-
ciated clade.

SBI site genotyping. Stx-encoding bacteriophage insertion (SBI) ge-
notypes were determined by multiplex PCR detecting 12 potential targets
(bilateral bacteriophage-chromosomal insertion sites for three phages in
four chromosomal sites as well as stx,, stx,,, and stx,, as described previ-
ously) (20). PCR products were analyzed by capillary electrophoresis
(DNA analyzer 3730, LIZ 1200 size standard; Applied Biosystems, Foster
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No. (%) of E. coli 0157

Cattle Human
VIL (111, VIII) 1(0.3) 4(1.8)
yehV 1010
L v 12(3.9) 1(0.5)
yehV 1010
Va 7(23) 1(0.5)
2 yehV 1010
2 Vb 69(22.3)  10(4.5)
yehV 1010
2 va 3(1.0)  3(14)
yehV 1010
Vb 13 (4.2)  8(3.6)
5 yehV 1010
Ve 22 () N N2
yehV 1010
| ——— | S —
7 b el | (SRl
8 yehV 1110 1 1
I 1
lla ! 6(19)  22(10.0)!
10 e e e s s e :
la 26 (8.4) 3(1.4)
11 yehV 1110
2 b | 98(316) 99 (45.0),
yehV1110 s s

FIG 1 Schematic diagram of SNP genotypes of E. coli O157:H7 isolates from
cattle and humans to illustrate relative phylogenetic positions (not drawn to
scale). Numbers on branches identify the SNP loci that support each bifurca-
tion as shown in Table S2 in the supplemental material. The numbers (per-
centages) of each of the SNP-defined lineages isolated from cattle and human
sources are indicated in the table. Boxed tabulations identify lineages signifi-
cantly associated with cattle (bovine-biased lineages; solid lines) or human
(clinical lineages; dashed lines) sources.

City, CA), and data were analyzed with GeneMarker software (SoftGen-
etics, LLC, State College, PA).

Statistical analysis. The distribution of SNP and SBI genotypes in
human and bovine isolates and the associations between the SNP and SBI
genotypes were evaluated by x? tests, using SAS software (version 9.2; SAS
Institute Inc., Cary, NC).

RESULTS

SNP genotyping. SNPs chosen for inclusion in the 48-plex E. coli
0157:H7 assay included 25 nonsynonymous SNPs (of which 3
encoded premature stop codons), 18 synonymous SNPs, and 5
intergenic SNPs (see Table S2 in the supplemental material). The
assay was applied to 530 E. coli O157:H7 human clinical or cattle
isolates (see Table S1), and as designed, the concatenated alleles of
these isolates segregated into 11 haplotype groups (Fig. 1), corre-
sponding to six of the previously reported eight E. coli O157:H7
lineages (I, II, and IV to VII) (19), with additional subdivision of
each oflineages I, I1, and V into two subgroups designated “a” and
“b” and lineage IV into three subgroups designated “a,” “b,” and
“c” (Fig. 1). A total of 112 isolates previously typed by determina-
tion of alleles of 175 SNPs were each assigned to the corresponding
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TABLE 1 Carriage of Stx-encoding genes by SNP lineages of E. coli
0O157:H7

TABLE 2 Distribution of the most frequently detected SBI genotypes
across SNP lineages

No. of E. coli O157:H7 isolates carrying indicated Stx-encoding

gene(s)
SNP stxy, stxy, Sty SIX 15 SXygs
lineage  stx,,  stx,, Stx,. Stx,.  stx,. ~ None  stx;  six,
Ia 1 12 4 7 4 1
Ib 159 25 1 1 1 8 3
IIa 2 9 16
IIb 107 1 1 3 3
IVa 1 1 2 2
IVb 18 1 2
Ve 1 26 1 1
Va 7 1
Vb 46 26 3 2 1 1
VI 12 1
VII 1 2 2
Total 162 142 98 62 32 15 14 5

lineage groups by the 48-plex SNP assay reported here. Lineage
groups were nonindependently associated with human or bovine
hosts of origin (x> = 61, 5 df, P < 0.001). Genogroups Vb and Ia
were more frequently found among cattle isolates than among
clinical isolates (x* = 32, 1 df, P < 0.001 and x*> = 12, 1 df, P =
0.001, respectively), and genogroups Ib, ITa and IIb were overrep-
resented among clinical isolates compared to cattle isolates (x* =
9,1df, P =0.002, x*> = 18, 1 df, P < 0.001,and x* = 10, 1 df, P =
0.002, respectively). The remaining genogroups were relatively
sparsely represented in our isolate set; therefore, their potential
association with a specific host could not be robustly tested.

SBI site typing. Stx-encoding bacteriophage insertion (SBI)
genotypes were determined using multiplex PCR to detect stx;,
stx,,, Stx,., and Stx-associated bacteriophage sequences adjacent
to recognized Stx-encoding bacteriophage insertion sites (20).
Bacteriophage insertion sites were considered occupied if either
the left or the right bacteriophage-bacterial backbone junction or
both junctions were amplified, as previously described (20). Ge-
notypes were designated by concatenating the uppercase letters
representing occupied bacteriophage insertion sites (A = argW,
S = sbcB, W = wrbA, and Y = yehV) followed by numbers indi-
cating the Stx variants detected (i.e., 1, 2a, and/or 2c). Isolates in
the current study included 35 different SBI genotypes (see Table
S1 in the supplemental material) with diverse stx contents (Table
1). Cross-tabulation of SNP and the SBI genotypes (Table 2)
showed strong association of the most prevalent SBI genotypes
with specific SNP lineages. All SBI genotype WY12 isolates were of
SNP lineage Ib. A majority (139 of 142, 97.8%) of the other SBI
genotypes associated with human disease were also classified in
SNP lineages I and II, whereas a majority (123 of 141, 87.2%) of
the SBI genotypes overrepresented among cattle isolates were of
SNP lineages IV to VI (Table 2).

The Stx1-encoding bacteriophage insertion in yehV also dem-
onstrated an interesting distribution across SNP lineages, suggest-
ing a strong correlation with the evolution of E. coli O157:H7.
Insertion data at this locus can be presented as four concatenated
digits of “1” or “0,” representing a product or no product, respec-
tively, from PCR amplification of the bacteriophage-yehV left
junction, the bacteriophage-yehV right junction, the bacterio-
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No. (%) of isolates with indicated SBI genotype(s)”

SNP AY2a, ASY2a2c, SY2c¢, ASY12c, All
lineage ~ WYI2a ASY2a® SY12¢* others
Ia 0 8(27.6) 16 (55.2) 5(17.2)
Ib 155 (78.7) 1(0.5) 0 41 (20.8)
Ia 0 26 (92.9) 0 2(7.1)
1Ib 0 104 (90.4) 2(1.7) 9(7.8)
IVa 0 0 1(16.7) 5(83.3)
Vb 0 2(9.5) 5(23.8) 14 (66.7)
Ve 0 0 26 (89.7) 3(10.3)
Va 0 0 5(62.5) 3(37.5)
Vb 0 1(1.3) 72 (91.1) 6(7.6)
VI 0 0 12 (92.3) 1(7.7)
VII 0 0 2 (40.0) 3 (60.0)
Total 155 142 141 92

“ SBI genotypes are named by concatenation of detected Stx-encoding bacteriophage
sequences at chromosomal loci argW (A), sbeB (S), wrbA (W), and yehV (Y) and
specific Stx genes stx, (1), stx,, (2a), and stx,. (2¢). Bold text identifies the conserved
bacteriophages and associated Stx genes shared by the SBI genotypes grouped in those
columns.

b Data include all non-WY12a SBI genotypes previously identified as clinical genotypes
(20).

¢ Data include all SBI genotypes previously identified as bovine-biased genotypes (20).

phage-yehV alternative right junction, and the intact yehV inser-
tion site region (20). Most (91.9%) of the 160 isolates of SNP
lineages IV through VII had amplification pattern 1010 and lacked
stx, (Fig. 1; see also Table S1 in the supplemental material). In
contrast, most (89.2%) SNP genotype I and IT isolates had ampli-
fication pattern 1110, with sublineages that typically either lacked
(95.4% of isolates of lineages Ia, ITa, and IIb) or contained (86.3%
of isolates of lineage Ib) stx;.

DISCUSSION

We report here a simple and efficient 48-plex SNP typing method
that by design robustly classifies E. coli O157:H7 isolates into 11
clades corresponding to six previously defined lineages (19), in-
cluding several subgroups. Lineages III and VIII as defined previ-
ously were not targeted in this assay because of the relative scarcity
of these lineages within isolates of U.S. origin: Bono et al. (19)
identified only a single isolate within lineage III, and lineage VIII
represents sorbitol-fermenting human source isolates from Ger-
many that can be distinguished from the non-sorbitol-fermenting
clade by simple phenotypic tests. Therefore, this SNP panel was
developed so as to group “ancestral” clades including Shiga-toxi-
genic E. coli O55:H7 and E. coli O157:H7 lineage VIII together
with lineage VII as the root of the tree of SNP lineages defined by
this assay (19).

SNP lineages Ia and Vb were markedly overrepresented among
isolates obtained from cattle, while lineages Ib, IIa, and IIb were
significantly overrepresented in clinical strains. Despite these cor-
relations with source hosts, one or more isolates from all 11 SNP
lineages detected by this assay originated from each host species.
These results are entirely consistent with the identification of cat-
tle as a reservoir of diverse E. coli O157:H7 lineages that result in
human disease, albeit at considerably different proportions for
different lineages.

Two research groups have previously reported SNP-based
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genotyping of E. coli O157:H7. Manning et al. (17) used 96 SNP
loci to identify 39 genotypes in 9 clades within a panel of >500
clinical E. coli O157:H7 isolates. Representative strains of those
genotypes and clades were obtained for analysis with the 48-plex
SNP assay used here, including 32 isolates uniquely representing
one genotype each from clades 1 to 4 and 6 to 9. As expected, there
was strong agreement between the two SNP-defined lineage as-
signments. Isolates of clades 1 to 4 from the work by Manning et al.
all typed as lineage Ib, and clades 6, 7, 8, and 9 from the work by
Manning et al. typed as lineages Ia, Vb, II, and VII, respectively.
SNP lineages IVa to -c, Va, Vb, and VI were not represented in the
clades from the work by Manning et al., presumably due to the
emphasis on clinical strains (and, as a result, to underrepresenta-
tion of bovine-biased strains) in their study. Clades 2 and 3 (lin-
eage Ib) and clade 8 (lineage II) from the work by Manning et al.
were the most frequently occurring types in their isolate set, and
the corresponding Ib and II lineages were the most frequently
occurring among our clinical isolates. Another research group,
Bono etal. (19), applied alarge (>750-SNP) typing panel to >400
E. coli O157 isolates to define 175 genotypes that clustered into
eight lineages, I to VIIL. Strains (n = 112) representing 88 of their
175 SNP genotypes were analyzed using our 48-plex SNP panel,
which accurately assigned each isolate to the expected lineage re-
ported by Bono et al., and assigned those in lineages I, I, IV, and V
to sublineages. The 48-plex assay utilized here therefore provides
grouping information consistent with the Bono SNP-derived phy-
logeny that could be economically applied wherever the Golden-
Gate hardware platform or a similar system is available.

It is of considerable research interest to determine the lineages
of E. coli 0157 isolates because of the potentially significant dif-
ferences in biological behavior they may express, including resis-
tance to adverse environmental conditions, virulence in animal
models, and potential for differing levels of virulence in humans
(12, 13). These differences may simply result from the lineage-
associated differences in the occurrence of stx variants. Most
(81.6%) isolates of the cattle-associated lineages (Ia and Vb) de-
fined here carry stx,. as their only Stx2-encoding gene. Several
studies have suggested that E. coli O157:H7 strains that similarly
carry stx,. but not stx,, may be less pathogenic than strains that
carry stx,, (27-29). For example, strains carrying stx,. are fre-
quently found in isolates from both cattle and healthy people (30,
31) whereas stx,, strains are more frequently isolated from pa-
tients with serious symptoms (32). Our results support this asso-
ciation: 81.9% of the clinical isolates in this study tested positive
for stx,, versus 51.8% of cattle isolates. In contrast, 42.1% of the
cattle isolates in this study carried stx,. but not stx,, compared to
only 13.6% of clinical isolates with that Stx-encoding gene pat-
tern. The 51.8% of cattle isolates that carry stx,, alone or together
with stx, . therefore apparently represent the strains most likely to
result in human infection from this animal reservoir. It would be
of considerable interest to compare the severities of clinical disease
of humans infected with E. coli O157:H7 of different SNP lineages
and Stx-encoding gene contents as one method of distinguishing
the contribution to virulence of these two factors.

The association of specific stx, variant content with certain
SNP-defined lineages of E. coli O157 suggests that acquisitions
and/or excisions of the Stx2 variant-encoding bacteriophages oc-
curred relatively infrequently during the evolution of this patho-
gen. The most frequently occurring SNP lineages among human
clinical isolates exhibited highly consistent SBI for Stx2-encoding
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phages: 92.9% of lineage Ib isolates had Stx2a-encoding bacterio-
phage sequences inserted in wrbA, and 100% of lineage IIa and
93.9% of lineage IIb isolates had Stx2a-encoding bacteriophage
sequences inserted in argW. Similarly, bacteriophage sequences
inserted in yehV (often associated with stx,;) were strongly corre-
lated with the SNP-defined lineages: the predominant clinical lin-
eages Ib, IIa, and IIb as well as the cattle-associated genotype Ila
predominantly (330 of 369, 89.4%) share the Stx1-encoding bac-
teriophage-yehV right junction sequence identified by Shaikh and
Tarr (7), whereas all the other lineages predominantly (148 of 161,
91.9%) carry the alternative right junction sequence identified by
Besser et al. (23). Presumably, the ancestor to lineages I and II as
defined by Bono et al. (19), and as identified here by SNP alleles
marking branch 10 (Fig. 1; see also Table S2 in the supplemental
material), experienced recombination at this bacteriophage-yehV’
junction. The correspondence between polymorphisms in Stx-
encoding bacteriophage insertion sites and the lineages defined by
chromosomal backbone SNPs emphasizes the surprising stability
of at least some of these “mobile elements” in the evolution of E.
coli O157:H7. The associations between stx content and SNP-de-
fined lineages of E. coli O157:H7 are clearly also concordant with
genotypes derived from other methods used to subtype this
pathogen. These include SBI typing (Table 2) as described here
but also several other methods that had previously been shown to
be concordant with SBI, including LSPA-6, Q allele, and tir SNP
analyses (9). For example, all isolates of SBI genotype WY12 are of
SNP lineage Ib, and 105 of 106 SBI genotype AY2 isolates are of
SNP lineage II. On the other hand, the SNP panel includes numer-
ous and diverse minor SBI genotypes within single SNP groups
(Table 2) that presumably result from the infrequent bacterio-
phage insertions or excisions that alter their SBI genotypes but not
their lineages as defined by chromosomal backbone SNPs.

As others have previously reported using different genotyp-
ing methods (33, 34), SNP lineages of E. coli O157:H7 appeared
to have pronounced differences in geographical distribution
among the seven countries represented; for example, predom-
inant lineages within specific countries of origin included lin-
eage la (57% of Australian isolates versus 4.7% elsewhere),
lineage Ib (86% of Canadian isolates versus 34.5% elsewhere),
lineage IIb (71% of New Zealand isolates versus 11.6% else-
where), lineage IVb (20.2% of New Zealand isolates versus
0.1% elsewhere), and lineage Vb (51.6% of Japanese isolates
versus 12.6% elsewhere) (see Table S1 in the supplemental ma-
terial). One instance of geographical structuring within a SNP
lineage was observed, in that 5 of the 16 Japanese isolates of
SNP lineage Vb carried the SNP 544618 allele expected of lin-
eage Va; these were the only isolates in the study with a SNP
haplotype intermediate between lineage (sub-)groups. These
regional associations suggest that, whether through founder
effects or genetic drift or through regional selective pressures, E. coli
0157:H7 strains have diverged evolutionarily in different parts of the
world. The potential for lineage-associated virulence differences
accounting, at least in part, for regional differences in the inci-
dence and severity of E. coli O157:H7-related disease clearly merits
further, more systematic investigation.

In this study, we established a 48-plex SNP typing panel that
can economically and rapidly assign E. coli O157:H7 isolates to six
lineages, including subgroups of four of the lineages. Several of the
11 SNP-defined genogroups were significantly associated with bo-
vine or human animal reservoir and clinical disease sources. The
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results were generally concordant with other typing systems, in-
cluding those based on mobile elements (bacteriophage), repre-
senting evidence supporting the important role those elements
have played in the evolution of this pathogen. The typing method
utilized a platform available at a number of service laboratories
and so can be utilized by research laboratories without large in-
vestments in specialized hardware to determine SNP genotypes
that would cost at least an order of magnitude more for individual
determinations by real-time PCR. Further study with more iso-
lates of broader provenance is important for developing a better
understanding of the distribution of E. coli O157:H7 strains spa-
tially and across diverse hosts, including their association with
human diseases.
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