ホスティングサービスの利用によるサーバ更新と サーバ管理運用について

総合技術センター 計測・制御技術分野

1. はじめに

長期間サーバシステムを運用していると HDD等の各パーツの経年による故障発生の懸 念が高くなってくる。そこで定期的に新しい サーバを準備し現在のシステムを新サーバに 移行し,システムを停止させることなく継続 利用できるようにする必要がある。今回,当 学情報センターが運用している「ホスティン グサービス」を利用して学内向け専用の新サ ーバを構築しシステムの移行を行ったのでそ の報告に加え,長期間運用していて気づいた 便利な機能を紹介したい。

2. ホスティングサービスとは

ホスティングサービスとは、「自社施設に 設置しインターネットに接続された情報発信 用のコンピュータ(サーバ)の機能を、遠隔 から顧客に利用させるサービス。顧客が自前 の設備などを持たずにインターネット上で情 報やサービスを配信するのをサポートするサ ービス」[1]とある。今回の場合、自社施設とは 徳島大学・情報センターであり、情報センタ ーのサーバ機能を利用(借用)してシステム を構築したことになる。この方法では高価な サーバ本体を購入することなく, サーバを構 築することができる点に加え、停電時の電源 バックアップに関する機能も具備している点 が優れている。一方でサーバに関するスペッ クを選択できないことや、利用ポートに制限 があるという点に不満を感じるかも知れない が,当学では情報センターとの協議によりメ モリとHDD及び利用ポートに関しては柔軟な 運用がされている。今回利用したスペックを 表1にまとめる。

残念ながら当学のこのサービスは当学内限 定のサービスであり, 学外の方は利用できな い。また、個人的な利用も認められていない。 現在の所、サーバの運用に係る費用(電気

飯田 仁 (Hitoshi Iida)

代など)は請求されていないので、無料で利 用しているが、将来にわたって無料である保 証はなく、筆者としてはこの状況が続くこと を願うだけである。

表 1	ホステ	イン	グシステ	・ムの基本構成
-----	-----	----	------	---------

CPU	1Core	
メモリ	4GB	
HDD	50GB	

今回はこのサービスを利用し,学内限定シ ステムである

① 授業出席管理システム(中継サーバ)

② 工学部建物別使用電力確認システム

③ 講義室利用状況確認システム

以上のシステムを構築した。現在の所、旧サ ーバからは①の出席管理システムを完全に移 行した。②と③については移行作業中である。

3. システムについて

ホスティングサービスでは,サーバのOSは 管理者(筆者)が任意に選択することができ るので、運用実績のあるRHEL互換である Scientific Linux7.0 (以下SL) を選択した。SL は最少構成で導入し,新たに必要な機能が不 足している場合にパッケージマネージャー yumを利用し追加する事とした。yumの自動更 新機能は一部を除いて有効にしておくことは 言うまでもない。前節で紹介した3つのシステ ムはWebサーバ機能で実現しているため、基 本サーバソフトとして

- A) Apache2.4
- B) PHP5.4→PHP5.6
- C) PostgreSQL9.2

を導入した。上記のソフトは当初SLの標準パ ッケージを利用したがPHPは後日外部のサー ドパーティリポジトリ (remi)^[2]を利用し最新 バージョンに更新した。外部パッケージであ

るがセキュリティの対策・対応も早いのでこ ちらを利用する方が良いと判断した。

4. 追加機能

ここでは構築したシステムで特別に必要と なった機能のみを記載する。サーバ管理に必 要な物は割愛する。

4. 1 IP-sec

前述の出席管理システムでは、一部IP-secを 用いて出席データの登録を実施している。以 前のサーバではIP-secに関してRacoon2という パッケージを利用していたが、今回のサーバ 構築時にはパッケージのメンテナンスがされ ていないことが分かり、strongSwanというパッ ケージに変更してIP-secの機能を実現した。こ の導入に関しても、外部サードパーティリポ ジトリであるEPEL^[3]を利用した。前述した remiやEPELは通常のソフトウェア更新時に自 動更新とならないように設定を行った。従っ て、追加したパッケージの更新は手動で行う ことになる。

4.2 グラフ表示

工学部建物別使用電力確認システムではグ ラフ表示するためにJpGraph^[4]というPHPの拡 張ライブラリを追加した。非営利目的である ため指示^[5]に従い画面表示を実施した。

5. サーバ運用について

5.1 通常の管理(ログ監視)

通常はlogwatchというパッケージを追加し て、毎日様々なログから生成・送信されるメ ールを確認して通常とは異なる接続が無いか などを確認する。最少構成でシステム導入を 実施したため、このような管理ツールも追加 する必要があった。

5.2 ログの出力先指定

前述のstrongSwan(IP-sec通信)は標準でロ グの出力先が/var/log/secureと/var/log/message に出力される。接続ごとにログが発生し,1日 でもかなりの量になってしまう。また,2つの ファイルに分散されるので確認作業が煩雑に なることに加え,他の重要なログがstrogSwan のログに埋もれ,見落とす可能性があるため, 出力先を1つの専用ファイルに変更した。出力 先の変更についてはrsyslogdの設定^[6]により実 施した。図1に設定内容を示す。出席管理シ ステムで運用するcrotabの処理も通常とは異 なるファイルに出力するよう設定を行った。

:syslogtag, contains, "charon" ¥
/var/log/strongswan/strongswan.log
& ~
:syslogtag, contains, "strongswan" ¥
/var/log/strongswan/strongswan.log
& ~

図1 rsysylogの設定例

5. 3 Web $\forall -i$ (Apache)

前述した3つのシステムでそれぞれホスト 名を変更し運用している。これに伴い,ヴァ ーチャルホストの設定で,接続ログなどもそ れぞれ別ファイルになるようにしている。SSL 証明書^[7]を複数ホスト名で申請しhttps通信も 実施している。

5.4 ポート変更

既知のポートを使用していると、不必要な 利用者が訪問し安全性が脅かされることがあ る。気休めかもしれないが、以前のサーバか らSSHのポートを変更して運用している。変更 に際し、情報センターにポート利用の申請が 必要になる。無条件で利用可能なポートは80, 443,3389であり、これら以外は申請の必要が ある。

変更後の使用ポート番号であるが、慣例に 従い49152~65535の範囲^[8]で決めると運用時 の不具合が少ない。図2にsshd.configファイル の変更例を示す。

Port xxxxx (←新しいポート番号) AllowUsers user1 user2 (←ユーザ限定) PermitRootLogin no (←root ログイン禁止)

図2 sshd.configの変更例

5.5 ファイヤーウォール

不必要なネットワーク通信を遮断するため に有効な機能で、使用しないポートは全て閉 鎖(Reject)し、必要ポートのみ開放(Accept) する設定としている。なお,ここで利用する ポートは事前に情報センターに申請し開通手 続きをしなければ利用できない。

5.6 停電作業

突発的な停電に対しては電源のバックアッ プ措置がなされているので心配はない。しか し、電気事業法に基づく年1回の計画停電があ る。受電設備の検査や非常用発電設備が正常 に動作することを確認するための停電で、こ の作業時にはサーバを停止する必要がある。 しかし、可能な限りサーバは稼働させておき たいので、自動的に停止する方法を取った。 これは単にcrontabを利用して、決められた時 間に停止(shutdown)コマンドを実行すると いうもので停電開始時刻の10分前に設定して いる(図3)。この自動停止を実行する前に, 深夜に問題無く再起動するか確認してから本 番の設定を実施した。ただし, NTPなどによ りサーバの時刻を正しく設定しておく必要が ある。なお、停電からの復帰(復電)は情報 センターの担当者がサーバの起動(電源ON) まで実施してくれるので、別途作業の必要は ない。

以上で自動停止が実現できることを示した が,停電終了後にcrontabの設定はコメントア ウトにて無効化する必要がある。

[11/29 08:50]シャットダウン実施 50 8 29 11 * /sbin/shutdown -h now

図3 crontab設定

5.7 手動更新

前述のようにサードパーティリポジトリを 追加して導入したソフトウェアに関しては念 の為手動にて更新作業を実施している。特に 日程を決めている訳ではないが,月1回程度 は実施するようにしている。

5.8 バックアップ

サーバを運用していると不足の事態に備え データのバックアップ作業が必要になる。従 来から実施している方法は、外付けHDDにデ ータを圧縮して保存する方法で、HDDが異な るため内蔵(システム)HDDと同時に故障す ることは無いであろうとの考えからである。 しかし、ホスティングサービスでは外付け HDDを接続できないため、旧サーバと連携^[9] して旧サーバの外付けHDDにバックアップデ ータを保存するようにしている。以下にバッ クアップ処理の手順を示す。

- 新サーバ本体のHDDに必要なバックアップ ファイルを作製
- 2. sftpを用いて旧サーバの外付けHDDにバッ クアップファイルをコピー
- 3. 新サーバ本体に作製したバックアップファ イルを削除

ー連の動作をシェルスクリプトにて記述し, crontabに毎日深夜に実行するよう設定した。

毎日のバックアップ処理では、Webサーバ のコンテンツと、データベースに登録されて いるデータを対象とし、月3回(1日、11日、 21日深夜)のバックアップ処理ではサーバの 設定データ(/etc内)をバックアップ対象に追 加している。バックアップスクリプトの概要 を図4に示す。

!/bin/sh
DIR=PATH
cd /home/www/html
/bin/tar -zcf \${DIR}/file_name.tar.gz ./XXXX
/bin/sftp -b sftp.bat -i key file user@server
/bin/rm -f \${DIR}/file_name.tar.gz

図4 バックアップスクリプト概要

図4中のsftp.batファイルにはsftpで実行す る処理を記述しておく。またkey_fileファイル はsftpをバッチモードで実行するために必要 なパスワードの秘密鍵であり、公開鍵はバッ クアップ先サーバに登録しておく必要があ る。図5にsftp.batの内容例を記載する。

cd SAVE_DIR put backup_filename.tar.gz exit

図5 sftp.batファイルの内容例

なお,エラーが発生しバックアップ処理が 滞った場合には電子メールにてその旨の通知 が届くようにしている。

5. 9 HDDディスク容量

HDDの容量が少ないと、運用を開始すると ディスク空き容量に余裕が無くなる。今回の サーバでは特に出席管理システムの出席情報 の生データが1か月で約5GBとなるため、定期 的に削除しなければHDDの空き容量が不足し てしまう。このHDD空き容量確保のためのデ ータ削除作業はシェルスクリプトを用い手動 で実施していた。この作業は不定期に実施し ていたがこの原稿執筆を期に、月初めに自動 実行するように変更した。

5.10 不具合について

今回構築した新サーバではないが,本原稿 の執筆時に外付けHDDに起因する不具合が発 生したので記載しておく。サーバにUSB接続 の外付けHDDをバックアップ目的で接続して おり, 内蔵HDDにLinuxシステムを導入し起動 ディスクとしている。前述の停電時にカーネ ル等の更新を実施し再起動をしたところ表2 に示すようにデバイス名が変わっており、バ ックアップスクリプトの動作でHDDの容量が 不足する不具合が発生した。これは前述の logwatchにより停電の翌朝に届いた電子メー ルで確認できた。ただし/etc/fstabの/bootに関す る記述がUUIDを用いていたため、デバイス名 が変更になっても正常にサーバは起動しサー ビスを提供していたので、原因の確認と再発 防止策の実施に時間的余裕があり、事なきを 得た。

表2 デバイス名の変化

内/外	再起動前	再起動後
内蔵HDD	/dev/sda	/dev/sdb
外付けHDD	/dev/sdb	/dev/sda

このような不具合を防止するためにはデバ イス名を固定することで回避することが可能 である。この設定は/etc/udev/rules/以下に設定 を追記し実施^[10]した。図6は内蔵用HDDをsda に固定するための設定。図7は外付けHDDを usbhdaに固定するための設定。図6と図7の内 容は同じファイルに記述する。今回は参考 URLに従い10-local.rulesというファイルに記 述し再起動を行った。

SUBSYSTEMS=="scsi", ¥
ATTRS{unique_id}=="xxxxx",NAME="sda%n"

図6 内蔵HDDの設定

SUBSYSTEM="usb", ATTRS {serial}="yyyyy", ¥ NAME="usbhdb%n"

図7 外付けHDDの設定

図 6 "xxxxx"と図 7 "yyyyy"の部分は HDD に よって異なり,確認するためには"udevadm info -a -p \$ (udevadm info -q path -n /dev/sda (sdb)) "というコマンドを利用した。

なお,この不具合原因の究明と対策に関し ては情報センターに多大なるご支援を頂いた ことをここに記しておく。

6. まとめ

学内限定サービスであるホスティングサー ビスを利用した新サーバ構築と,運用方法や 過去に遭遇した不具合に関して記載した。サ ーバ購入という初期投資が不要なので今後こ のサービスの利用者も増加すると考える。

一方運用面では、学内専用サーバとはいえ さらなるセキュリティ対策を要求されるの で、管理技術の更新・向上が必要になる。今 後も情報センターと連携してサーバ運用を実 施して行く。

参考文献

- [1] http://e-words.jp/w/ホスティングサービス.html
- [2] http://rpms.famillecollet.com/
- [3] https://fedoraproject.org/wiki/EPEL/ja
- [4] http://www.asial.co.jp/jpgraph/
- [5] http://www.asial.co.jp/jpgraph/download.php
- [6] http://itmemo.digi2.jp/allCont/centos63/Cento s63RsyslogSetting.html
- [7] https://certs.nii.ac.jp/
- [8] https://ja.wikipedia.org/wiki/TCPやUDPにお けるポート番号の一覧
- [9] http://sonic64.com/2004-11-17.html
- [10] http://www7b.biglobe.ne.jp/~shikabo/140.ht
 ml