Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1 ARHGAP33 mRNA localization.

(\mathbf{a}, \mathbf{b}) Fluorescent in situ hybridization for ARHGAP33 mRNA in a sagittal section of adult WT mice (a) and ARHGAP33 KO mice (a, inset). Higher magnification of the hippocampus is shown in $\mathbf{b} . \mathrm{Cb}$, cerebellum; CP , caudate-putamen; CX, cerebral cortex; Hi, hippocampus; MB, midbrain; MO, medulla oblongata; OB, olfactory bulb; Th, thalamus. CA, cornu ammonis; DG, dentate gyrus; Gr, granule cell layer; Or, oriens layer; Py, pyramidal cell layer; Ra, radiatum layer. Scale bars, $1 \mathrm{~mm}(\mathbf{a}), 500 \mu \mathrm{~m}$ (b). (c-f) Fluorescent in situ hybridization for ARHGAP33 mRNA together with VGLUT1 mRNA (c) and GAD67 mRNA (e) in the dentate gyrus of the hippocampus. Gr, granule cell layer; ML, molecular layer; Pl, polymorphic layer. Scale bars, $20 \mu \mathrm{~m}$. ($\mathbf{g}-\mathbf{j}$) Fluorescent in situ hybridization for ARHGAP33 mRNA together with VGLUT1 mRNA (g) and GAD67 mRNA (i) in the CA1 region of the hippocampus. LM, stratum lacunosum-moleculare; Or, Stratum oriens; Py, pyramidal cell layer; Ra, stratum radiatum. Scale bars, $20 \mu \mathrm{~m}$. Note that ARHGAP33 mRNA was colocalized both with VGLUT1 mRNA and GAD67 mRNA (arrow head) in the dentate gyrus and the CA1 region of the hippcampus $(\mathbf{c}, \mathbf{e}, \mathbf{g}, \mathbf{i})$.

Supplementary Figure 2

Supplementary Figure 2 Generation of ARHGAP33 KO mice.

(a) Schematic representation of the wild-type allele, targeting vector, and the targeted ARHGAP33 allele. Neo, neomycin-resistant gene; PGK, phoshoglycerate kinase promoter; TK, thymidine kinase gene. (b) Immunoblotting for ARHGAP33 in adult wild-type and ARHGAP33 KO mouse brain lysates. Tubulin was used as a loading control. (c) Normal body size of ARHGAP33 KO mice compared to WT mice (WT, $N=14$; ARHGAP33 KO, $N=14 ; P>0.05$, Mann-Whitney U-test). Bars show median values. (d) Nissl staining in coronal brain sections including hippocampus of adult WT and ARHGAP33 KO mice. Higher magnifications of the hippocampus are shown in the right panels. Scale bars, 1 mm .

Supplementary Figure 3

Supplementary Figure 3 Normal behavior of ARHGAP33 KO mice.

(a) The rotarod test. The average of time spent on the rotarod across 8 test trials for WT (open circles) and ARHGAP33 KO (closed circles) mice (WT, $N=12$, ARHGAP33 KO, $N=11$). There were no significant differences between the two genotypes $(P>0.05$, repeated-measures ANOVA). The data are expressed as mean \pm s.e.m. (b) The open field test. Normal locomotor activity in ARHGAP33 KO mice (closed circles) in the open field test compared to WT mice (open circles) (WT, $N=14$, ARHGAP33 KO, $N=14$). There were no significant differences between the two genotypes ($P>0.05$, Two-way ANOVA with repeated measures). The data are expressed as mean \pm s.e.m. (c, d) The contextual fear conditioning test. Freezing responses on the conditioning day (c). 170 s after the placement of mice in the conditioning chamber, a tone was presented for 10 s (solid line); at the end of the tone, mice were given a footshock for 2 s (arrow). Freezing responses in the contextual fear conditioning test (WT, $N=14$, ARHGAP33 KO, $N=12, P>0.05$, Two-way ANOVA with repeated measures) (\mathbf{d}). There were no significant differences between the two genotypes $(P>0.05$, Two-way ANOVA with repeated measures). The data are expressed as mean \pm s.e.m. (e, f) The Morris water maze test. The escape latency in the training session (WT, $N=14, A R H G A P 33 \mathrm{KO}, N=12, P>0.05$, Two-way ANOVA with repeated measures) (e). The time spent in each quadrant during the probe trials (WT, $N=14$, ARHGAP33 KO, $N=12, P>0.05$, Mann-Whitney U-test) (f). Bars show median values. (g) The elevated plus-maze test. The time spent on open arms (WT, $N=14, A R H G A P 33 \mathrm{KO}, N=12, P>0.05$, one-way ANOVA) (left). Entries into open arms (WT, $N=14$, ARHGAP33 KO, $N=12, P>0.05$, one-way ANOVA) (right). Bars show mean values. (h) Responses to acoustic stimuli. Mean amplitudes of startle responses in WT (open circles) and ARHGAP33 KO (closed circles) mice (WT, $N=12$, ARHGAP33 KO, $N=$ 11) are shown. There were no significant differences between the two genotypes ($P>0.05$, Two-way ANOVA with repeated measures). The data are expressed as mean \pm s.e.m. N.S., not significant.

Supplementary Figure 4

b

Supplementary Figure 4 Effects of SORT1 knockdown with shRNA construct

(TRCN0000034494).

(a) Weakened interaction between ARHGAP33 and TrkB in the SORT1 knockdown neuron. ARHGAP33 immunoprecipitates and total lysates were immunoblotted with the indicated antibodies. Representative blots (left), quantification of co-immunoprecipitated TrkB (center), and quantification of SORT1 expression (right)
(each $N=7$; TrkB, $P=0.0017$, SORT1, $P=0.0017$, Mann-Whitney U-test). The averaged values of the control neurons were set to 100%. Bars show median values. Western blots show representative results from 7 independent experiments performed using neurons from different mice. cont., control. KD, knockdown. Note that another shRNA construct (TRCN0000034494) targeted to region of SORT1 that does not overlap with that targeted by the shRNA used in Fig. 7c was used. (b) Requirement of SORT1 in ARHGAP33-mediated TrkB trafficking. Biotinylated cell surface proteins and total lysates were immunoblotted with the indicated antibodies. Representative blots (left) and quantification of surface TrkB expression (right) (each $N=10$; WT vs ARHGAP33 KO in the control neurons, corrected $P=6.2 \times 10^{-4}$; WT vs ARHGAP33 KO in the SORT1 knockdown neurons, corrected $P>0.05$, Mann-Whitney U-test with the Ryan's correction). The averaged values of the control neurons from WT mice were set to 100%. Western blots show representative results from 10 independent experiments performed using neurons from different mice. cont., control. KD, knockdown. Bars show median values. Note that another shRNA construct (TRCN0000034494) targeted to region of SORT1 that does not overlap with that targeted by the shRNA used in Fig. 7c was used.

Supplementary Figure 5

Supplementary Figure 5 Original uncropped images of western blots.

Supplementary Figure 5 (continued)

Supplementary Figure 5 (continued) Original uncropped images of western blots.

Supplementary tables

Supplementary Table 1. Demographic information for patients with schizophrenia and healthy controls included in expression analysis

Variables	Schizophrenia $(N=45)$	Control ($N=45$)
Age (years)	32.3 ± 10.7	32.3 ± 12.7
Sex (male/female)	$29 / 16$	$29 / 16$
CPZ-eq (mg/day)	737.7 ± 587.1	-
Age at onset (years)	22.2 ± 8.5	-
Duration of illness (years)	9.9 ± 7.8	-
PANSS Positive Symptoms	24.0 ± 7.3	-
PANSS Negative Symptoms	25.8 ± 8.6	-
PANSS General Psychopathology	54.3 ± 14.1	-

PANSS, Positive and Negative Syndrome Scale;
CPZ-eq, chlorpromazine equivalent of total antipsychotics. Mean \pm s.d.

Supplementary Table 2. Demographic information for patients with schizophrenia and healthy controls included in brain structure analysis

Variables	Schizophrenia $(N=124)$	Control $(N=407)$	P values (z)
Age (years)	37.5 ± 12.3	35.4 ± 12.5	$0.055(1.9)$
Sex (male/female)	$70 / 54$	$191 / 216$	$0.063(3.4)^{\mathrm{a}}$
Education (years)	14.1 ± 2.3	15.0 ± 2.2	$\mathbf{\leq 0 . 0 0 1 (\mathbf { - 3 . 2 })}$
Estimated premorbid IQ	101.9 ± 10.1	107.6 ± 8.1	$\mathbf{\leq 0 . 0 0 1 (\mathbf { - 5 . 6 })}$
Handedness (Rt./Lt./Bil.)	$120 / 4 / 0$	$383 / 23 / 1$	$0.48(1.5)^{\mathrm{a}}$
CPZ-eq (mg/day)	572.8 ± 536.4	-	-
Age at onset (years)	24.9 ± 10.2	-	-
Duration of illness (years)	12.5 ± 9.8	-	-
PANSS Positive Symptoms	18.5 ± 5.7	-	-
PANSS Negative Symptoms	19.3 ± 6.2	-	-

PANSS, Positive and Negative Syndrome Scale; CPZ-eq, chlorpromazine equivalent of total antipsychotics. Mean \pm s.d. and p values are shown. Significant P values are shown as bold face and underlined. ${ }^{\text {a }} \chi^{2}$ test. Complete demographic information was not obtained for all subjects (estimated premorbid IQ and PANSS in patients: $N=115$ and $N=122$; estimated premorbid IQ in controls: $N=406$).

Supplementary Table 3. Effects of ARHGAP33 genotype-diagnosis interaction on brain structure in total subjects

Brain regions	R/L	BA	CS	T	corrected p value	Talairach coordinates		
						x	y	z
ARHGAP33 genotype-diagnosis interaction								
Middle Temporal Gyrus	L	21	286	4.39	7.2×10^{-4}	-49	6	-35
Medial Frontal Gyrus	R	25	555	4.26	1.1×10^{-3}	5	16	-13
Inferior Temporal Gyrus	R	20	451	3.69	8.5×10^{-3}	57	-12	-20

R, right; L, left; BA, Brodmann area; CS,Cluster size; T, Peak-voxel T.

Supplementary Methods

Nucleotide sequence of the cRNA probe of ARHGAP33 for in situ hybridization

5'-

ATGCTCCAGA CACAGAGAGA GTCAGATCCC ATCCTGCCTT GGGGAGCTTC ATGGGCTGGC AGGGGACAGA CCCTGAGGGC CCGAAGCACT GACAGCCTGG ATGGCCCAGG GGAGGGCTCA GTGCAGCCTG TTCCCTCTAC TGGAGGGCCC AGTGTGAAGG GGAAGCCTGG GAAGAGGCTC TCAGCTCCTC GAGGTCCCTT TCCTCGGCTG GCCGACTGTG CCCATTTCCA CTATGAGAAT GTTGACTTTG GCCATATTCA GCTCCTACTG TCTCCAGAGC GTGAGGCCC CTTCGTAGTT ACGATGACTT CCGTTCCCTG GATGCCCACC TGCACCGATG CATATTTGAC CGGAGGTTTT CCTGCCTTCC AGAGCTCCCT CCACCCCCAG AGGGTGCTAG GGCTGCCCAG ATGCTGGTAC CTCTGCTGCT GCAGTATCTG GAGACCCTGT CTGGACTGGT GGACAGTAAC GCAGTGGCTG CCGCTCATGT GGTCAAACGG TACACAGCTC AGGCACCAGA TGAGCTCTCC TTTGAGGTGG GAGACATCGT CTCAGTGATC GACATGCCAC CCACAGAGGA TCGGAGCTGG TGGCGGGGCA AGCGGGGCTT CCAGGTTGGT TTCTTCCCCA GCGAGTGTGT AGAACTCTTC ACAGAGAGGC CAGGTCCTGG CTTAAAGGCA GATGCTGATG GTTCCCTGTG TGGCATCCCA GCTCCCCAGG GTAACTCTTC TCTCACCTCA GCTGTGCCCC GGCCACGTGG GAAGCTGGCT GGCCTCCTCC GAACCTTCAT GCGCTCCCGC CCTTCTCGGC AGCGGTTGCG GCAGCGGGGA ATTCTGCGGC AGAGAGTATT TGGCTGTGAC CTTGGAGAGC ATCTCAGCAA CTCAGGCCAG GATGTGCCCC AAGTGCTGCG CTGCTGCTCT GAGTTTATTG AGGCCCATGG GGTGGTGGAT GGAATCTACC GGCTCTCAGG AgTGAGAGGA TTCCTGAACT ATCTGGCCCT GCCTTCCTGC AGGACATCCA C CCAAACCCCC TACTCACCTA CCAGCTCTAT GGGAAATTCA GTGAGGCCAT G GATGTCATCC AGCAGTTGCC CCCACCACAC TACAGGACTC TAGAGTACCT G ACCAGCATGC ATGCCCGCAA CTTGGCCATT GTCTGGGCAC CCAACCTGCT C GCAGCCTTCC GGGAGGTTCG TGTGCAGTCA GTGGTGGTGG AA GCTGGCCTAG ACCCTGCAGG GAAGCCCAGG CTCGTACCCA AGGGAGAGAG GGGAAAAACA AAGCCTCTAC CCTGGCTGGG GAAGAGTCTC TATCATCACA GTGGGCCCAG CACCTGCTGG TCTGAGTCCT CAGCAGCTGG TTTAGCCCAC CCCGCTGCCT GCACCTCCTG CCAGCCCAGC AGCCCAGCTT CGTCCACTGC ACACCTGCCT CGGTCACCCC GCCCAGCTAA GTGACACCTG CCATTGCTGC CCCCACCTCT CTGGCTGAGC GGGCTCAGCA TCACTGTCCC TGGAGGTCGG CCAGGACCCC CACCCTACCT A AgAGGCCCTG CTCAGGTTCC T TTGTACCCTC TCGCCCCCTC C GGAGAGAACC TGTACTATGA G CCTGATAGGC TCAGTGCCTC A CCCTCCTGCT TTCCACCTGA CTAGCCCTAG GGCCCAGGGG CCAGCACCTC GTCTCCCTCA CTCCTGCTCT ACAGGGGATC C GAGGGGGCTG GTCCTCCACC CCGCTGTCTT CTCCCCAGGC CC GGGCCGGCTG GGAACACCCA CTAGICCCT T ACTCTCAAG GGGCTCTCGT GCACCACCAC AGCCTTCAGG CAACCGACCT GGCCAGTGGG ACTGGCCTCC AGAGGCTACA CAGGCTACGG C CTCCTGCGAG ACCCTGTCTT CTTCTTCTTC TTCTTCCTCC GCTGGGGCCA CTTTCCGGGT GGAGGGACTC CGGGGCCTGG CACCCTCACA T ACCCCCAGCA CCCGCCTCTG CCTGCCCACC TCTGGACATC TCAGAGCCCC TGGCTGTGTC T AACACCAGCT CTCAGCCCTG GCCCAGGCTT GCG CCAACAAGAG ATCAGCAGTA AGCTGGCACT G GTCCCTTCTA CGCCCTGGTG GGGCCCCACC GGTGGCTAAG CAACAGAGCC AGCAGGAGCA T TGGGGAACCT GTGGTAACTT CAGGGAGTGG A ACCAAGGCAA CAAAGTGATG GGAGCCTGGT CTCCTTTCAA CCCAACTCCT CAGCCCAAGT C GATTGGGGCT AGTGAGGGTT CCCCCTATTC T ATATGGCATG CTTGGCCAGT CACCACCACT TCA TCCTTCACCT GCCTCTTCCT GAAGCAGCGG GCTCCCTGGG G CCCACCAGCC TATGGGAGGG GGAGCGAGCA TTACCAAGGG TCTTTGTACA GAAATGGGGG TCAGAGGGGA TCCTTACCTC ACTCCCAGTT GGTCCCTCCA CTCTGAGGGC CAGACCCGAA GCTACTGTTG A-3'

