A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study

Hiroko Nakagawa-Senda^{1,2,10}, Tsuyoshi Hachiya³, Atsushi Shimizu³, Satoyo Hosono¹, Isao Oze⁴, Miki, Watanabe¹, Keitaro Matsuo^{4,5}, Hidemi Ito^{4,5}, Megumi Hara⁶, Yuichiro Nishida⁶, Kaori Endoh⁷, Kiyonori Kuriki⁷, Sakurako Katsuura-Kamano⁸, Kokichi Arisawa⁸, Yora Nindita⁹, Rie Ibusuki⁹, Sadao Suzuki¹⁰, Akihiro Hosono¹⁰, Haruo Mikami¹¹, Yohko Nakamura¹¹, Naoyuki Takashima¹², Yasuyuki Nakamura¹³, Nagato Kuriyama¹⁴, Etsuko Ozaki¹⁴, Norihiro Furusyo¹⁵, Hiroaki Ikezaki^{15,} Masahiro Nakatochi¹⁶, Tae Sasakabe², Sayo Kawai², Rieko Okada², Asahi Hishida², Mariko Naito², Kenji Wakai², Yukihide Momozawa¹⁷, Michiaki Kubo¹⁷, Hideo Tanaka¹

¹Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute ²Department of Preventive Medicine, Nagoya University Graduate School of Medicine ³Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University ⁴Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute

⁵Department of Epidemiology, Nagoya University Graduate School of Medicine

⁶Department of Preventive Medicine, Faculty of Medicine, Saga University

⁷Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka

⁸Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School

⁹Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences

¹⁰Department of Public Health, Nagoya City University Graduate School of Medical Sciences

¹¹Division of Cancer Prevention and Epidemiology, Chiba Cancer Center

¹²Department of Public Health, Shiga University of Medical Science

¹³Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University ¹⁴Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine

¹⁵ Department of Environmental Medicine and Infectious Disease, Kyushu University
¹⁶Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
¹⁷Laboratory for Genotyping Development, Center for Integrative Medical Sciences,
RIKEN

Supplement Table 1. Baseline characteristics of the study subjects according to site

				Coffee consumption (mean±SD)		Current alcohol	BMI (kg/m2)	Current
Site	Ν	Age ± SD (year)	Female (%)	(cups/day)	Current alcohol drinkers (%)	consumption (mean±SD)	(mean±SD)	smoking rate (%)
Chiba	1,055	53.6 ± 9.9	66	1.5 ± 1.4	56.1	12.6 ± 22.8	22.5 ± 3.0	11.5
Okazaki	1,064	55.7 ± 9.1	45	1.6 ± 1.4	54.0	13.3 ± 22.4	22.4 ± 3.2	20.0
Shizuoka-Daiko	1,989	52.9 ± 9.7	56	1.6 ± 1.5	52.9	14.2 ± 29.8	23.3 ± 3.1	15.8
Takashima	543	56.5 ± 9.7	71	1.5 ± 1.4	55.9	13.1 ± 23.8	22.3 ± 3.1	15.7
Kyoto	1,088	49.8 ± 9.8	52	1.9 ± 1.6	46.6	10.4 ± 19.4	23.0 ± 3.3	20.0
Sakuragaoka	573	50.1 ± 9.4	38	1.5 ± 1.5	62.8	15.0 ± 23.7	22.4 ± 3.2	25.8
Sub-total	6,312	53.0 ± 9.9	55	1.6 ± 1.5	56.1	23.9 ± 28.5	22.7 ± 3.2	17.4
Aichi	1,150	55.1 ± 9.5	51	1.7 ± 1.5	56.3	13.4 ± 23.4	23.1 ± 3.2	21.7
Saga	1,897	56.8 ± 8.2	57	1.6 ± 1.6	51.8	18.1 ± 29.4	24.6 ± 3.6	20.8
Kagoshima	1,224	55.2 ± 8.3	58	1.7 ± 1.6	58.3	15.3 ± 23.4	23.9 ± 3.6	15.9
Tokushima	678	50.4 ± 8.9	33	2.2 ± 1.7	60	14.6 ± 23.7	23.1 ± 3.4	26.0
Sub-total	4,949	55.1 ± 8.8	53	1.7 ± 1.6	54.8	27.0 ± 28.3	23.4 ± 3.4	20.5

*Among current alcohol consumers

Supplementary Table 2. Results of genome-wide association study adjusted for age, sex and smoking status

SNP	Chr ^b	Gene	Position ^c	$\mathrm{E}\mathrm{A}^{\mathrm{d}}$	NEA ^e	$\operatorname{Rsq}^{\mathrm{f}}$	Population	AF^{g}	Beta ^h	SE(Beta) ⁱ	Variance explained (%)	Р
rs2074356 ^a	12	HECTD4	112,645,401	Α	G	0.996	Discovery	0.252	0.2084	0.0293	0.82	1.2×10 -12
		(intron)					Replication	0.224	0.1681	0.0363	0.42	3.6×10 -6
							Meta-analysis	0.240	0.1925	0.0228	0.62	3.1×10 -17

^aDirectly genotyped; ^bChromosome; ^cChromosomal position (GRCh37/hg19); ^dEffect allele; ^eNon-effect allele; ^fImputation quality in terms of R-square calculated by the Minimac3 software version 1.0.11; ^gAllele frequency of effect allele; ^hEffect size; ⁱStandard error of effect size

Results listed in bold are associations whose P-values are less than of genome-wide significance ($P \le 5 \times 10^{-8}$).

Supplementary Table 3. Results of genome-wide association study adjusted for age, sex, smoking status, and BMI

SNP	$\mathrm{Chr}^{\mathrm{b}}$	Gene(s)	Position ^c	$\mathrm{E}\mathrm{A}^{\mathrm{d}}$	NEA ^e	$\operatorname{Rsq}^{\mathrm{f}}$	Population	AF ^g	Beta ^h	SE(Beta) ⁱ	Variance explained (%	P ()
rs1957553	5	CLINTI-EBF1	157,506,734	G	А	0.996	Discovery	0.2719	0.1394	0.0285	0.39	9.9×10 ⁻⁷
		(intergenic)					Replication	0.2756	-0.0174	0.0340	0.01	6.1×10 ⁻¹
							Meta-analysis	0.2735	0.0746	0.0218	0.10	6.3×10 ⁻⁴
rs2074356 ^a	12	HECTD4	112,645,401	Α	G	0.996	Discovery	0.2520	0.2078	0.0293	0.82	1.4×10 ⁻¹²
		(intron)					Replication	0.2243	0.1674	0.0363	0.41	4.0×10 -6
							Meta-analysis	0.2398	0.1918	0.0228	0.62	4.0×10 ⁻¹⁷

^aDirectly genotyped; ^bChromosome; ^cChromosomal position (GRCh37/hg19); ^dEffect allele; ^eNon-effect allele; ^fImputation quality in terms of R-square calculated by the Minimac3 software version 1.0.11; ^gAllele frequency of effect allele; ^hEffect size; ⁱStandard error of effect size Results listed in bold are associations whose *P*-values were less than of genome-wide significance ($P < 5 \times 10^{-8}$).

Supplementary Table 4. Results of conditional analysis around rs2074356

		Position ^c	$\mathbf{E}\mathbf{A}^{\!d}$	NEA ^e	AF^{f}	Adjusted for age and sex			Adjuste			
SNP	Chr ^b								rs20	074356 dosa	ge	LDR^{2}
						Beta ^g	SE(Beta) ^h	Р	Beta	SE(Beta)	Р	
rs12227162	12	111,367,244	Т	С	0.208	0.1616	0.0323	5.7×10 ⁻⁷	0.0087	0.0322	0.787	0.522
rs149607519	12	111,389,437	G	С	0.213	0.1575	0.0317	6.8×10 ⁻⁷	0.0081	0.0316	0.798	0.521
rs148177611	12	111,390,454	Т	TAGAA	0.215	0.1574	0.0317	6.8×10 ⁻⁷	0.0088	0.0315	0.781	0.515
rs3809297	12	111,609,727	Т	G	0.256	0.1643	0.0319	2.5×10 ⁻⁷	-0.0065	0.0317	0.837	0.657
rs3809284	12	111,688,139	С	Т	0.906	0.2338	0.0473	7.9×10 ⁻⁷	0.1691	0.0472	0.0003	0.037
rs11065992	12	112,085,496	С	Т	0.473	0.1509	0.0291	2.2×10 ⁻⁷	0.0209	0.0290	0.471	0.441
rs3782886 ^a	12	112,110,489	С	Т	0.288	0.1822	0.0287	2.3×10 ⁻¹⁰	0.0076	0.0286	0.791	0.816
rs11066001	12	112,119,171	С	Т	0.284	0.1867	0.0290	1.3×10 ⁻¹⁰	0.0074	0.0289	0.798	0.842
rs60125993	12	112,136,208	С	СТ	0.513	0.1422	0.0271	1.5×10 ⁻⁷	0.0370	0.0269	0.169	0.328
rs11066008	12	112,140,669	G	А	0.351	0.1827	0.0301	1.2×10 -9	0.0102	0.0299	0.733	0.719
rs11066015 ^a	12	112,168,009	А	G	0.275	0.1895	0.0292	8.1×10 ⁻¹¹	0.0066	0.0290	0.821	0.870
rs4646776	12	112,230,019	С	G	0.275	0.1906	0.0291	5.2×10 -11	0.0072	0.0290	0.805	0.876
rs671 ^a	12	112,241,766	А	G	0.275	0.1894	0.0291	7.8×10 ⁻¹¹	0.0060	0.0290	0.836	0.878
rs78069066	12	112,337,924	А	G	0.280	0.1919	0.0295	7.7×10 ⁻¹¹	0.0060	0.0293	0.839	0.879
rs2339904	12	112,378,350	Т	С	0.622	0.1437	0.0292	8.8×10 ⁻⁷	0.0589	0.0291	0.043	0.198
rs11066132	12	112,468,206	Т	С	0.271	0.1948	0.0303	1.2×10 -10	0.0006	0.0301	0.983	0.907
rs116873087	12	112,511,913	С	G	0.274	0.1904	0.0302	2.8×10 ⁻¹⁰	-0.0024	0.0300	0.938	0.899
rs11066150	12	112,518,803	А	G	0.466	0.1739	0.0291	2.4×10 -9	0.0401	0.0290	0.167	0.464
rs147992802	12	112,552,274	Т	С	0.344	0.1995	0.0305	5.3×10 -11	0.0257	0.0304	0.397	0.700
rs12231737	12	112,574,616	Т	С	0.281	0.1939	0.0298	8.2×10 -11	0.0030	0.0297	0.918	0.903
rs144504271	12	112,627,350	А	G	0.277	0.1943	0.0297	5.8×10 -11	0.0036	0.0295	0.902	0.912
rs2074356 ^a	12	112,645,401	А	G	0.252	0.2011	0.0299	1.8×10 -11	0.0000	0.0298	1.000	1.000
rs77768175	12	112,736,118	G	А	0.253	0.1974	0.0329	1.9×10 -9	-0.0083	0.0327	0.798	0.869
rs11066280 ^a	12	112,817,783	А	Т	0.290	0.1759	0.0286	8.0×10 ⁻¹⁰	0.0018	0.0285	0.949	0.817
rs11537471	12	112,834,586	G	А	0.349	0.1852	0.0296	3.9×10 ⁻¹⁰	0.0206	0.0294	0.485	0.678
rs139144808	12	113,470,025	TA	Т	0.225	0.1638	0.0329	6.4×10 ⁻⁷	0.0484	0.0327	0.140	0.298

^aDirectly genotyped; ^bChromosome; ^cChromosomal position (GRCh37/hg19); ^dEffect allele; ^eNon-effect allele; ^fAllele frequency of effect allele; ^gEffect size; ^hStandard error of effect size; ⁱLinkage disequilibrium*R*² with rs2074356

Adjustment	SNP	Chr ^b	Gene(s)	Position ^c	$\mathrm{E}\mathrm{A}^{\mathrm{d}}$	NEA	$\operatorname{Rsq}^{\mathrm{f}}$	AF^{g}	Beta ^h	SE(Beta) ⁱ	Variance explained (%)	Р
Age, Sex	rs573194563	5	CT49–DNAH5 (intergenic)	13,076,920	CA	С	0.810	0.955	0.2708	0.0539	0.31	5.0×10 ⁻⁷
	rs144504271	12	HECTD4 (intron)	112,627,350	А	G	0.955	0.265	0.1887	0.0237	0.67	1.5×10 -15
Age, Sex, Smoking status	rs12094032	1	MAB21L3-ATP1A1 (intergenic)	116,891,363	G	А	0.943	0.057	0.2139	0.0432	0.24	7.5×10 ⁻⁷
	rs573194563	5	CT49–DNAH5 (intergenic)	13,076,920	CA	С	0.810	0.955	0.2605	0.0527	0.28	7.8×10 ⁻⁷
	rs4410790 ^a	7	AGR3-AHR (intergenic)	17,284,577	С	Т	0.996	0.375	0.1020	0.0203	0.23	4.9×10 ⁻⁷
	rs2074356 ^a	12	HECTD4 (intron)	112,645,401	А	G	0.996	0.240	0.1925	0.0234	0.65	1.7×10 -16
Age, Sex, Smoking status, BMrs120940		1	MAB21L3-ATP1A1 (intergenic)	116,891,363	G	А	0.943	0.057	0.2136	0.0432	0.24	7.8×10 ⁻⁷
	rs573194563	5	CT49–DNAH5 (intergenic)	13,076,920	CA	С	0.810	0.955	0.2597	0.0527	0.28	8.4×10 ⁻⁷
	rs4410790 ^a	7	AGR3-AHR (intergenic)	17,284,577	С	Т	0.996	0.375	0.1024	0.0203	0.24	4.4×10 ⁻⁷
	rs2074356 ^a	12	HECTD4 (intron)	112,645,401	А	G	0.996	0.240	0.1920	0.0234	0.65	2.0×10 -16

Supplement Table 5. Results of genome-wide association study using both discovery and replication subjects

^aDirectly genotyped; ^bChromosome; ^cChromosomal position (GRCh37/hg19); ^dEffect allele; ^cNon-effect allele; ^fImputation quality in terms of R-square calculated by the Minimac3 software version 1.0.11; ^gAllele frequency of effect allele; ^hEffect size; ⁱStandard error of effect size

Results listed in bold are associations whose P-values were less than of genome-wide significance ($P < 5 \times 10^{-8}$).

Supplement Table 6. Minor allele frequency in the J-MICC samples for previously-reported SNPs

Locus	SNP	PubMed ID(s)	First Author	Year
2p24	rs1260326 ^a	25288136	Cornelis MC	2015
4q22	rs1481012	25288136	Cornelis MC	2015
6q21	rs2216084	27561104	Pirastu N	2016
	rs6942255	27561104	Pirastu N	2016
	rs7745311	27561104	Pirastu N	2016
	rs7754744	27561104	Pirastu N	2016
	rs9386630 ^b	27561104	Pirastu N	2016
7p21	rs4410790 ^a	21490707; 25288136	Cornelis MC; Cornelis MC	2011; 2015
	rs6968554 ^a	25288136	Cornelis MC	2015
	rs6968865 ^a	21357676	Sulem P	2011
7q11.23	rs7800944	25288136	Cornelis MC	2015
	rs17685 ^a	25288136	Cornelis MC	2015
7q31	rs382140 ^a	21876539	Amin N	2012
11p13	rs6265 ^a	25288136	Cornelis MC	2015
15q24	rs2470893 ^a	21490707; 21876539; 25288136	Cornelis MC; Amin N; Cornelis MC	2011; 2012; 2015
	rs2472297 ^a	21876539; 25288136; 21357676	Amin N; Cornelis MC; Sulem P	2012; 2015; 2011
	rs6495122 ^a	21876539	Amin N	2012
17q11.2	rs9902453	25288136	Cornelis MC	2015

^aThese SNPs were directlyGenotyped.

^bThese SNPs was not included in the reference panel (1000Genomes phase 3 version 5) and the genotype could not be imputed.

Figure S1. Genome-wide association signals from the combined analysis of discovery and replication samples (N = 11,261). The *x*-axis represents chromosomal positions and the *y*-axis represents $-\log_{10} P$ -values calculated by a mixed linear model association analysis. The grey and red dotted horizontal lines indicate the suggestive ($P = 1 \times 10^{-6}$) and genome-wide ($P = 5 \times 10^{-8}$) significance levels, respectively. Variants with

P-values indicating less than genome-wide significance ($P < 5 \times 10^{-8}$) are shown in red. Results were adjusted for age and sex (A); for age, sex, and smoking status (B); and for age, sex, smoking status, and BMI (C). The inflation factor, lambda, is the median of the observed test statistics divided by the median of the expected test statistics. BMI, body-mass index; CI, confidence interval