J. Math. Tokushima Univ. Vol. 52 (2018), 39 – 52

Lower Decay Estimates for Non-Degenerate Kirchhoff Type Dissipative Wave Equations

By

Kosuke Ono

Department of Mathematical Sciences, Graduate School of Science and Technology Tokushima University, Tokushima 770-8506, JAPAN e-mail address : k.ono@tokushima-u.ac.jp (Received September 30, 2018)

Abstract

We consider the Cauchy problem for non-degenerate Kirchhoff type dissipative wave equations $\rho u'' + a \left(\|A^{1/2}u(t)\|^2 \right) Au + u' = 0$ and $(u(0), u'(0)) = (u_0, u_1)$, where $u_0 \neq 0$. We derive the lower decay estimate $\|u(t)\|^2 \geq Ce^{-\beta t}$ for $t \geq 0$ with $\beta > 0$ for the solution u(t).

2010 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

Let *H* be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let *A* be a linear operator on *H* with dense domain $\mathcal{D}(A)$. We assume that the operator *A* is self-adjoint and nonnegative such that $(Av, v) \ge 0$ for $v \in \mathcal{D}(A)$. The α -th power of *A* with dense domain $\mathcal{D}(A^{\alpha})$ is denoted by A^{α} for $\alpha > 0$, and the graph-norm of A^{α} is denoted by $\|v\|_{\alpha} = (\|v\|^2 + \|A^{\alpha}v\|^2)^{\frac{1}{2}}$ for $v \in \mathcal{D}(A^{\alpha})$. We use that $\|A^{1/2}v\|^2 = (Av, v)$ for $v \in \mathcal{D}(A^{1/2})$.

We study on the Cauchy problem for the non-degenerate Kirchhoff type dissipative wave equations :

$$\begin{cases} \rho u'' + a \left(\|A^{1/2} u(t)\|^2 \right) A u + u' = 0, \quad t \ge 0\\ (u(0), u'(0)) = (u_0, u_1) \in \mathcal{D}(A) \times \mathcal{D}(A^{1/2}), \end{cases}$$
(1.1)

where u = u(t) is an unknown real value function, ' = d/dt, and ρ is a positive constant.

For the non-local nonlinear term $a(M) \in C^0([0,\infty)) \cap C^1((0,\infty))$, we assume that as follows :

Hyp.1
$$K_1 \leq a(M) \leq K_2 + K_3 M^{\gamma}$$
 for $M \geq 0$
Hyp.2 $0 \leq a'(M)M \leq K_4 a(M)$ for $M > 0$
with $\gamma > 0$ and $K_j > 0$ $(j = 1, 2, 3, 4)$.

From Hyp.1, we see that

$$K_1 M \le \int_0^M a(\mu) \, d\mu \le \left(K_2 + \frac{K_3}{\gamma + 1} M^\gamma\right) M \,. \tag{1.2}$$

For typical examples, we have that

$$a(M) = 1 + M^{\gamma}, \quad (1+M)^{\gamma}, \quad \log(2+M^{\gamma}).$$

In the case of one dimension, (1.1) describes small amplitude vibrations of an elastic string (see [3], [4], [6]).

We obtain the following global existence theorem (see Theorem 4.1 and Proposition 5.1).

Theorem 1.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data (u_0, u_1) belong to $\mathcal{D}(A) \times \mathcal{D}(A^{1/2})$ and satisfy $u_0 \neq 0$, and moreover, the coefficient ρ and the initial data (u_0, u_1) satisfy the smallness condition (4.1), then the problem (1.1) admits a unique global solution u(t) in the class

$$C^{0}([0,\infty); \mathcal{D}(A)) \cap C^{1}([0,\infty); \mathcal{D}(A^{1/2})) \cap C^{2}([0,\infty); H).$$

Moreover, the solution u(t) satisfies

$$\|A^{1/2}u(t)\|^2 \ge Ce^{-\alpha t} \qquad for \quad t \ge 0 \tag{1.3}$$

with some $\alpha > 0$.

In previous paper [10], we have derived the upper decay estimates of the solution u(t) of (1.1) in the case of $a(M) = (1 + M)^{\gamma}$ with $\gamma > 0$ and $A = -\Delta = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2}$ with domain $\mathcal{D}(A) = H^2(\mathbb{R}^N)$:

$$\begin{split} \|A^{1/2}u(t)\|^2 &\leq C(1+t)^{-1}, \quad \|u'(t)\|^2 + \|Au(t)\|^2 \leq C(1+t)^{-2}, \\ \|A^{1/2}u'(t)\|^2 + \|u''(t)\|^2 \leq C(1+t)^{-3} \quad \text{for} \quad t \geq 0 \end{split}$$

(see [5], [8] for $a(M) = 1 + M^{\gamma}$ with $\gamma \ge 1$, that is, $a(\cdot) \in C^{1}([0, \infty))$).

On the other hand, Ghisi and Gobbino [5] have derived the lower decay estimate (1.3) for (1.1) (see [9] for bounded domains).

The purpose of this paper is to derive the lower decay estimate for $||u(t)||^2$. For the non-local nonlinear term $a(M) \in C([0,\infty)) \cap C^2((0,\infty))$, we assume that as follows :

Hyp.3
$$|a''(M)|M^2 \le K_5 a(M)$$
 for $M > 0$

with $K_5 > 0$.

We obtain the following lower decay estimate of the solution u(t) of (1.1) (see Theorem 5.4). Our main result is as follows.

Theorem 1.2 Suppose that the assumption of Theorem 1.1 and Hyp.3 are fulfilled. Then, the solution u(t) satisfies

$$\|u(t)\|^2 \ge Ce^{-\beta t} \qquad for \quad t \ge 0 \tag{1.4}$$

with some $\beta > 0$.

The notations we use in this paper are standard. Positive constants will be denoted by C and will change from line to line.

2 Local Existence and Energy

We have the following local existence theorem by standard arguments (see [1], [2], [7], [11] and the references cited therein).

Proposition 2.1 Suppose that Hyp.1 and Hyp.2 are satisfied. If the initial data (u_0, u_1) belong to $\mathcal{D}(A) \times \mathcal{D}(A^{1/2})$, then the problem (1.1) admits a unique local solution u(t) in the class $C^0([0,T); \mathcal{D}(A)) \cap C^1([0,T); \mathcal{D}(A^{1/2})) \cap C^2([0,T); H)$ for some $T = T(||u_0||_2, ||u_1||_1) > 0$.

Moreover, $||u(t)||_2 + ||u'(t)||_1 < \infty$ for $t \ge 0$, then we can take $T = \infty$.

In what follows, let u(t) be a solution of (1.1) under the assumption of Proposition 2.1.

We set that

$$M(t) = \|A^{1/2}u(t)\|^2$$
(2.1)

and

$$E(t) = \rho \|u'(t)\|^2 + \int_0^{M(t)} a(\mu) \, d\mu$$
(2.2)

for simplicity of the notations.

Proposition 2.2 Under the assumption of Proposition 2.1, the solution u(t) of (1.1) satisfies that

$$E(t) + 2\int_0^t \|u'(s)\|^2 ds = E(0), \qquad (2.3)$$

$$M(t) \le K_1^{-1} E(0) , \qquad (2.4)$$

$$a(M(t)) \le K_2 + K_3(K_1^{-1}E(0))^{\gamma} \quad (\equiv I(0)),$$
 (2.5)

$$||u(t)||^2 \le 6(||u_0||^2 + \rho E(0)).$$
(2.6)

for $t \geq 0$.

Proof. Taking the inner product of (1.1) with 2u'(t), we have

$$\frac{d}{dt}E(t) + 2\|u'(t)\|^2 = 0, \qquad (2.7)$$

and integrating (2.7) in time t, we obtain (2.3).

Moreover, it follows from (5.1) and (2.2) that

$$K_1 M(t) \le E(t) \le E(0) \,,$$

and from Hyp.2 that

$$a(M(t)) \le K_2 + K_3 M(t)^{\gamma} \le I(0)$$
.

Taking the inner product of (1.1) with u(t), we have

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|^2 + a(M(t))M(t) = \rho\left(\|u'(t)\|^2 - \frac{d}{dt}(u'(t), u(t))\right),$$

and we observe from the Young inequality that

$$\|u(t)\|^{2} + 2\int_{0}^{t} a(M(s))M(s) ds$$

$$\leq \|u_{0}\|^{2} + 2\rho \int_{0}^{t} \|u'(s)\|^{2} ds + \|u_{0}\|^{2} + \rho \|u_{1}\|^{2} + \frac{1}{2} \|u(t)\|^{2} + 2\rho^{2} \|u'(t)\|^{2}$$

and hence

$$\begin{aligned} &\frac{1}{2} \|u(t)\|^2 + 2\int_0^t a(M(s))M(s)\,ds\\ &\leq 2\|u_0\|^2 + \rho\left(\rho\|u_1\|^2 + 2\rho\|u'(t)\|^2 + 2\int_0^t \|u'(s)\|^2 ds\right)\\ &\leq 2\|u_0\|^2 + 3\rho E(0) \end{aligned}$$

which implies the desired estimate (2.6). \Box

3 Several Estimates

In order to obtain a-priori estimates of the solution u(t), we assume that

$$\rho \frac{|M'(t)|}{M(t)} \le \frac{1}{K_4 + 1} \tag{3.1}$$

where M(t) is defined by (5.1).

Proposition 3.1 Under the assumption (3.1), the solution u(t) satisfies

$$\frac{\|Au(t)\|^2}{M(t)} \le G(t) \le G(0), \qquad (3.2)$$

where

$$G(t) = \frac{\|Au(t)\|^2}{M(t)} + \rho Q(t), \qquad (3.3)$$

$$Q(t) = \frac{\|A^{1/2}u'(t)\|^2}{\|A^{1/2}u(t)\|^2} - |(A^{1/2}u'(t), A^{1/2}u(t))|^2 \qquad (3.3)$$

$$Q(t) = \frac{\|A^{1/2}u'(t)\|^2 \|A^{1/2}u(t)\|^2 - \|(A^{1/2}u'(t), A^{1/2}u(t))\|^2}{a(M(t))M(t)^2} \quad (\ge 0).$$
(3.4)

Proof. We have from (1.1) that

$$\begin{split} & \frac{d}{dt} \frac{\|Au(t)\|^2}{M(t)} \\ &= \frac{1}{a(M(t))M(t)^2} \left(2(a(M(t))Au, Au')M(t) - (a(M(t))Au, Au)M'(t)) \right) \\ &= \frac{1}{a(M(t))M(t)^2} \left(2(\|A^{1/2}u'\|^2 + \rho(A^{1/2}u'', A^{1/2}u'))M(t) \right) \\ &- \left(\frac{1}{2} |M'(t)|^2 + \rho\left(\|A^{1/2}u'(t)\|^2 - \frac{1}{2}M''(t) \right)M'(t) \right) \right) \\ &= -2Q(t) + \rho R(t) \end{split}$$

where we set

$$R(t) = \frac{2(A^{1/2}u'', A^{1/2}u')M(t) + \left(\|A^{1/2}u'(t)\|^2 - \frac{1}{2}M''(t)\right)M'(t)}{a(M(t))M(t)^2}$$

Since we observe

$$\begin{split} &\frac{d}{dt}Q(t) \\ &= -\frac{a'(M(t))M'(t)M(t)^2 + 2a(M(t))M(t)M'(t)}{(a(M(t))M(t)^2)^2} \\ &\times \left(\|A^{1/2}u'\|^2 M(t) - \frac{1}{4}|M'(t)|^2 \right) \\ &+ \frac{2(A^{1/2}u'', A^{1/2}u')M(t) + \|A^{1/2}u'\|^2 M'(t) - \frac{1}{2}M'(t)M''(t)}{a(M(t))M(t)^2} \\ &= -\frac{M'(t)}{M(t)}\frac{a'(M(t))M(t) + 2a(M(t))}{a(M(t))^2 M(t)^2} \left(\|A^{1/2}u'\|^2 M(t) - \frac{1}{4}|M'(t)|^2 \right) + R(t) \\ &= -\frac{M'(t)}{M(t)} \left(2 + \frac{a'(M(t))M(t)}{a(M(t))} \right) Q(t) + R(t) \,, \end{split}$$

we have

$$\begin{aligned} \frac{d}{dt} \left(\frac{\|Au(t)\|^2}{M(t)} + \rho Q(t) \right) \\ &+ 2 \left(1 + \frac{\rho}{2} \frac{M'(t)}{M(t)} \left(2 + \frac{a'(M(t))M(t)}{a(M(t))} \right) \right) Q(t) = 0 \,. \end{aligned}$$

Moreover, we observe

$$1 + \frac{\rho}{2} \frac{M'(t)}{M(t)} \left(2 + \frac{a'(M(t))M(t)}{a(M(t))} \right) \ge 1 - \frac{1}{2} \frac{1}{K_4 + 1} (2 + K_4) \ge 0$$

and $Q(t) \ge 0$, we have

$$\frac{d}{dt}G(t) = \frac{d}{dt}\left(\frac{\|Au(t)\|^2}{M(t)} + \rho Q(t)\right) \le 0$$

which implies the desired estimate (3.2). \square

Proposition 3.2 Under the assumption (3.1), the solution u(t) satisfies

$$\frac{\|u'(t)\|^2}{M(t)} \le B(0), \qquad (3.5)$$

where

$$B(0) = \max\left\{\frac{\|u_1\|^2}{M(0)}, \frac{K_4 + 1}{K_4}I(0)^2G(0)\right\}.$$
(3.6)

44

Proof. Taking the inner product of (1.1) with 2u'(t)/M(t), we have

$$\rho \frac{d}{dt} \frac{\|u'(t)\|^2}{M(t)} + \left(2 + \rho \frac{M'(t)}{M(t)}\right) \frac{\|u'(t)\|^2}{M(t)} = -a(M(t)) \frac{M'(t)}{M(t)} \tag{3.7}$$

$$\leq 2a(M(t)) \frac{\|Au(t)\|\|u'(t)\|}{M(t)}$$

$$\leq a(M(t))^2 \frac{\|Au(t)\|^2}{M(t)} + \frac{\|u'(t)\|^2}{M(t)}$$

where we used the Young inequality.

Since

$$1 + \rho \frac{M'(t)}{M(t)} \ge \frac{K_4}{K_4 + 1} \quad \text{and} \quad a(M(t))^2 \frac{\|Au(t)\|^2}{M(t)} \le I(0)^2 G(0) \,,$$

we have

$$\rho \frac{d}{dt} \frac{\|u'(t)\|^2}{M(t)} + \frac{K_4}{K_4 + 1} \frac{\|u'(t)\|^2}{M(t)} \le I(0)^2 G(0)$$

and hence, we obtain (3.6). \Box

Remark. If the nonnegative function f(t) satisfies

$$f'(t) + af(t) \le b, \quad t \ge 0$$

with positive constants a and b, then

$$f(t) \le \max\{f(0), b/a\}, \quad t \ge 0.$$

Indeed, taking

$$g(t) = \max\{f(0), b/a\}, t \ge 0,$$

we see that $-ag(t) + b \leq 0$ and g'(t) = 0, and hence,

$$g'(t) + ag(t) \ge b$$
 and $f(0) \le g(0)$.

Thus, by the comparison principle, we conclude.

4 Global Existence

Theorem 4.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data (u_0, u_1) belong to $\mathcal{D}(A) \times \mathcal{D}(A^{1/2})$ are satisfies $u_0 \neq 0$ and

$$2\rho G(0)^{\frac{1}{2}} B(0)^{\frac{1}{2}} < \frac{1}{K_4 + 1}, \qquad (4.1)$$

then the problem (1.1) admits a unique global solution u(t) in the class

$$C^{0}([0,\infty); \mathcal{D}(A)) \cap C^{1}([0,\infty); \mathcal{D}(A^{1/2})) \cap C^{2}([0,\infty); H)$$

and the solution u(t) satisfies

$$\|u(t)\|^{2} \le 6(\|u_{0}\|^{2} + \rho E(0)), \qquad (4.2)$$

$$E(t) \le E(0), \quad a(M(t)) \le I(0),$$
(4.3)

$$\rho \frac{|M'(t)|}{M(t)} \le \frac{1}{K_4 + 1}, \tag{4.4}$$

$$\frac{\|Au(t)\|^2}{M(t)} \le G(0), \quad \frac{\|u'(t)\|^2}{M(t)} \le B(0).$$
(4.5)

Proof. Let u(t) be a solution on [0, T]. Since we observe from (3.2), (3.5), and (4.1) that

$$\rho \frac{|M'(0)|}{M(0)} \le 2\rho \frac{\|u_1\|}{M(0)^{\frac{1}{2}}} \frac{\|Au_0\|}{M(0)^{\frac{1}{2}}} \le 2\rho B(0)^{\frac{1}{2}} G(0) < \frac{1}{K_4 + 1},$$

putting

$$T = \sup\{t \in [0,\infty) \mid \rho \frac{|M'(s)|}{M(s)} < \frac{1}{K_4 + 1} \quad \text{for} \quad 0 \le s < t\},\$$

we see that $T_1 > 0$. If $T_1 < T$, we have

$$\rho \frac{|M'(t)|}{M(t)} < \frac{1}{K_4 + 1} \quad \text{for} \quad 0 \le t < T_1, \quad \text{and} \quad \rho \frac{|M'(T_1)|}{M(T_1)} = \frac{1}{K_4 + 1}.$$

Again, from (3.2), (3.5), and (4.1) it follows that

$$\rho \frac{|M'(t)|}{M(t)} \le 2\rho \frac{\|u'(t)\|}{M(t)^{\frac{1}{2}}} \frac{\|Au(t)\|}{M(t)^{\frac{1}{2}}} \le 2\rho B(0)^{\frac{1}{2}}G(0) < \frac{1}{K_4 + 1}$$

for $0 \le t \le T$, and hence, we obtain $T_1 \ge T$, and we see that the solution u(t) satisfies the estimates (2.3)–(2.6), (3.2), and (3.5), which implies (4.2)–(4.5).

Taking the inner product of (1.1) with 2Au'(t)/a(M(t)), we have

$$\frac{d}{dt} \left(\rho \frac{\|A^{1/2}u'(t)\|^2}{a(M(t))} + \|Au(t)\|^2 \right) + 2 \left(1 + \frac{\rho}{2} \frac{a'(M(t))M(t)}{a(M(t))} \frac{M'(t)}{M(t)} \right) \frac{\|A^{1/2}u'(t)\|^2}{a(M(t))} = 0.$$

Since

$$\begin{split} 1 + \frac{\rho}{2} \frac{a'(M(t))M(t)}{a(M(t))} \frac{M'(t)}{M(t)} &\geq 1 - \frac{K_4}{2} \rho \frac{|M'(t)|}{M(t)} \\ &\geq 1 - \frac{K_4}{2} \frac{1}{K_4 + 1} \geq 0 \,, \end{split}$$

we have

$$\frac{d}{dt} \left(\rho \frac{\|A^{1/2}u'(t)\|^2}{a(M(t))} + \|Au(t)\|^2 \right) \le 0$$

and hence,

$$||A^{1/2}u'(t)||^2 + ||Au(t)||^2 \le C \text{ for } 0 \le t \le T.$$

Thus, we observe that $||u(t)||_2 + ||u'(t)||_1 \leq C$, and by the second statement of Proposition 2.1, we conclude that the problem (1.1) admits a unique global solution. \Box

5 Lower Decay Estimates

Proposition 5.1 Under the assumption of Theorem 4.1, it holds that

$$M(t) \ge Ce^{-\alpha t} \qquad for \quad t \ge 0 \tag{5.1}$$

with some $\alpha > 0$.

Proof. Taking the inner product of (1.1) with $2u'(t)/M(t)^2$, we have

$$\begin{split} \frac{d}{dt} \left(\rho \frac{\|u'(t)\|^2}{M(t)^2} + \frac{a(M(t))}{M(t)} \right) + 2 \left(1 + \rho \frac{M'(t)}{M(t)} \right) \frac{\|u'(t)\|^2}{M(t)^2} \\ &= \frac{-2a(M(t)) + a'(M(t))M(t)}{M(t)} \frac{M'(t)}{M(t)} \\ &\leq C \frac{a(M(t))}{M(t)} \frac{M'(t)}{M(t)} \leq \alpha \frac{a(M(t))}{M(t)} \end{split}$$

with some $\alpha > 0$, where we used Hyp.2 and (4.4).

Since $1 + \rho M'(t)/M(t) \ge 0$, we have

$$\frac{d}{dt} \left(\rho \frac{\|u'(t)\|^2}{M(t)^2} + \frac{a(M(t))}{M(t)} \right) \le \alpha \left(\rho \frac{\|u'(t)\|^2}{M(t)^2} + \frac{a(M(t))}{M(t)} \right)$$

and hence, we obtain

$$\rho \frac{\|u'(t)\|^2}{M(t)^2} + \frac{a(M(t))}{M(t)} \le Ce^{\alpha t} \quad \text{or} \quad M(t) \ge Ce^{-\alpha t}$$

where we used the assumption that $a(M(t)) \ge K_1 > 0$. \Box

Proposition 5.2 Under the assumption of Theorem 4.1, it holds that

$$\frac{\|A^{1/2}u'(t)\|^2}{M(t)} \le C \qquad \text{for} \quad t \ge 0.$$
(5.2)

Proof. Taking the inner product of (1.1) with $(2Au'(t) + \rho^{-1}Au(t))/M(t)$, we have

$$\frac{d}{dt} \left(\rho \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + a(M(t)) \frac{\|Au(t)\|^2}{M(t)} + \frac{(Au(t), u'(t))}{M(t)} \right)
+ \left(1 + \rho \frac{M'(t)}{M(t)} \right) \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + \frac{a(M(t))}{\rho} \frac{\|Au(t)\|^2}{M(t)} + \frac{1}{2} \frac{|M'(t)|^2}{M(t)^2}
= - \left(a(M(t)) + a'(M(t))M(t) \right) \frac{M'(t)}{M(t)} \frac{\|Au(t)\|^2}{M(t)} - \frac{1}{2\rho} \frac{M'(t)}{M(t)}.$$
(5.3)

Moreover, taking (5.3) + (3.7) × $\rho^{-1}K_1^{-1}$, we have

$$\begin{split} &\frac{d}{dt}F(t) + \left(1 + \rho \frac{M'(t)}{M(t)}\right) \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + \frac{a(M(t))}{\rho} \frac{\|Au(t)\|^2}{M(t)} + \frac{1}{2} \frac{|M'(t)|^2}{M(t)^2} \\ &+ \frac{1}{\rho K_1} \left(2 + \rho \frac{M'(t)}{M(t)}\right) \frac{\|u'(t)\|^2}{M(t)} = R(t) \end{split}$$

where

$$\begin{split} F(t) =& H(t) + \frac{(Au(t), u'(t))}{M(t)} \,, \\ H(t) =& \rho \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + a(M(t)) \frac{\|Au(t)\|^2}{M(t)} + \frac{1}{K_1} \frac{\|u'(t)\|^2}{M(t)} \quad (\ge 0) \,, \\ R(t) =& -\left(a(M(t)) + a'(M(t))M(t)\right) \frac{M'(t)}{M(t)} \frac{\|Au(t)\|^2}{M(t)} - \frac{1}{2\rho} \frac{M'(t)}{M(t)} \\ & - \frac{a(M(t))}{\rho K_1} \frac{M'(t)}{M(t)} \,. \end{split}$$

Since we observe from the Young inequality and Hyp.1 that

$$\begin{aligned} \frac{|(Au(t), u'(t))|}{M(t)} &\leq \frac{K_1}{2} \frac{\|Au(t)\|^2}{M(t)} + \frac{1}{2K_1} \frac{\|u'(t)\|^2}{M(t)} \\ &\leq \frac{a(M(t))}{2} \frac{\|Au(t)\|^2}{M(t)} + \frac{1}{2K_1} \frac{\|u'(t)\|^2}{M(t)} \,, \end{aligned}$$

and from (4.4) that

$$1 + \rho \frac{M'(t)}{M(t)} \ge \frac{K_4}{K_4 + 1} \quad (>0)$$

and from (4.3)-(4.5) that

$$|R(t)| \le C \frac{|M'(t)|}{M(t)} \le C \,,$$

we have

$$\frac{d}{dt}F(t) + \nu F(t) \le C$$

with some $\nu > 0$, and hence,

$$F(t) \le C$$
 or $H(t) \le C$

which implies the desired estimate (5.2). \Box

Proposition 5.3 Under the assumption of Theorem 4.1 and Hyp.3, it holds that

$$\frac{\|u''(t)\|^2}{M(t)} \le C \qquad \text{for} \quad t \ge 0.$$
(5.4)

Proof. Taking the inner product of (1.1) with $(2u''(t) + \rho^{-1}u'(t))/M(t)$, we have

$$\frac{d}{dt} \left(\rho \frac{\|u''(t)\|^2}{M(t)} + a(M(t)) \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + \frac{a'(M(t))M(t)}{2} \frac{\|M'(t)\|^2}{M(t)^2} \right) \\
+ \frac{1}{2\rho} \frac{\|u'(t)\|^2}{M(t)} + \frac{(u''(t), u'(t))}{M(t)} + \left(1 + \rho \frac{M'(t)}{M(t)} \right) \frac{\|u''(t)\|^2}{M(t)} \\
+ \frac{a(M(t))}{\rho} \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + \frac{a'(M(t))M(t)}{2\rho} \frac{\|M'(t)\|^2}{M(t)^2} \\
= \left(-a(M(t)) + 3a'(M(t))M(t) \right) \frac{M'(t)}{M(t)} \frac{\|A^{1/2}u'(t)\|^2}{M(t)} \\
+ \frac{1}{2} \left(-a'(M(t))M(t) + a''(M(t))M(t)^2 \right) \left(\frac{M'(t)}{M(t)} \right)^3 \\
- \frac{M'(t)}{M(t)} \left(\frac{1}{2\rho} \frac{\|u'(t)\|^2}{M(t)} + \frac{(u''(t), u'(t))}{M(t)} \right).$$
(5.5)

Moreover, taking (5.5)+(3.7), we have

$$\begin{aligned} &\frac{d}{dt}G(t) + \left(1 + \rho \frac{M'(t)}{M(t)}\right) \frac{\|u''(t)\|^2}{M(t)} + \frac{a(M(t))}{\rho} \frac{\|A^{1/2}u'(t)\|^2}{M(t)} \\ &+ \frac{a'(M(t))M(t)}{2\rho} \frac{|M'(t)|^2}{M(t)^2} + \left(2 + \rho \frac{M'(t)}{M(t)}\right) \frac{\|u'(t)\|^2}{M(t)} = S(t) \end{aligned}$$

where

$$\begin{split} G(t) = & K(t) + \frac{(u''(t), u'(t))}{M(t)} \,, \\ K(t) = & \rho \frac{\|u''(t)\|^2}{M(t)} + a(M(t)) \frac{\|A^{1/2}u'(t)\|^2}{M(t)} + \frac{a'(M(t))M(t)}{2} \frac{|M'(t)|^2}{M(t)^2} \\ & + \left(\frac{1}{2\rho} + \rho\right) \frac{\|u'(t)\|^2}{M(t)} \,, \\ S(t) = & \left(-a(M(t)) + 3a'(M(t))M(t)\right) \frac{M'(t)}{M(t)} \frac{\|A^{1/2}u'(t)\|^2}{M(t)} \\ & + \frac{1}{2} \left(-a'(M(t))M(t) + a''(M(t))M(t)^2\right) \left(\frac{M'(t)}{M(t)}\right)^3 \\ & - \frac{M'(t)}{M(t)} \left(\frac{1}{2\rho} \frac{\|u'(t)\|^2}{M(t)} + \frac{(u''(t), u'(t))}{M(t)}\right) - a(M(t)) \frac{M'(t)}{M(t)} \,. \end{split}$$

Since we observe from the Young inequality that

$$\frac{|(u''(t), u'(t))|}{M(t)} \le \frac{\rho}{2} \frac{\|u''(t)\|^2}{M(t)} + \frac{1}{2\rho} \frac{\|u'(t)\|^2}{M(t)}$$

and from (4.4) that

$$1 + \rho \frac{M'(t)}{M(t)} \ge \frac{K_4}{K_4 + 1} \quad (>0)$$

and from (4.3)-(4.5), (5.2) that

$$|S(t)| \le C + \frac{K_4}{2(K_4 + 1)} \frac{\|u'(t)\|^2}{M(t)},$$

we have

$$\frac{d}{dt}G(t) + \nu G(t) \le C$$

with some $\nu > 0$, and hence,

$$G(t) \le 0$$
 or $K(t) \le 0$

which implies the desired estimate (5.4). \Box

Theorem 5.4 Suppose that the assumption of Theorem 4.1 and Hyp.3 are fulfilled. Then, the solution u(t) satisfies

$$\|u(t)\|^2 \ge Ce^{-\beta t} \qquad for \quad t \ge 0 \tag{5.6}$$

with some $\beta \geq \alpha > 0$.

Proof. Using (1.1), we observe that

$$\begin{split} \frac{d}{dt} \frac{M(t)}{\|u(t)\|^2} &= \frac{1}{\|u(t)\|^4} \left(2(Au(t), u'(t)) \|u(t)\|^2 - 2M(t)(u(t), u'(t)) \right) \\ &= \frac{-2}{\|u(t)\|^2} \left(\rho(Au(t) - \frac{M(t)}{\|u(t)\|^2} u(t), u''(t)) \right. \\ &\left. + a(M(t))((Au(t) - \frac{M(t)}{\|u(t)\|^2} u(t), Au(t)) \right) \end{split}$$

and

$$(Au(t) - \frac{M(t)}{\|u(t)\|^2}u(t), Au(t)) = \|Au(t) - \frac{M(t)}{\|u(t)\|^2}u(t)\|^2.$$

Thus, we have

$$\begin{split} & \frac{d}{dt} \frac{M(t)}{\|u(t)\|^2} + \frac{2a(M(t))}{\|u(t)\|^2} \|Au(t) - \frac{M(t)}{\|u(t)\|^2} u(t)\|^2 \\ &= \frac{-2\rho}{\|u(t)\|^2} \rho(Au(t) - \frac{M(t)}{\|u(t)\|^2} u(t), u''(t)) \\ &\leq 2\rho \frac{1}{\|u(t)\|} \|Au(t) - \frac{M(t)}{\|u(t)\|^2} u(t)\| \frac{\|u''(t)\|}{\|u(t)\|} \\ &\leq \frac{2K_1}{\|u(t)\|^2} \|Au(t) - \frac{M(t)}{\|u(t)\|^2} u(t)\|^2 + \frac{\rho^2}{2K_1} \frac{\|u''(t)\|^2}{\|u(t)\|^2} \,, \end{split}$$

and moreover, by $a(M(t)) \ge K_1 > 0$,

$$\frac{d}{dt}\frac{M(t)}{\|u(t)\|^2} \le C\frac{\|u''(t)\|^2}{\|u(t)\|^2} = C\frac{\|u''(t)\|}{M(t)}\frac{M(t)}{\|u(t)\|^2} \le \nu\frac{M(t)}{\|u(t)\|^2}$$

with some $\nu \geq 0$, where we used (5.4). Therefore, we obtain

$$\frac{M(t)}{\|u(t)\|^2} \le C e^{\nu t}$$

and hence

$$||u(t)||^2 \ge Ce^{-\nu t}M(t) \ge Ce^{-\nu t}e^{-\alpha t} = Ce^{-\beta t}$$

with some $\beta \geq \alpha > 0$, where we used (5.1). \Box

References

 A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci. 14 (1991) 177–195.

- [2] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996) 305–330.
- [3] G.F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945) 157–165.
- [4] R.W. Dickey, Infinite systems of nonlinear oscillation equations with linear damping, SIAM J. Appl. Math. 19 (1970) 208–214.
- [5] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: time-decay estimates, J. Differential Equations 245 (2008) 2979–3007.
- [6] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.
- [7] K. Ono, Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac. 40 (1997) 255–270.
- [8] K. Ono, Decay estimates of solutions for mildly degenerate Kirchhoff type dissipative wave equations in unbounded domains Asymptot. Anal. 88 (2014) 75–92.
- [9] K. Ono, Lower decay estimates for non-degenerate dissipative wave equations of Kirchhoff type Sci. Math. Japonicae 77 (2014) 415–425.
- [10] K. Ono, Asymptotic behavior of solutions for Kirchhoff type dissipative wave equations in unbounded domains J. Math. Tokushima Univ., 61 (2017) 37–54.
- [11] W.A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966) 543–551.