Lower Decay Estimates for Non-Degenerate Kirchhoff Type Dissipative Wave Equations

By
Kosuke Ono
Department of Mathematical Sciences, Graduate School of Science and Technology Tokushima University, Tokushima 770-8506, JAPAN
e-mail address : k.ono@tokushima-u.ac.jp

(Received September 30, 2018)

Abstract

We consider the Cauchy problem for non-degenerate Kirchhoff type dissipative wave equations $\rho u^{\prime \prime}+a\left(\left\|A^{1 / 2} u(t)\right\|^{2}\right) A u+u^{\prime}=0$ and $\left(u(0), u^{\prime}(0)\right)=\left(u_{0}, u_{1}\right)$, where $u_{0} \neq 0$. We derive the lower decay estimate $\|u(t)\|^{2} \geq C e^{-\beta t}$ for $t \geq 0$ with $\beta>0$ for the solution $u(t)$.

2010 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

Let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let A be a linear operator on H with dense domain $\mathcal{D}(A)$. We assume that the operator A is self-adjoint and nonnegative such that $(A v, v) \geq 0$ for $v \in \mathcal{D}(A)$. The α-th power of A with dense domain $\mathcal{D}\left(A^{\alpha}\right)$ is denoted by A^{α} for $\alpha>0$, and the graph-norm of A^{α} is denoted by $\|v\|_{\alpha}=\left(\|v\|^{2}+\left\|A^{\alpha} v\right\|^{2}\right)^{\frac{1}{2}}$ for $v \in \mathcal{D}\left(A^{\alpha}\right)$. We use that $\left\|A^{1 / 2} v\right\|^{2}=(A v, v)$ for $v \in \mathcal{D}\left(A^{1 / 2}\right)$.

We study on the Cauchy problem for the non-degenerate Kirchhoff type dissipative wave equations :

$$
\left\{\begin{array}{l}
\rho u^{\prime \prime}+a\left(\left\|A^{1 / 2} u(t)\right\|^{2}\right) A u+u^{\prime}=0, \quad t \geq 0 \tag{1.1}\\
\left(u(0), u^{\prime}(0)\right)=\left(u_{0}, u_{1}\right) \in \mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right),
\end{array}\right.
$$

where $u=u(t)$ is an unknown real value function, ${ }^{\prime}=d / d t$, and ρ is a positive constant.

For the non-local nonlinear term $a(M) \in C^{0}([0, \infty)) \cap C^{1}((0, \infty))$, we assume that as follows :
$\underline{\text { Hyp. } 1} \quad K_{1} \leq a(M) \leq K_{2}+K_{3} M^{\gamma} \quad$ for $M \geq 0$
Hyp. $20 \leq a^{\prime}(M) M \leq K_{4} a(M) \quad$ for $M>0$
with $\gamma>0$ and $K_{j}>0(j=1,2,3,4)$.
From Hyp.1, we see that

$$
\begin{equation*}
K_{1} M \leq \int_{0}^{M} a(\mu) d \mu \leq\left(K_{2}+\frac{K_{3}}{\gamma+1} M^{\gamma}\right) M \tag{1.2}
\end{equation*}
$$

For typical examples, we have that

$$
a(M)=1+M^{\gamma}, \quad(1+M)^{\gamma}, \quad \log \left(2+M^{\gamma}\right)
$$

In the case of one dimension, (1.1) describes small amplitude vibrations of an elastic string (see [3], [4], [6]).

We obtain the following global existence theorem (see Theorem 4.1 and Proposition 5.1).

Theorem 1.1 Suppose that Hyp. 1 and Hyp.2 are fulfilled. If the initial data $\left(u_{0}, u_{1}\right)$ belong to $\mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right)$ and satisfy $u_{0} \neq 0$, and moreover, the coefficient ρ and the initial data $\left(u_{0}, u_{1}\right)$ satisfy the smallness condition (4.1), then the problem (1.1) admits a unique global solution $u(t)$ in the class

$$
C^{0}([0, \infty) ; \mathcal{D}(A)) \cap C^{1}\left([0, \infty) ; \mathcal{D}\left(A^{1 / 2}\right)\right) \cap C^{2}([0, \infty) ; H)
$$

Moreover, the solution $u(t)$ satisfies

$$
\begin{equation*}
\left\|A^{1 / 2} u(t)\right\|^{2} \geq C e^{-\alpha t} \quad \text { for } \quad t \geq 0 \tag{1.3}
\end{equation*}
$$

with some $\alpha>0$.
In previous paper [10], we have derived the upper decay estimates of the solution $u(t)$ of (1.1) in the case of $a(M)=(1+M)^{\gamma}$ with $\gamma>0$ and $A=$ $-\Delta=-\sum_{j=1}^{N} \partial^{2} / \partial x_{j}^{2}$ with domain $\mathcal{D}(A)=H^{2}\left(\mathbb{R}^{N}\right)$:

$$
\begin{aligned}
& \left\|A^{1 / 2} u(t)\right\|^{2} \leq C(1+t)^{-1}, \quad\left\|u^{\prime}(t)\right\|^{2}+\|A u(t)\|^{2} \leq C(1+t)^{-2} \\
& \left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\left\|u^{\prime \prime}(t)\right\|^{2} \leq C(1+t)^{-3} \quad \text { for } \quad t \geq 0
\end{aligned}
$$

(see [5], [8] for $a(M)=1+M^{\gamma}$ with $\gamma \geq 1$, that is, $a(\cdot) \in C^{1}([0, \infty))$).
On the other hand, Ghisi and Gobbino [5] have derived the lower decay estimate (1.3) for (1.1) (see [9] for bounded domains).

The purpose of this paper is to derive the lower decay estimate for $\|u(t)\|^{2}$.
For the non-local nonlinear term $a(M) \in C([0, \infty)) \cap C^{2}((0, \infty))$, we assume that as follows :
Hyp. $3 \quad\left|a^{\prime \prime}(M)\right| M^{2} \leq K_{5} a(M) \quad$ for $M>0$
with $K_{5}>0$.
We obtain the following lower decay estimate of the solution $u(t)$ of (1.1) (see Theorem 5.4). Our main result is as follows.

Theorem 1.2 Suppose that the assumption of Theorem 1.1 and Hyp. 3 are fulfilled. Then, the solution $u(t)$ satisfies

$$
\begin{equation*}
\|u(t)\|^{2} \geq C e^{-\beta t} \quad \text { for } \quad t \geq 0 \tag{1.4}
\end{equation*}
$$

with some $\beta>0$.
The notations we use in this paper are standard. Positive constants will be denoted by C and will change from line to line.

2 Local Existence and Energy

We have the following local existence theorem by standard arguments (see [1], [2], [7], [11] and the references cited therein).

Proposition 2.1 Suppose that Hyp. 1 and Hyp. 2 are satisfied. If the initial data $\left(u_{0}, u_{1}\right)$ belong to $\mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right)$, then the problem (1.1) admits a unique local solution $u(t)$ in the class $C^{0}([0, T) ; \mathcal{D}(A)) \cap C^{1}\left([0, T) ; \mathcal{D}\left(A^{1 / 2}\right)\right) \cap C^{2}([0, T)$; $H)$ for some $T=T\left(\left\|u_{0}\right\|_{2},\left\|u_{1}\right\|_{1}\right)>0$.

Moreover, $\|u(t)\|_{2}+\left\|u^{\prime}(t)\right\|_{1}<\infty$ for $t \geq 0$, then we can take $T=\infty$.
In what follows, let $u(t)$ be a solution of (1.1) under the assumption of Proposition 2.1.

We set that

$$
\begin{equation*}
M(t)=\left\|A^{1 / 2} u(t)\right\|^{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E(t)=\rho\left\|u^{\prime}(t)\right\|^{2}+\int_{0}^{M(t)} a(\mu) d \mu \tag{2.2}
\end{equation*}
$$

for simplicity of the notations.

Proposition 2.2 Under the assumption of Proposition 2.1, the solution $u(t)$ of (1.1) satisfies that

$$
\begin{align*}
& E(t)+2 \int_{0}^{t}\left\|u^{\prime}(s)\right\|^{2} d s=E(0) \tag{2.3}\\
& M(t) \leq K_{1}^{-1} E(0) \tag{2.4}\\
& a(M(t)) \leq K_{2}+K_{3}\left(K_{1}^{-1} E(0)\right)^{\gamma} \quad(\equiv I(0)), \tag{2.5}\\
& \|u(t)\|^{2} \leq 6\left(\left\|u_{0}\right\|^{2}+\rho E(0)\right) . \tag{2.6}
\end{align*}
$$

for $t \geq 0$.
Proof. Taking the inner product of (1.1) with $2 u^{\prime}(t)$, we have

$$
\begin{equation*}
\frac{d}{d t} E(t)+2\left\|u^{\prime}(t)\right\|^{2}=0 \tag{2.7}
\end{equation*}
$$

and integrating (2.7) in time t, we obtain (2.3).
Moreover, it follows from (5.1) and (2.2) that

$$
K_{1} M(t) \leq E(t) \leq E(0),
$$

and from Hyp. 2 that

$$
a(M(t)) \leq K_{2}+K_{3} M(t)^{\gamma} \leq I(0)
$$

Taking the inner product of (1.1) with $u(t)$, we have

$$
\frac{1}{2} \frac{d}{d t}\|u(t)\|^{2}+a(M(t)) M(t)=\rho\left(\left\|u^{\prime}(t)\right\|^{2}-\frac{d}{d t}\left(u^{\prime}(t), u(t)\right)\right),
$$

and we observe from the Young inequality that

$$
\begin{aligned}
& \|u(t)\|^{2}+2 \int_{0}^{t} a(M(s)) M(s) d s \\
& \leq\left\|u_{0}\right\|^{2}+2 \rho \int_{0}^{t}\left\|u^{\prime}(s)\right\|^{2} d s+\left\|u_{0}\right\|^{2}+\rho\left\|u_{1}\right\|^{2}+\frac{1}{2}\|u(t)\|^{2}+2 \rho^{2}\left\|u^{\prime}(t)\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \frac{1}{2}\|u(t)\|^{2}+2 \int_{0}^{t} a(M(s)) M(s) d s \\
& \leq 2\left\|u_{0}\right\|^{2}+\rho\left(\rho\left\|u_{1}\right\|^{2}+2 \rho\left\|u^{\prime}(t)\right\|^{2}+2 \int_{0}^{t}\left\|u^{\prime}(s)\right\|^{2} d s\right) \\
& \leq 2\left\|u_{0}\right\|^{2}+3 \rho E(0)
\end{aligned}
$$

which implies the desired estimate (2.6).

3 Several Estimates

In order to obtain a-priori estimates of the solution $u(t)$, we assume that

$$
\begin{equation*}
\rho \frac{\left|M^{\prime}(t)\right|}{M(t)} \leq \frac{1}{K_{4}+1} \tag{3.1}
\end{equation*}
$$

where $M(t)$ is defined by (5.1).
Proposition 3.1 Under the assumption (3.1), the solution $u(t)$ satisfies

$$
\begin{equation*}
\frac{\|A u(t)\|^{2}}{M(t)} \leq G(t) \leq G(0) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
& G(t)=\frac{\|A u(t)\|^{2}}{M(t)}+\rho Q(t) \tag{3.3}\\
& Q(t)=\frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}\left\|A^{1 / 2} u(t)\right\|^{2}-\left|\left(A^{1 / 2} u^{\prime}(t), A^{1 / 2} u(t)\right)\right|^{2}}{a(M(t)) M(t)^{2}} \quad(\geq 0) \tag{3.4}
\end{align*}
$$

Proof. We have from (1.1) that

$$
\begin{aligned}
& \frac{d}{d t} \frac{\|A u(t)\|^{2}}{M(t)} \\
&= \frac{1}{a(M(t)) M(t)^{2}}\left(2\left(a(M(t)) A u, A u^{\prime}\right) M(t)-(a(M(t)) A u, A u) M^{\prime}(t)\right) \\
&= \frac{1}{a(M(t)) M(t)^{2}}\left(2\left(\left\|A^{1 / 2} u^{\prime}\right\|^{2}+\rho\left(A^{1 / 2} u^{\prime \prime}, A^{1 / 2} u^{\prime}\right)\right) M(t)\right. \\
&\left.-\left(\frac{1}{2}\left|M^{\prime}(t)\right|^{2}+\rho\left(\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}-\frac{1}{2} M^{\prime \prime}(t)\right) M^{\prime}(t)\right)\right) \\
&=-2 Q(t)+\rho R(t)
\end{aligned}
$$

where we set

$$
R(t)=\frac{2\left(A^{1 / 2} u^{\prime \prime}, A^{1 / 2} u^{\prime}\right) M(t)+\left(\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}-\frac{1}{2} M^{\prime \prime}(t)\right) M^{\prime}(t)}{a(M(t)) M(t)^{2}} .
$$

Since we observe

$$
\begin{aligned}
\frac{d}{d t} & Q(t) \\
= & -\frac{a^{\prime}(M(t)) M^{\prime}(t) M(t)^{2}+2 a(M(t)) M(t) M^{\prime}(t)}{\left(a(M(t)) M(t)^{2}\right)^{2}} \\
& \times\left(\left\|A^{1 / 2} u^{\prime}\right\|^{2} M(t)-\frac{1}{4}\left|M^{\prime}(t)\right|^{2}\right) \\
& +\frac{2\left(A^{1 / 2} u^{\prime \prime}, A^{1 / 2} u^{\prime}\right) M(t)+\left\|A^{1 / 2} u^{\prime}\right\|^{2} M^{\prime}(t)-\frac{1}{2} M^{\prime}(t) M^{\prime \prime}(t)}{a(M(t)) M(t)^{2}} \\
= & -\frac{M^{\prime}(t)}{M(t)} \frac{a^{\prime}(M(t)) M(t)+2 a(M(t))}{a(M(t))^{2} M(t)^{2}}\left(\left\|A^{1 / 2} u^{\prime}\right\|^{2} M(t)-\frac{1}{4}\left|M^{\prime}(t)\right|^{2}\right)+R(t) \\
= & -\frac{M^{\prime}(t)}{M(t)}\left(2+\frac{a^{\prime}(M(t)) M(t)}{a(M(t))}\right) Q(t)+R(t),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\|A u(t)\|^{2}}{M(t)}+\rho Q(t)\right) \\
& \quad+2\left(1+\frac{\rho}{2} \frac{M^{\prime}(t)}{M(t)}\left(2+\frac{a^{\prime}(M(t)) M(t)}{a(M(t))}\right)\right) Q(t)=0 .
\end{aligned}
$$

Moreover, we observe

$$
1+\frac{\rho}{2} \frac{M^{\prime}(t)}{M(t)}\left(2+\frac{a^{\prime}(M(t)) M(t)}{a(M(t))}\right) \geq 1-\frac{1}{2} \frac{1}{K_{4}+1}\left(2+K_{4}\right) \geq 0
$$

and $Q(t) \geq 0$, we have

$$
\frac{d}{d t} G(t)=\frac{d}{d t}\left(\frac{\|A u(t)\|^{2}}{M(t)}+\rho Q(t)\right) \leq 0
$$

which implies the desired estimate (3.2).
Proposition 3.2 Under the assumption (3.1), the solution $u(t)$ satisfies

$$
\begin{equation*}
\frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} \leq B(0), \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
B(0)=\max \left\{\frac{\left\|u_{1}\right\|^{2}}{M(0)}, \frac{K_{4}+1}{K_{4}} I(0)^{2} G(0)\right\} . \tag{3.6}
\end{equation*}
$$

Proof. Taking the inner product of (1.1) with $2 u^{\prime}(t) / M(t)$, we have

$$
\begin{align*}
\rho \frac{d}{d t} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}+\left(2+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} & =-a(M(t)) \frac{M^{\prime}(t)}{M(t)} \tag{3.7}\\
& \leq 2 a(M(t)) \frac{\|A u(t)\|\left\|u^{\prime}(t)\right\|}{M(t)} \\
& \leq a(M(t))^{2} \frac{\|A u(t)\|^{2}}{M(t)}+\frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}
\end{align*}
$$

where we used the Young inequality.
Since

$$
1+\rho \frac{M^{\prime}(t)}{M(t)} \geq \frac{K_{4}}{K_{4}+1} \quad \text { and } \quad a(M(t))^{2} \frac{\|A u(t)\|^{2}}{M(t)} \leq I(0)^{2} G(0)
$$

we have

$$
\rho \frac{d}{d t} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{K_{4}}{K_{4}+1} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} \leq I(0)^{2} G(0)
$$

and hence, we obtain (3.6).
Remark. If the nonnegative function $f(t)$ satisfies

$$
f^{\prime}(t)+a f(t) \leq b, \quad t \geq 0
$$

with positive constants a and b, then

$$
f(t) \leq \max \{f(0), b / a\}, \quad t \geq 0
$$

Indeed, taking

$$
g(t)=\max \{f(0), b / a\}, \quad t \geq 0
$$

we see that $-a g(t)+b \leq 0$ and $g^{\prime}(t)=0$, and hence,

$$
g^{\prime}(t)+a g(t) \geq b \quad \text { and } \quad f(0) \leq g(0)
$$

Thus, by the comparison principle, we conclude.

4 Global Existence

Theorem 4.1 Suppose that Hyp. 1 and Hyp.2 are fulfilled. If the initial data $\left(u_{0}, u_{1}\right)$ belong to $\mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right)$ are satisfies $u_{0} \neq 0$ and

$$
\begin{equation*}
2 \rho G(0)^{\frac{1}{2}} B(0)^{\frac{1}{2}}<\frac{1}{K_{4}+1} \tag{4.1}
\end{equation*}
$$

then the problem (1.1) admits a unique global solution $u(t)$ in the class

$$
C^{0}([0, \infty) ; \mathcal{D}(A)) \cap C^{1}\left([0, \infty) ; \mathcal{D}\left(A^{1 / 2}\right)\right) \cap C^{2}([0, \infty) ; H)
$$

and the solution $u(t)$ satisfies

$$
\begin{align*}
& \|u(t)\|^{2} \leq 6\left(\left\|u_{0}\right\|^{2}+\rho E(0)\right) \tag{4.2}\\
& E(t) \leq E(0), \quad a(M(t)) \leq I(0) \tag{4.3}\\
& \rho \frac{\left|M^{\prime}(t)\right|}{M(t)} \leq \frac{1}{K_{4}+1}, \tag{4.4}\\
& \frac{\|A u(t)\|^{2}}{M(t)} \leq G(0), \quad \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} \leq B(0) \tag{4.5}
\end{align*}
$$

Proof. Let $u(t)$ be a solution on $[0, T]$. Since we observe from (3.2), (3.5), and (4.1) that

$$
\rho \frac{\left|M^{\prime}(0)\right|}{M(0)} \leq 2 \rho \frac{\left\|u_{1}\right\|}{M(0)^{\frac{1}{2}}} \frac{\left\|A u_{0}\right\|}{M(0)^{\frac{1}{2}}} \leq 2 \rho B(0)^{\frac{1}{2}} G(0)<\frac{1}{K_{4}+1}
$$

putting

$$
T=\sup \left\{t \in[0, \infty) \left\lvert\, \rho \frac{\left|M^{\prime}(s)\right|}{M(s)}<\frac{1}{K_{4}+1} \quad\right. \text { for } \quad 0 \leq s<t\right\}
$$

we see that $T_{1}>0$. If $T_{1}<T$, we have

$$
\rho \frac{\left|M^{\prime}(t)\right|}{M(t)}<\frac{1}{K_{4}+1} \quad \text { for } \quad 0 \leq t<T_{1}, \quad \text { and } \quad \rho \frac{\left|M^{\prime}\left(T_{1}\right)\right|}{M\left(T_{1}\right)}=\frac{1}{K_{4}+1}
$$

Again, from (3.2), (3.5), and (4.1) it follows that

$$
\rho \frac{\left|M^{\prime}(t)\right|}{M(t)} \leq 2 \rho \frac{\left\|u^{\prime}(t)\right\|}{M(t)^{\frac{1}{2}}} \frac{\|A u(t)\|}{M(t)^{\frac{1}{2}}} \leq 2 \rho B(0)^{\frac{1}{2}} G(0)<\frac{1}{K_{4}+1}
$$

for $0 \leq t \leq T$, and hence, we obtain $T_{1} \geq T$, and we see that the solution $u(t)$ satisfies the estimates $(2.3)-(2.6),(3.2)$, and (3.5), which implies (4.2)-(4.5).

Taking the inner product of (1.1) with $2 A u^{\prime}(t) / a(M(t))$, we have

$$
\begin{aligned}
& \frac{d}{d t}\left(\rho \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{a(M(t))}+\|A u(t)\|^{2}\right) \\
& \quad+2\left(1+\frac{\rho}{2} \frac{a^{\prime}(M(t)) M(t)}{a(M(t))} \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{a(M(t))}=0
\end{aligned}
$$

Since

$$
\begin{aligned}
1+\frac{\rho}{2} \frac{a^{\prime}(M(t)) M(t)}{a(M(t))} \frac{M^{\prime}(t)}{M(t)} & \geq 1-\frac{K_{4}}{2} \rho \frac{\left|M^{\prime}(t)\right|}{M(t)} \\
& \geq 1-\frac{K_{4}}{2} \frac{1}{K_{4}+1} \geq 0
\end{aligned}
$$

we have

$$
\frac{d}{d t}\left(\rho \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{a(M(t))}+\|A u(t)\|^{2}\right) \leq 0
$$

and hence,

$$
\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}+\|A u(t)\|^{2} \leq C \quad \text { for } \quad 0 \leq t \leq T .
$$

Thus, we observe that $\|u(t)\|_{2}+\left\|u^{\prime}(t)\right\|_{1} \leq C$, and by the second statement of Proposition 2.1, we conclude that the problem (1.1) admits a unique global solution.

5 Lower Decay Estimates

Proposition 5.1 Under the assumption of Theorem 4.1, it holds that

$$
\begin{equation*}
M(t) \geq C e^{-\alpha t} \quad \text { for } \quad t \geq 0 \tag{5.1}
\end{equation*}
$$

with some $\alpha>0$.
Proof. Taking the inner product of (1.1) with $2 u^{\prime}(t) / M(t)^{2}$, we have

$$
\begin{aligned}
& \frac{d}{d t}\left(\rho \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)^{2}}+\frac{a(M(t))}{M(t)}\right)+2\left(1+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)^{2}} \\
& \quad=\frac{-2 a(M(t))+a^{\prime}(M(t)) M(t)}{M(t)} \frac{M^{\prime}(t)}{M(t)} \\
& \quad \leq C \frac{a(M(t))}{M(t)} \frac{M^{\prime}(t)}{M(t)} \leq \alpha \frac{a(M(t))}{M(t)}
\end{aligned}
$$

with some $\alpha>0$, where we used Hyp. 2 and (4.4).
Since $1+\rho M^{\prime}(t) / M(t) \geq 0$, we have

$$
\frac{d}{d t}\left(\rho \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)^{2}}+\frac{a(M(t))}{M(t)}\right) \leq \alpha\left(\rho \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)^{2}}+\frac{a(M(t))}{M(t)}\right)
$$

and hence, we obtain

$$
\rho \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)^{2}}+\frac{a(M(t))}{M(t)} \leq C e^{\alpha t} \quad \text { or } \quad M(t) \geq C e^{-\alpha t}
$$

where we used the assumption that $a(M(t)) \geq K_{1}>0$.
Proposition 5.2 Under the assumption of Theorem 4.1, it holds that

$$
\begin{equation*}
\frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)} \leq C \quad \text { for } \quad t \geq 0 \tag{5.2}
\end{equation*}
$$

Proof. Taking the inner product of (1.1) with $\left(2 A u^{\prime}(t)+\rho^{-1} A u(t)\right) / M(t)$, we have

$$
\begin{align*}
& \frac{d}{d t}\left(\rho \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+a(M(t)) \frac{\|A u(t)\|^{2}}{M(t)}+\frac{\left(A u(t), u^{\prime}(t)\right)}{M(t)}\right) \\
& +\left(1+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{a(M(t))}{\rho} \frac{\|A u(t)\|^{2}}{M(t)}+\frac{1}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}} \\
& =-\left(a(M(t))+a^{\prime}(M(t)) M(t)\right) \frac{M^{\prime}(t)}{M(t)} \frac{\|A u(t)\|^{2}}{M(t)}-\frac{1}{2 \rho} \frac{M^{\prime}(t)}{M(t)} \tag{5.3}
\end{align*}
$$

Moreover, taking $(5.3)+(3.7) \times \rho^{-1} K_{1}^{-1}$, we have

$$
\begin{aligned}
& \frac{d}{d t} F(t)+\left(1+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{a(M(t))}{\rho} \frac{\|A u(t)\|^{2}}{M(t)}+\frac{1}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}} \\
& +\frac{1}{\rho K_{1}}\left(2+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}=R(t)
\end{aligned}
$$

where

$$
\begin{aligned}
F(t)= & H(t)+\frac{\left(A u(t), u^{\prime}(t)\right)}{M(t)} \\
H(t)= & \rho \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+a(M(t)) \frac{\|A u(t)\|^{2}}{M(t)}+\frac{1}{K_{1}} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} \quad(\geq 0) \\
R(t)= & -\left(a(M(t))+a^{\prime}(M(t)) M(t)\right) \frac{M^{\prime}(t)}{M(t)} \frac{\|A u(t)\|^{2}}{M(t)}-\frac{1}{2 \rho} \frac{M^{\prime}(t)}{M(t)} \\
& -\frac{a(M(t))}{\rho K_{1}} \frac{M^{\prime}(t)}{M(t)}
\end{aligned}
$$

Since we observe from the Young inequality and Hyp. 1 that

$$
\begin{aligned}
\frac{\left|\left(A u(t), u^{\prime}(t)\right)\right|}{M(t)} & \leq \frac{K_{1}}{2} \frac{\|A u(t)\|^{2}}{M(t)}+\frac{1}{2 K_{1}} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)} \\
& \leq \frac{a(M(t))}{2} \frac{\|A u(t)\|^{2}}{M(t)}+\frac{1}{2 K_{1}} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}
\end{aligned}
$$

and from (4.4) that

$$
1+\rho \frac{M^{\prime}(t)}{M(t)} \geq \frac{K_{4}}{K_{4}+1} \quad(>0)
$$

and from (4.3)-(4.5) that

$$
|R(t)| \leq C \frac{\left|M^{\prime}(t)\right|}{M(t)} \leq C
$$

we have

$$
\frac{d}{d t} F(t)+\nu F(t) \leq C
$$

with some $\nu>0$, and hence,

$$
F(t) \leq C \quad \text { or } \quad H(t) \leq C
$$

which implies the desired estimate (5.2).

Proposition 5.3 Under the assumption of Theorem 4.1 and Hyp.3, it holds that

$$
\begin{equation*}
\frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{M(t)} \leq C \quad \text { for } \quad t \geq 0 \tag{5.4}
\end{equation*}
$$

Proof. Taking the inner product of (1.1) with $\left(2 u^{\prime \prime}(t)+\rho^{-1} u^{\prime}(t)\right) / M(t)$, we have

$$
\begin{align*}
\frac{d}{d t} & \left(\rho \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{M(t)}+a(M(t)) \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{a^{\prime}(M(t)) M(t)}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}}\right. \tag{5.5}\\
& \left.+\frac{1}{2 \rho} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{\left(u^{\prime \prime}(t), u^{\prime}(t)\right)}{M(t)}\right)+\left(1+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{M(t)} \\
& +\frac{a(M(t))}{\rho} \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{a^{\prime}(M(t)) M(t)}{2 \rho} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}} \\
= & \left(-a(M(t))+3 a^{\prime}(M(t)) M(t)\right) \frac{M^{\prime}(t)}{M(t)} \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)} \\
& +\frac{1}{2}\left(-a^{\prime}(M(t)) M(t)+a^{\prime \prime}(M(t)) M(t)^{2}\right)\left(\frac{M^{\prime}(t)}{M(t)}\right)^{3} \\
& -\frac{M^{\prime}(t)}{M(t)}\left(\frac{1}{2 \rho} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{\left(u^{\prime \prime}(t), u^{\prime}(t)\right)}{M(t)}\right)
\end{align*}
$$

Moreover, taking (5.5)+(3.7), we have

$$
\begin{aligned}
& \frac{d}{d t} G(t)+\left(1+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{M(t)}+\frac{a(M(t))}{\rho} \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)} \\
& +\frac{a^{\prime}(M(t)) M(t)}{2 \rho} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}}+\left(2+\rho \frac{M^{\prime}(t)}{M(t)}\right) \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}=S(t)
\end{aligned}
$$

where

$$
\begin{aligned}
G(t)= & K(t)+\frac{\left(u^{\prime \prime}(t), u^{\prime}(t)\right)}{M(t)}, \\
K(t)= & \rho \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{M(t)}+a(M(t)) \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{a^{\prime}(M(t)) M(t)}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}} \\
& +\left(\frac{1}{2 \rho}+\rho\right) \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}, \\
S(t)= & \left(-a(M(t))+3 a^{\prime}(M(t)) M(t)\right) \frac{M^{\prime}(t)}{M(t)} \frac{\left\|A^{1 / 2} u^{\prime}(t)\right\|^{2}}{M(t)} \\
& +\frac{1}{2}\left(-a^{\prime}(M(t)) M(t)+a^{\prime \prime}(M(t)) M(t)^{2}\right)\left(\frac{M^{\prime}(t)}{M(t)}\right)^{3} \\
& -\frac{M^{\prime}(t)}{M(t)}\left(\frac{1}{2 \rho} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}+\frac{\left(u^{\prime \prime}(t), u^{\prime}(t)\right)}{M(t)}\right)-a(M(t)) \frac{M^{\prime}(t)}{M(t)} .
\end{aligned}
$$

Since we observe from the Young inequality that

$$
\frac{\left|\left(u^{\prime \prime}(t), u^{\prime}(t)\right)\right|}{M(t)} \leq \frac{\rho}{2} \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{M(t)}+\frac{1}{2 \rho} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}
$$

and from (4.4) that

$$
1+\rho \frac{M^{\prime}(t)}{M(t)} \geq \frac{K_{4}}{K_{4}+1} \quad(>0)
$$

and from (4.3)-(4.5), (5.2) that

$$
|S(t)| \leq C+\frac{K_{4}}{2\left(K_{4}+1\right)} \frac{\left\|u^{\prime}(t)\right\|^{2}}{M(t)}
$$

we have

$$
\frac{d}{d t} G(t)+\nu G(t) \leq C
$$

with some $\nu>0$, and hence,

$$
G(t) \leq 0 \quad \text { or } \quad K(t) \leq 0
$$

which implies the desired estimate (5.4).
Theorem 5.4 Suppose that the assumption of Theorem 4.1 and Hyp. 3 are fulfilled. Then, the solution $u(t)$ satisfies

$$
\begin{equation*}
\|u(t)\|^{2} \geq C e^{-\beta t} \quad \text { for } \quad t \geq 0 \tag{5.6}
\end{equation*}
$$

with some $\beta \geq \alpha>0$.

Proof. Using (1.1), we observe that

$$
\begin{aligned}
\frac{d}{d t} \frac{M(t)}{\|u(t)\|^{2}}= & \frac{1}{\|u(t)\|^{4}}\left(2\left(A u(t), u^{\prime}(t)\right)\|u(t)\|^{2}-2 M(t)\left(u(t), u^{\prime}(t)\right)\right) \\
= & \frac{-2}{\|u(t)\|^{2}}\left(\rho\left(A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t), u^{\prime \prime}(t)\right)\right. \\
& +a(M(t))\left(\left(A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t), A u(t)\right)\right)
\end{aligned}
$$

and

$$
\left(A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t), A u(t)\right)=\left\|A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t)\right\|^{2}
$$

Thus, we have

$$
\begin{aligned}
& \frac{d}{d t} \frac{M(t)}{\|u(t)\|^{2}}+\frac{2 a(M(t))}{\|u(t)\|^{2}}\left\|A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t)\right\|^{2} \\
& =\frac{-2 \rho}{\|u(t)\|^{2}} \rho\left(A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t), u^{\prime \prime}(t)\right) \\
& \leq 2 \rho \frac{1}{\|u(t)\|}\left\|A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t)\right\| \frac{\left\|u^{\prime \prime}(t)\right\|}{\|u(t)\|} \\
& \leq \frac{2 K_{1}}{\|u(t)\|^{2}}\left\|A u(t)-\frac{M(t)}{\|u(t)\|^{2}} u(t)\right\|^{2}+\frac{\rho^{2}}{2 K_{1}} \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{\|u(t)\|^{2}}
\end{aligned}
$$

and moreover, by $a(M(t)) \geq K_{1}>0$,

$$
\frac{d}{d t} \frac{M(t)}{\|u(t)\|^{2}} \leq C \frac{\left\|u^{\prime \prime}(t)\right\|^{2}}{\|u(t)\|^{2}}=C \frac{\left\|u^{\prime \prime}(t)\right\|}{M(t)} \frac{M(t)}{\|u(t)\|^{2}} \leq \nu \frac{M(t)}{\|u(t)\|^{2}}
$$

with some $\nu \geq 0$, where we used (5.4). Therefore, we obtain

$$
\frac{M(t)}{\|u(t)\|^{2}} \leq C e^{\nu t}
$$

and hence

$$
\|u(t)\|^{2} \geq C e^{-\nu t} M(t) \geq C e^{-\nu t} e^{-\alpha t}=C e^{-\beta t}
$$

with some $\beta \geq \alpha>0$, where we used (5.1).

References

[1] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci. 14 (1991) 177-195.
[2] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996) 305-330.
[3] G.F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945) 157-165.
[4] R.W. Dickey, Infinite systems of nonlinear oscillation equations with linear damping, SIAM J. Appl. Math. 19 (1970) 208-214.
[5] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: time-decay estimates, J. Differential Equations 245 (2008) 2979-3007.
[6] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.
[7] K. Ono, Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac. 40 (1997) 255-270.
[8] K. Ono, Decay estimates of solutions for mildly degenerate Kirchhoff type dissipative wave equations in unbounded domains Asymptot. Anal. 88 (2014) 75-92.
[9] K. Ono, Lower decay estimates for non-degenerate dissipative wave equations of Kirchhoff type Sci. Math. Japonicae 77 (2014) 415-425.
[10] K. Ono, Asymptotic behavior of solutions for Kirchhoff type dissipative wave equations in unbounded domains J. Math. Tokushima Univ., 61 (2017) 37-54.
[11] W.A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966) 543-551.

